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Abstract Auditory system in animals can capture

external sound signals, which can be converted into

biophysical electric signals, and then the auditory

neurons are activated to generate kinds of firing

patterns. Bats can detect signals with ultrahigh

frequency while human auditory system is sensitive

to sound and voice within the frequency range 20 to

20,000 Hertz. In this paper, a piezoelectric neuron is

proposed to investigate the physical mechanism for

selection of frequency and filtering in auditory wave,

and filtering wave function is designed to simulate the

mode selection in the electrical activities of auditory

neuron. Sound signals with multiple frequencies are

imposed to drive the auditory neuron and mode

selection is analyzed in detail. A decay factor is

introduced to control the wave filter and frequency

selection, and the amplitude is decreased sharply

within transient period when the frequency is beyond

or below the threshold. Furthermore, additive noise is

accompanied by the sound signals and the mode

selection is investigated by taming the noise intensity

carefully. It is found that intermediate noise intensity

can enhance nonlinear resonance and the auditory

wave is encoded to induce regularity in the neural

activities. The results can be helpful for further

designing smart sensor and wave filter in signal

processing, and the biophysical mechanism for signal

processing in auditory system is clarified.

Keywords Piezoelectric neuron � Wave filter �
Frequency selection � Mode selection

1 Introduction

Auditory neurons [1–5] are sensitive to certain audi-

tory wave within appropriate frequency, and the

nonlinear vibrations from acoustic source can be

propagated and converted into electrophysiological

signal for activating kinds of firing modes in the

auditory system. From the biophysical viewpoint, the

vibration energy from the acoustic source can be

absorbed partially and then is exchanged in the

nervous system. The realistic voice and sound often

present combination of signals with multiple frequen-

cies, and the tympanic membrane and other structures

will be forced with nonlinear vibration propagated to

the spiral organ to the cochlea. Spirochetes are

auditory receptors that sense acoustic stimulation,

and it is composed of supporting cells and hair cells

which can encode and transmit sound signals to neural

electric signals, and then spiral ganglion neurons are
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activated to propagate these electric signals to the

brain and the sound signals are decoded completely.

During the encoding and decoding of sound signals,

vibration energy is captured and transferred to electric

field energy in the nervous system. The sampled time

series for sounds and voice can present complex and

nonlinear rhythm, and thus the multiple frequency even

chaos can be detected via nonlinear analysis. As is well

known, piezoelectric ceramics can transmit vibration

signal to electric signals when acoustic wave and

mechanical pressures are imposed on these functional

components. The authors in Ref. [6] suggested that

piezoelectric ceramics can be incorporated into the

simple neural circuit for possible repairing the hearing

impairment, and the dynamics in the functional auditory

neuron is investigated carefully. For potential applica-

tion in artificial intelligence and neuroscience, more

physical electric components can be embedded into the

neural circuits for detecting and encoding the external

optical signal, electromagnetic field and thermal sig-

nals. For example, thermistor [7–9] can be connected to

the neural circuit and its ability to percept temperature

effect can be realized in the biophysical thermosensitive

neuron [10–12]. Phototube can be coupled with most of

the neural circuits, and photocurrent is generated to

excite the neuron for presenting kinds of firing modes,

and this light-dependent neuron model [13–15] can

show potential application in designing artificial eyes.

The channel current across the Josephson junction

[16–18] can be regulated by changing the external

magnetic field, and the functional neuron [19, 20] can

estimate the effect of magnetic field when a Josephson

junction is connected to any branch of the neural circuits

[21–24]. Memristor connected to the neural circuits

enables realization of reliable memristive synapses

[25–27] and estimating the effect of electromagnetic

induction in neurons [28, 29]. For most of the generic

and functional neural circuits, some intrinsic parameters

can be tamed to present sole firing modes such as

spiking, bursting and even chaotic states, while the

activation of electromagnetic radiation [30–34] can

induce multiple firing modes and different firing modes

are induced intermittently. For reliable bifurcation

analysis and synchronization control in neuron and

neural network [35–39], these neural circuits can be

expressed by applying appropriate scale transformation

[40] on the physical variables and parameters in the

equations for the neural circuits [41–44].

In fact, the emitted signals from the realistic signal

source seldom present sole frequency, while most of

the works about dynamics in neurons are used to

discuss the nonlinear analysis and mode selection in

neurons by applying periodical stimuli and noise

[45–49]. That is, the external current on neuron

models is considered as equivalent transmembrane

current than realistic external current. On the other

hand, these functional electric components have finite

parameter response range and then wave filter occurs

to block possible activation and response for some

signal bands. For example, the photocurrent can be

generated only when the frequency in the external

illumination should be beyond the threshold of

frequency for the cathode material in the phototube.

For animals, the wavelength should be within the

range of visible light and thus the eyes can see the

objects completely. For human ears, the frequency in

acoustic wave within 20 to 20,000 Hertz can be heard

while bats ears are more sensitive to ultrasonic waves.

In this paper, a piezoelectric neuron [6] is used to

percept and encode the sound signals by activating the

wave filter. The sound signals from the signal source

present multiple frequencies and some acoustic waves

are blocked in the piezoelectric ceramic device in the

functional neuron, and the encoding mechanism is

explained to confirm the mode selection in the electric

activities in this piezoelectric neuron.

2 Model and scheme

From physical viewpoint, distinct mechanical defor-

mation can be induced when the acoustic wave and

mechanical force are imposed on the media surface,

and the polarity of molecules can be changed to

regulate distribution of inner field of the media. As a

result, transverse voltage is generated and changed in

the piezoelectric materials. Constant mechanical

pressure can generate stable output voltage while

nonlinear vibration can induce time-varying voltage in

the piezoelectric devices. In Fig. 1, a piezoelectric

component is connected to a neural circuit [50] for

receiving sound voice, and the processing of auditory

signal is presented.

The physical relation for external pressure F and

voltage VPC on the piezoelectric ceramics in Fig. 1 can

be approached by
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VPC ¼ F

S

d0
e
h ¼ Pgh ¼ V F; lð Þ; P ¼ F

S
; g ¼ d0

e
ð1Þ

where F, e, S, h, d0 denote the external mechanical

force, dielectric constant, cross-sectional area, thick-

ness of the piezoelectric ceramics and dependence on

the physical property of the material, respectively.

That is, the output voltage VPC can estimate the effect

of external vibration and mechanical force on this

piezoelectric device. The current iNR across the

nonlinear resistor in Fig. 1 can be estimated [50, 51]

as follows

iNR ¼ � 1

q
ðV � 1

3

V3

V2
0

Þ ð2Þ

where the parameters q, V0 and V describe the

conductance, reverse voltage and across voltage for

the nonlinear resistor Rnon, respectively. Based on the

physical Kirchhoff’s law, the circuit equation for the

piezoelectric neuron circuit can be obtained by

C
dVC

dt
¼ VPC � VC

RS
� iL � iNR

L
diL
dt

¼ VC � RiL þ E

8
>><

>>:

ð3Þ

Furthermore, the physical variables and parameters

in Eq. (3) are mapped into dimensionless variables

and normalized parameters by starting the scale

transformation [40] as follows

x ¼ VC

V0

; y ¼ qiL
V0

; s ¼ t

qC
; upc ¼

VPC

V0

n ¼ q
RS

; a ¼ E

V0

; b ¼ R

q
; c ¼ q2C

L

8
>><

>>:

ð4Þ

Therefore, the dynamics and firing modes of the

piezoelectric neuron can be calculated by

dx

ds
¼ xð1� nÞ � 1

3
x3 � yþ nupc

dy

ds
¼ c½xþ a� by�

8
><

>:
ð5Þ

From dynamical viewpoint, the equivalent voltage-

controlled current nupc estimates the piezoelectric

effect, and possible mode selection in neural activities

induced by external acoustic wave or mechanical force

can be well addressed by presenting the sampled time

series for membrane potential x. In the neural circuit,

the involvement of linear resistor RS can stabilize and

balance the function of piezoelectric ceramics which

can be used as time-varying voltage source or current

source by regulating the channel current across this

branch circuit. In fact, the acoustic wave is encoded by

the piezoelectric ceramics and some wave bands are

blocked to prevent generating further response and

mode transition in neural activities. That is, the

voltage-controlled current nupc can present more

frequency than sole periodical current completely. In

a practical way, some bands in the acoustic wave can

be decreased soon or absorbed by the media com-

pletely. Here, we suggest that the mapped current can

be described by signals with variant angular frequency

as follows

nupc ¼ Aðx; sÞ cosxsþfðsÞ ð6Þ

where the stochastic disturbance f(s) can be estimated

by Gaussian white noise with zero aver-

age\ f(s)[ = 0, and its statistical correlation is

represented by\ f(s) f(s0)[ = 2Dd(s - s0) with

Fig. 1 Schematic diagram

for auditory neuron and

artificial neural circuit

coupled by piezoelectric

ceramics. The voltage for

the capacitor describes the

membrane potential for the

neuron, Rs, R, L, E, Rnon

represents linear resistors,

induction coil, constant

voltage and nonlinear

resistor, respectively
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any noise intensity D. The amplitude in the experi-

mental signal can be dependent on the angular

frequency, and it is defined by

Aðx; sÞ ¼
A0 expð�s=kÞ; x�xmax;

A0 ; xmin\x\xmax

A0 expð�s=kÞ; x�xmin ;

8
><

>:
ð7Þ

where A0 is the amplitude value for the current under

piezoelectric effect, the positive parameter k denotes

the decay factor and it is decided by the piezoelectric

material. For setting smaller value for k, the acoustic
wave out of the suggested bands will be filtered

quickly, otherwise, the filtered wave will be accom-

panied by additive weak wave beyond the suggested

thresholds. xmax and xmin, respectively, define the

upper and lower threshold for angular frequency, as a

result, the output voltage from the piezoelectric device

will be decreased quickly within finite transient

period, otherwise, the output voltage of this functional

neural circuit will be controlled by the acoustic wave

completely because the stimulus generated from the

piezoelectric ceramics is controlled by external vibra-

tion. In the practice of circuit realization, similar filter

wave control can be applied as follows

nupc ¼ AðxÞ cosxs ¼ ½Hðx� xmaxÞ þ Hðxmin

� xÞ�A0 expð�s=kÞ cosxs
þ A0½Hðxmax � xÞ þ Hðx� xminÞ � 1� cosxs;

ð8Þ

where H(*) represents the Heaviside function, and

H(x) = 1 at x C 0, otherwise, H(x) = 0. As is well

known, the neural activities can present possible

stochastic resonance when the noise intensity is tamed

carefully in the presence of certain periodical exciting,

and the signal-to-noise ratio (SNR) reaches a peak

value for generating higher regularity in the firing

patterns. On the other hand, coherence resonance can

be induced in the absence of periodical exciting, and

the coefficient variability (CV) of interspike interval

(ISI) series is calculated to show the coherence degree

[52–54] as follows

CV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
\T2 [ �\T [ 2

p

\T [
ð9Þ

where the period for adjacent peaks in the sampled

time series for membrane potentials is calculated for

the ISI with T value. The intrinsic parameters and

amplitude in the auditory wave can be adjusted to

induce better coherence with smaller CV value.

In experiment and practice, most nonlinear circuits

can be controlled and used as signal source with single

or multiple frequency. For example, the output voltage

from chaotic circuits can be used to drive a piezoelec-

tric device and sounds are induced as voice source,

which will generate kinds of sound signals by taming

the intrinsic parameters and the external stimuli.

Surely, the same simple neural circuit [50] can be

used and a piezoelectric is connected in parallel for

building an artificial sound source, and the emitted

acoustic wave will drive our proposed neural circuit

considering piezoelectric effect. That is, the acoustic

wave will induce complex vibration on the piezoelec-

tric device and voltage-controlled current nupc will

present different angular frequencies. For simplicity,

the regulation and adjustment of angular frequency in

the voltage-controlled current can be encoded from the

outputs voltage of the known chaotic Chua circuit

[55, 56]. Indeed, the output voltage in chaotic state can

contain signals with wide frequency band, and the

Chua oscillator is described by

_x
0 ¼ aðy0 � x

0 Þ � af ðx0 Þ
_y0 ¼ x

0 � y
0 þ z

0

_z0 ¼ �by0 � cz
0

8
>><

>>:

ð10Þ

where x0, y0, z0 are dimensionless variables mapped

from the output voltages for two capacitors and the

channel current across the induction coil, and the

normalized parameters a, b, c are associated with the

physical values for the resistors, capacitors and

inductor. While the nonlinear function f(x0) is mapped

from the channel current across the Chua diode for the

Chua circuit, and it is obtained by

f ðx0Þ¼m1x
0 þ 0:5ðm0 � m1Þð x0 þ 1j j � x0 � 1j jÞ

ð11Þ

It is confirmed that chaos can be induced in Eq. (10)

by setting parameters as a = 10, b = 16, c = 0.01,

m0 = - 1.296,m1 = - 0.7364, and the initial values

for the three variables can be selected as (0.01, 0.1,

1.0). In the following section, the sampled time series

for variable x0 will be used as signal source.
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3 Numerical results and discussion

For getting numerical solutions for the neuron oscil-

lator driven by variant acoustic wave, the fourth-order

Runge–Kutta algorithm is applied and the time step is

fixed at h = 0.01 and the transient period is about 1000

time units. In generic way, the chaotic signals can

present wide band and frequency range, and they can

be used as signal source. As mentioned above, the

chaotic voltage from the Chua circuit can be used

acoustic signal before being absorbed by the piezo-

electric ceramics, which can generate variant voltage

and current across this branch circuit, and then the

neural circuit is excited effectively. At first, chaotic

outputs signal from Eq. (10) are filtered according to

the criterion shown in Eq. (7), and the original signals

and the spectrum after frequency selection are plotted

in Fig. 2.

That is, the thresholds xmax, xmin control the

frequency band in the filtered signal. As shown in

Fig. 2, acoustic signal within high frequency and low

frequency can be filtered. For clear illustration, Fig. 3

shows the selection of frequency by applying different

threshold for xmax, xmin.

In fact, decreasing the distance between xmax, xmin

enables the filtered signal present sole frequency and

period, and the functional neuron can be excited by

distinct periodical stimulus for generating certain

firing modes. In the absence of noise, when the

amplitude of periodical stimulus is fixed, the angular

frequency in Eq. (6) is changed to trigger different

firing modes in the electrical activities, and the results

are plotted in Fig. 4.

The excitability of the neuron can be controlled by

changing the external stimulus, and a variety of firing

modes can be induced in the neural activities when the

frequency is changed carefully even within small

region. In practical way, the filtered acoustic signal

can be used to excite this functional neuron, and the

Fig. 2 Acoustic signal (sampled from Chua system) and the

filtered acoustic signal are calculated in the time domain and

frequency domain. (a) Original acoustic signal and its spectrum
after FFT; (b) filtered acoustic signal and its spectrum after FFT.

The threshold for frequency selection is activated at xmax-

= 0.75,xmin = 0.25, and the parameters are selected as a = 0.7,

b = 0.8, c = 0.1, n = 0.15 with initials (0.2, 0.1) in the neuron.

The inserted subfigure is an enlarged one within the region [0, 1]

Fig. 3 Setting thresholds xmax, xmin for filtering acoustic

signals from the signal source in Eq. (10). The inserted

subfigure is an enlarged one within the region [0, 2]

Fig. 4 Sampled time series for the membrane potential in the

functional neuron is calculated by changing the angular

frequency in the external stimulus. For a x = 0.004;

b x = 0.012; c x = 0.05; d x = 0.15. The parameters are fixed

at a = 0.7, b = 0.8, c = 0.1, n = 0.15, A = 1.0
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electric activities in the neuron driven by low-

frequency signals are presented in Fig. 5.

From Fig. 5, it is demonstrated that the filter signal

within low-frequency band can excite the neuron for

generating continuous firing patterns with multiple

frequency and mixed modes are induced effectively.

Furthermore, the effect of noise accompanied with low

frequency in the filtered signals is estimated by

calculating the signal-to-noise ratio (SNR) [10] and

CV derived from the interspike interval (ISI) series in

Fig. 6, respectively.

SNR ¼ 10 log10
S

B
; B ¼ Dx

xp
ð12Þ

where S represents the height of the signal peak

(values of the output power spectrum density at the

peak) and B denotes the amplitude of the background

noise measured at the base of the signal peak (the base

of the signal feature).Dx is the width for half height of

signal peak, and xp is the frequency located to the

peak frequency. The coherence degree is described by

the CV value and it indicates higher regularity in the

signal at lower CV value. When stochastic resonance

and coherence resonance occur, the firing patterns

show distinct regularity and the distribution for SNR

and CV is, respectively, calculated in Fig. 6 by

changing the noise intensities carefully.

It is confirmed that SNR can reach peak value while

CV gets smallest value when intermediate noise

intensity is applied to excite the functional neuron

accompanied driving by signals with low-frequency

bands. And the peak value locates the appropriate

noise intensity D = 7.0. For better illustration, the

firing patterns in the neuron are presented in Fig. 7 by

applying different noise intensities.

That is, the involvement of noise can enhance the

disturbance on the firing patterns and multiple modes

can be induced in the neural activities. Furthermore,

we investigate the case when the filtered signals within

medium frequency band and the electrical activities

are presented in Fig. 8.

When the filtered signal within medium frequency

band is applied, the neural circuit is excited by external

stimuli with multiple frequencies. As a result, the

firing patterns become more complex than presenting

sole firing modes. It indicates that this functional

neural circuit keeps sensitive response to the realistic

stimuli and generates appropriate mode selection in

the electrical activities. By the way, the noise effect is

also estimated by calculating the SNR andCV in Fig. 9

when the noise intensity is adjusted in wider range.

It is confirmed that SNR can reach the peak value at

noise intensity D = 26, and similar stochastic reso-

nance is induced completely. Furthermore, noise

intensity is changed to trigger different firing patterns

in Fig. 10.

With the increasing of noise intensity, the chaotic

firing is enhanced in the neuron driven by the filtered

signals within medium frequency band, and the neuron

can give appropriate response in electrical activities in

time. For the high-frequency band, the mode selection

in the neuron and the filtered signals are presented in

Fig. 11.

It indicates that the neuron tends to generate chaotic

firing patterns when filtered signal with higher

frequency is applied to excite the neuron. It is

interesting to judge whether similar nonlinear reso-

nance can be induced when noise is accompanied with

this filtered signal in high frequency, and the SNR, CV

distribution dependence on the noise intensity is

estimated, respectively, in Fig. 12.

Fig. 5 Filtered acoustic

signal (a) and the sampled

time series (b) for the neuron

driven by the filtered signal.

The parameters are fixed at

a = 0.7, b = 0.8, c = 0.1,

n = 0.15, xmax = 0.15,

xmin = 0.006
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A peak value is stabilized for SNR at D = 0.4, and

further increase of the noise intensity will corrupt the

regularity in the neural activities of this functional

neuron. That is, appropriate noise setting in the

intensity will enhance the auditory effect and the

signal is discerned clearly. In addition, the firing

patterns are plotted by applying noise disturbance in

the filtered signals with high frequency, and the results

are presented in Fig. 13.

Indeed, it indicates that decoded sound voice

becomes unclear when the electrical activities in this

functional neuron becomes more chaotic and decom-

position of the sound signal becomes difficult. In this

way, the ear function is destroyed and noisy condition

makes the capacity of discernment in auditory system

breakdown.

Indeed, the function of tympanic membrane and

spiral organ to the cochlea are reproduced by the

piezoelectric device coupled with the neural circuit,

and acoustic wave is captured and encoded for

inducing different firing patterns and action potentials.

Some bands of the acoustic wave are absorbed and

decayed soon while appropriate bands of the acoustic

wave are effective to realize piezoelectric effect for

generating electric signal and the neural circuit is

Fig. 6 SNR and CV dependence on the noise intensity. The

parameters are selected as a = 0.7, b = 0.8, c = 0.1, n = 0.15,

xmax = 0.15, xmin = 0.006. The threshold for peak value is

selected with 1.0 for detecting ISI value, which measures the

period between two successive peaks in the sampled time series

for membrane potential x

Fig. 7 Firing patterns and attractors in the neuron by applying

different noise intensities. For (a) D = 1; (b) D = 7; (c) D = 12;

(d) D = 18. The parameters are selected as a = 0.7, b = 0.8,

c = 0.1, n = 0.15, xmax = 0.15, xmin = 0.006

Fig. 8 Filtered acoustic

signal a and the sampled

time series b for the neuron

driven by the filtered signal.

The parameters are selected

as a = 0.7, b = 0.8, c = 0.1,

n = 0.15, xmax = 0.3,

xmin = 0.15
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excited. In fact, for better detection of the acoustic

waves in noisy condition, more piezoelectric devices

can be used to couple the neural circuit, and more

artificial auditory neural circuits can be connected in

array and the sensitivity for wider bands can be

enhanced. Also, the similar algorithm for the wave

filter and frequency selection can be further used for

detection of ultrasonic in bats and optical filter in

visual systems for animals.

4 Open problems

The biological tissue and nervous system develop

certain self-adaption function for blocking noise and

stochastic disturbance, and thus signal can be well

detected and encoded. For example, all ears can be

strained and cocked to hear slight sounds voice.

Fig. 9 SNR and CV dependence on the noise intensity. The

parameters are fixed at a = 0.7, b = 0.8, c = 0.1, n = 0.15,

xmax = 0.3, xmin = 0.15. The threshold for peak value is

selected with 1.0 for detecting ISI value, which measures the

period between two successive peaks in the sampled time series

for membrane potential x

Fig. 10 Firing patterns and attractors in the neuron by applying

different noise intensities. For a D = 8.0; b D = 12.0; c D = 26;

d D = 36. The parameters are kept as a = 0.7, b = 0.8, c = 0.1,

n = 0.15, xmax = 0.3, xmin = 0.15

Fig. 11 Filtered acoustic

signal a and the sampled

time series b for the neuron

driven by the filtered signal.

The parameters are fixed at

a = 0.7, b = 0.8, c = 0.1,

n = 0.15, xmax = 0.5,

xmin = 0.3
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Squinting the eyes enable possible capturing the blurry

images and objects in the distance. Therefore, the

signal source comes from this neural circuit, the

frequency selection mechanism can be helpful for

selecting the most suitable firing patterns and modes.

For example, the output signals from this functional

neural circuit can control its frequency as follows

dx
ds

¼ f ðxÞ ¼ k sin x ð13Þ

where the coefficient k can be carefully selected within

appropriate range and then the acoustic wave will

cover larger band. The variable x can be obtained from

the functional neuron defined in Eq. (5), and other

appropriate forms for f(*) in Eq. (12) can be selected

to approach acoustic wave with different bands. For

example, the sound signals can be recorded series or

generated from another signal source, and the fre-

quency selection is controlled under the criterion

shown in Eq. (7). Accompanied with Eq. (13), after

wave filter and frequency selection, the voltage-

controlled current nupc will be controlled in the

amplitude and frequency with time, and then the

auditory neuron is excited for generating kinds of

firing modes and then the electrical signals are

propagated to the brain for further processing with

the gaits. As reported in some of the previous works,

the biophysical energy accounts for the mode selection

when the neuron is excited to propagate different

electrical signals, and the Hamilton energy mapped

from the physical field energy in these electric

components can be obtained by

W ¼ 1

2
CV2 þ 1

2
Li2L ; H ¼ W

CV2
0

¼ 1

2
x2 þ 1

2c
y2

ð14Þ

where the variable V, iL describes the output voltage

across the capacitor and channel current across the

induction coil, respectively. The Hamilton energy

H measures the equivalent field energy in the neural

circuit, and it is effective to estimate the correlation

and dependence between channel current and mem-

brane potential. In fact, any slight changes in the

Hamilton energy indicate the occurrence of mode

selection and transition in the firing patterns, and fast

firing means quick release of energy and lower

average Hamilton energy is approached. As is well

known, both electric and chemical synapses can

enable effective signal processing and encoding in

biophysical signals, and the energy is absorbed to

Fig. 12 SNR and CV dependence on the noise intensity. The

parameters for neuron are fixed at a = 0.7, b = 0.8, c = 0.1,

n = 0.15, xmax = 0.5, xmin = 0.3. The threshold for peak value

is selected with 1.0 for detecting ISI value, which measures the

period between two successive peaks in the sampled time series

for membrane potential x

Fig. 13 Firing patterns and attractors in the neuron by applying

different noise intensities. For a D = 0.2; b D = 0.4; c D = 4.0;

d D = 6.0. The parameters are selected as a = 0.7, b = 0.8,

c = 0.1, n = 0.15, xmax = 0.5, xmin = 0.3
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regulate the distribution and propagation of intracel-

lular and extracellular ions of the cell. Then a lot of

firing modes can be activated and selected effectively.

The biophysical mechanism for frequency selection in

the neural circuit can filter some wave bands and

appropriate firing modes can be selected. Furthermore,

the collective electrical activities of neural networks

can be optimized and synchronized under field cou-

pling [57–59], which can enhance signal and energy

exchange even synapse coupling is suppressed. For

these functional neurons and neural circuits under

hybrid synapse connection or field coupling (con-

nected via capacitor, induction coil, memristor,

Josephson junction), continuous regulation and con-

trollability in the coupling channels can explain the

biophysical mechanism of synaptic plasticity and

activation of chemical synapse. Therefore, for forth-

coming study on pattern selection and control of

synchronization stability in neural networks, the effect

of frequency selection should be considered than

applying any external stimuli on the neurons and

networks.

5 Conclusions

In this paper, an artificial auditory neural circuit is

proposed by incorporating piezoelectric device into a

feasible neural circuit, and reliable algorithm for wave

filtering is presented to discern the acoustic wave via

the piezoelectric ceramics. In a noisy condition, this

functional neural circuit can be effective to discern

and encode the acoustic wave and trigger effective

action potentials, and then appropriate firing modes

are triggered in the artificial neuron. As a result, the

brain is informed to guide the body to behave

suitable gaits. The results well addressed the biophys-

ical function of auditory neurons and the mechanism

for wave filtering and frequency selection in the sound

signals. Readers in this field can further explore the

collective behaviors of functional network composed

of auditory neurons driven by more acoustic waves.
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Control the stability in chaotic circuit coupled by memristor in different 
branch circuits 

Yitong Guo a, Zhao Yao a, Ying Xu b, Jun Ma a,c,* 

a Department of Physics, Lanzhou University of Technology, Lanzhou 73005, China 
b School of Mathematics and Statistics, Shandong Normal University, Ji′nan 250014, China 
c School of Science, Chongqing University of Posts and Telecommunications, Chongqing 430065, China   

A R T I C L E  I N F O   

Keywords: 
Memristor 
Bifurcation 
Hamilton energy 
Chaotic circuit 

A B S T R A C T   

A memristor is incorporated into one branch circuit, and the effect of electromagnetic induction in the chaotic 
circuit is discussed. The involvement of memristor into different branch circuit just changes the energy exchange 
and balance in the chaotic circuit and then the dynamics and Hamilton energy can be adjusted completely. The 
magnetic field energy in the memristor can compensate and suppress the pumping and exchange of electric field 
energy in the capacitor along the same branch circuit. Therefore, the energy pumping is terminated, and then the 
chaotic circuit is controlled completely when the memristor is connected to the capacitor in the branch circuit. 
When memristor is connected to the induction coil in series, the current across the memristor has slight impacts 
on changing the chaotic states even stochastic disturbance is applied because the magnetic field energy can be 
shared between the memristor and induction coil. Additive branch circuit composed of isolated memristor can be 
connected to chaotic circuits for enhancing its memory effect. The connection of memristor to capacitor along 
any branch circuits of chaotic circuits will control the chaos, while connection to induction coil in series can 
change the dissipation and chaos is kept well.   

1. Introduction 

Nonlinear circuits can be controlled to present a variety of firing 
modes in the sampled series for output voltage, and some chaotic cir
cuits [1–4] can be used as reliable signal generator for producing stable 
output voltage and continuous periodical signals as well. Some of the 
chaotic systems have potential application in the field of secure 
communication and image encryption [5–9]. The realization and acti
vation of nonlinear circuits depend on the intrinsic physical properties of 
nonlinear electric components and external stimuli as well. For building 
generic chaotic and hyperchaotic circuits, the capacitor, induction coil, 
nonlinear resistor and/or channel diode, linear resistors are often con
nected in parallel and in series for completing more close loops and 
nodes. For further dynamical analysis and control, scale transformation 
[10] is applied for the variables and physical parameters of electric 
components and then dimensionless nonlinear oscillators are obtained. 
Furthermore, two or more chaotic oscillators are coupled to stabilize 
synchronization control [11–14], and parameter estimation [15–18], 
pattern selection and control [19–22] by applying more feasible 
schemes. 

Memristor is a specific electric component, and its memristive 
property can enhance the release and activation of specific biophysical 
function when it is incorporated into neural circuits. The collective be
haviors of networks and coupled oscillators are dependent on the 
physical properties of coupling channels, local kinetics of nodes, and 
topological connection between nodes in the network [23–25]. The 
direct variable coupling results from the voltage coupling via linear 
resistor, and continuous consumption of Joule heat will change the 
energy exchange and propagation and thus chaotic circuits can be 
controlled completely. In practical way, the coupling channel should be 
controllable so that the coupling intensity can be adjusted and the most 
suitable coupling intensity is confirmed with lower control cost (shorter 
transient period, lower energy cost). For example, when the parameters 
are unknown, the saturation gain method [26,27] becomes available 
and effective for synchronization stabilization between chaotic and 
neural circuits because the coupling intensity can be increased with 
slight step before reaching complete synchronization even all the pa
rameters of the coupled chaotic systems are unknown. On the other 
hand, adaptive synchronization [28–30] can be applied for estimating 
unknown parameters in the chaotic systems when the parameter 

* Corresponding author at: Department of Physics, Lanzhou University of Technology, Lanzhou 73005, China. 
E-mail address: hyperchaos@163.com (J. Ma).  

Contents lists available at ScienceDirect 

International Journal of Electronics and Communications 

journal homepage: www.elsevier.com/locate/aeue 

https://doi.org/10.1016/j.aeue.2021.154074 
Received 3 November 2021; Accepted 12 December 2021   

17



AEUE - International Journal of Electronics and Communications 145 (2022) 154074

2

observers are controllable. In fact, the involvement of specific electric 
components coupled to the nonlinear circuits can utilize some physical 
abilities by changing the channel current in practical way. For example, 
Josephson junction [31–33] has the physical property as induction coil 
and it can estimate the effect of magnetic field [34,35] when it is 
coupled with some nonlinear circuits. Electric field is activated in the 
coupling channel when capacitor is used to couple chaotic circuits, and 
complete synchronization can be stabilized when energy pumping and 
exchange are controlled for balance along the coupling channel [36–38]. 
Magnetic field is induced in the coupling channel when induction coil is 
used to bridge connection between neural circuits, and it explains the 
biophysical mechanism for chemical synapse coupling between biolog
ical neurons [39,40]. Memristor is a new specific electric component 
and bridges connection to magnetic flux and charge [41–44], and its 
distinct memory property shows that the memductance is dependent on 
the passed current and propagated charges along the channel. From 
dynamical viewpoint, the involvement of time delay and fractional 
calculus [45,46] can introduce and estimate the memory effect. Mem
ristive synapse [47–50] is designed when memristor is connected to 
neural circuits, and synaptic plasticity is reproduced when memristor is 
used to couple neural circuits and the coupling channels become 
changeable. These memristor-coupled nonlinear circuits can be mapped 
and developed to get a variety of memristive systems [51–53], which the 
dynamics is dependent on the initial value for the memristive variable, 
and the synchronization stability is also changed when the memristive 
variable is disturbed even the coupling intensity and parameters are 
fixed [54,55]. In particular, the effect of electromagnetic induction and 
radiation on biological neurons can be explained when magnetic flux 
and induction current are considered according to the Faraday’s law of 
electromagnetic induction and the principle of dimensional consistency 
[56]. 

In fact, the current balance between different branch circuits can 
control the energy exchange and dynamics in the nonlinear circuits. As a 
result, the branch circuit current becomes changeable and memristive 
when a memristor is incorporated into this branch circuit. In presence of 
external magnetic field, the propagation of charges and fluctuation of 
the magnetic flux will be affected because the channel current across the 
memristor is dependent on external magnetic flux. Therefore, the 
memristor-coupled nonlinear circuit will present different sensitivities 
and dynamics dependence on the initial value for memristive variable 
[57–59] when memristor is connected to different branch circuits in 
parallel. When memristor is coupled with the Chua circuit in an additive 
branch circuit, the shunted current across this memristor can excite the 
memristive Chua circuit in possible way [60–64]. However, the channel 
current will be controlled completely when a memristor is incorporated 
into any branch circuits by connecting to the capacitor, induction coil in 

series, respectively. In this paper, a memristor is respectively connected 
to the capacitor, and induction coil in series for estimating the dynamics 
and stability, and the energy balance is also discussed. Bifurcation 
analysis and Lyapunov exponents are calculated when the memristor is 
connected to different electric components in Chua circuit, respectively. 
Furthermore, the external magnetic field is applied to estimate the sta
bility in the memristive circuit by regulating the magnetic flux with 
noisy signal, and nonlinear resonance is investigated. These results 
could provide possible guidance for building more memristive circuits 
by placing the memristors into the most appropriate branch circuit and 
the memory effect is enhanced greatly. 

2. Model and scheme 

The original Chua circuit is composed of two capacitors, two linear 
resistors, one induction coil and one nonlinear resistor, and it can be 
controlled to present chaos by taming the intrinsic parameters for the 
electric components even any initial values are applied. In practical way, 
piecewise linear and Jerk functions for nonlinear electric devices can be 
applied to obtain multi-scroll attractors, and memristor can be coupled 
in an additive branch circuit to enhance its multistability and initials 
dependence. In Fig. 1, the original Chua circuit is presented, and the 
output voltages from the two capacitors can be tracked for further series 
analysis. 

The circuit equations for an isolated Chua circuit can be described by 
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

C1
dVC1

dt
=

VC2 − VC1

R2
− iNR

C2
dVC2

dt
= iL1 −

VC2 − VC1

R2

L1
diL1

dt
= − iL1 R1 − VC2

; (1a)  

iNR = f (VC1 ) = GbVC1 + 0.5(Ga − Gb)(|VC1+E| − |VC1 − E|) (1b) 

where iNR denotes the current across the nonlinear resistor (Chua 
diode) , and VC1, VC2, iL1 represents the output voltage from capacitors 
and induction coil, respectively. Standard scale transformation shown in 
Eq.(2) is applied for all variables and parameters in the Eq.(1) as follows 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x =
VC1

E
, y =

VC2

E
, z =

iLR2

E
, τ =

t
R2C2

,α =
C2

C1
,

β =
C2R2

2

L1
,m0 = R2Ga,m1 = R2Gb, γ =

R1R2C2

L1
;

(2) 

As a consequence, the dimensionless Chua system is obtained by 

Fig. 1. Schematic diagram for Chua circuit. Rnon denotes the Chua diode.  
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⎧
⎨

⎩

ẋ = α(y − x) − αf (x)
ẏ = x − y + z
ż = − βy − γz

; (3a)  

f (x) = m1x+ 0.5(m0 − m1)(|x + 1| − |x − 1|.); (3b) 

where the nonlinear function f(x) denotes the dimensionless current 
across the Chua diode (nonlinear resistor), and the variable x, y, z rep
resents the variables mapped from the voltage, current across the two 
capacitors, and induction coil, respectively. The coefficients α, β, γ, m0, 
m1 are normalized parameters for the electric components. As is well 
known, memristor is a specific physical component, and it bridges 
connection to the physical variables between magnetic flux and charge. 
The memory effect of memristor indicates that its memductance is 
relative to the propagated charges/current or exchange of magnetic flux, 
as a result, the variant current across the magnetic flux-controlled 
memristor can be estimated by 

iM =
dq(ϕ)

dt
=

dq(ϕ)
dϕ

dϕ
dt

= M(ϕ)
dϕ
dt

= M(ϕ)VM = (a + 3bϕ2)VM ; (4) 

Here, ϕ describes the magnetic flux, M(ϕ) is memductance, and VM 
denotes the voltage across the memristor. The magnetic flux across the 
memristor will be controlled when it is exposed to external magnetic 
field, as a result, the channel current will be controlled by external 
magnetic field when the memristor is incorporated into any branch 
circuit in the nonlinear circuit. Three cases are investigated, the mem
ristor is used to connect to the capacitors and induction coil in series, 
respectively. The memristor is connected to the induction coil (Case 1), 
memristor connects the capacitor C2 (Case 2), and memristor is bridged 
to capacitor C2 (Case 3), and the physical parameters can be adjusted to 
discuss the dynamics dependence on the memristive variable. At first, 
we discuss the case when a magnetic flux-controlled memristor is con
nected to the induction coil in the Chua circuit, and the memristive 
circuit is plotted in Fig. 2. 

According to the physical Kirchhoff theorem, the circuit equations 
for Fig. 2 can be obtained by 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C1
dVC1

dt
=

VC2 − VC1

R2
− iNR

C2
dVC2

dt
= iL1 −

VC2 − VC1

R2

L1
diL1

dt
= − iL1 R1 − VC2 − VM

dϕ
dt

= VM

⇒

⎧
⎪⎪⎨

⎪⎪⎩

iL1 = iM

VM =
iM

a + 3bϕ2 

⇒

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C1
dVC1

dt
=

VC2 − VC1

R2
− iNR

C2
dVC2

dt
= iM −

VC2 − VC1

R2

L1
diM

dt
= − iMR1 − VC2 −

iM

a + 3bϕ2

dϕ
dt

=
iM

a + 3bϕ2

; (5) 

In addition, the current across the Chua diode is also described by Eq. 
(1b). VM, ϕ represents the voltage across the memristor and magnetic 
flux for the memristor, while Ga, Gb, E denotes the conductance value, 
and cut-off voltage in the V-I curve for Chua diode, respectively. When 
the memristor is connected to the induction coil in series, both the in
duction coil and memristor are controlled by the same channel current. 
Therefore, the channel current along this branch circuit is described by 
the memristive current. For further nonlinear analysis, scale trans
formation as shown in Eq.(6) is applied for the physical variables and 
parameters in the circuit equation defined in Eq.(5), it meets as follows 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x =
VC1

E
, y =

VC2

E
, z =

iMR2

E
, τ =

t
R2C2

, ϕ
′

=
ϕ(R1 + R2)

EL1
,

m0 = R2Ga,m1 = R2Gb,α =
C2

C1
, β =

C2R2
2

L1
, γ =

R1R2C2

L1
;

(6) 

As a consequence, the memristive Chua system for Case 1 can be 
represented by 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = α(y − x) − αf (x);

ẏ = x − y + z;

ż = − γz − βy − β
z

(a’ + b’ϕ’2)
;

ϕ̇’ = (β + γ)
z

(a’ + b’ϕ’2)
;

(7) 

where the normalized parameters are defined as a′=R2a, 
b′=3bR2(EL1)2/(R1 + R2)2, and they are relative to the selection of 
intrinsic parameters in the memristor. The normalized current across the 
Chua diode of Chua circuit is estimated in Eq.(3b). For further knowing 
the effect of memristor connection to different branch circuits, the 
physical energy in these components and the Hamilton energy is 
respectively calculated for three cases. The energy unit is estimated as 
W0 = C2E2, and the field energy in the memristor can be calculated as 
well when it is regarded as an equivalent inductor with appropriate 
inductance LM. For Case 1, the field energy in the capacitors, induction 
coil and memristor are respectively obtained by 

Fig. 2. Case 1: Memristive Chua circuit in which the memristor is connected to 
the induction coil L1 in series. M and Rnon describe the memristor and Chua 
diode. R1 and R2 represent the linear resistors. 
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

WC1 =
1
2
C1V2

C1
=

1
2
C1E2x2 =

1
2

C1

C2
C2E2x2 =

1
2αW0x2;

WC2 =
1
2
C2V2

C2
=

1
2
C2E2y2 =

1
2
W0y2;

WL1 =
1
2
L1i2

L1
=

1
2
L1i2

M =
1
2

L1

C2R2
2
C2E2z2 =

1
2β

W0z2;

WM =
1
2

LMi2
M =

1
2

ϕiM =
1
2

EL1ϕ
′

(R1 + R2)

E
R2

z =
1
2

1
β + γ

W0ϕ
′

z;

(8) 

For the memristive system in Case 1, the Hamilton energy for each 
component can be replaced by 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

HC1 =
1

2αx2;HC2 =
1
2
y2; HL1 =

1
2β

z2; HM =
1
2

1
β + γ

ϕ
′

z;

H = −
1

2αx2 +
1
2
y2 +

1
2β

z2 +
1
2

1
β + γ

ϕ
′

z;
(9) 

Where the symbol “− “ indicates that the capacitor C1 used to release 
electric field energy while another capacitor C2 prefers to absorb and 
pump field energy. Indeed, according to the Helmholtz theorem [65], 
the Hamilton energy function for generic dynamical system accounts for 
the intrinsic field energy. It is claimed that the most Lyapunov function 
should be consistent with the sole Hamilton energy function [66]. In 
addition, when this memristive circuit is exposed to magnetic field, the 
charge propagation and magnetic flux across the memristor will be 

changed. In case of stochastic disturbance, the memristive system is 
regulated by 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = α(y − x) − αf (x);

ẏ = x − y + z;

ż = − γz − βy − β
z

(a’ + b’ϕ’2)
;

ϕ̇’ = (β + γ)
z

(a’ + b’ϕ’2)
+ ξ(τ);

(10) 

When external stochastic disturbance ξ(τ) is applied, the magnetic 
flux is regulated to change the output voltage across the capacitor in 
nonlinear way, and the dynamics becomes dependent on the memristive 
variable because of memory effect. As shown in Fig. 2, the memristive 
current across the memristor estimates the current across the induction 
coil, and the electromagnetic induction in this branch is controlled by 
the memristor completely. Therefore, it is interesting to discuss the case 
when memristor is connected to the capacitor C2, and the memristive 
circuit is shown in Fig. 3. 

The channel current across the memristor will regulate the charge 
and discharge on the capacitor C2, and the circuit equations can be 
approached by 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C1
dVC1

dt
= iL1 − iM − iNR

C2
dVC2

dt
= iM

L1
diL1

dt
= − iL1 R1 − VC1 − (iL1 − iM)R2

dϕ
dt

= VM

⇒VC2

= VC1 − VM⇒

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C1
dVC1

dt
= iL1 − iM − iNR

C2
dVM

dt
= C2

dVC1

dt
− iM

L1
diL1

dt
= − iL1 R1 − VC1 − (iL1 − iM)R2

dϕ
dt

= VM

; (11) 

Considering the induction current across the memristor shown in Eq. 
(4), and then the Eq.(11) is updated by applying similar scale trans
formation as follows 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x =
VC1

E
,w =

VM

E
, z′

=
iL1 R2

E
,ϕ

′

=
ϕ(R1 + R2)

EL1
, τ =

t
R2C2

,

m0 = R2Ga,m1 = R2Gb, α =
C2

C1
, β =

C2R2
2

L1
, γ =

R1R2C2

L1
;

(12) 

In addition, the improved memristive system for Case 2 can be 
rewritten by 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ = αz’ − αf (x) − α(a’ + b’ϕ’2)w
ẇ = − αz’ + αf (x) − (α − 1)(a’ + b’ϕ’2)w

ż’ = γz1 − βx − βz’ − β(a’ + b’ϕ’2)w
ϕ̇’ = (β + γ)w

; (13) 

The normalized parameters a′, b′ are the same as shown in Eq.(6), 
and Eq.(7), and the normalized current f(x) for case 2 is still estimated in 
Eq.(1b). Considering the third term in the second formula in Eq.(13), it 
will induce rapid increase of the variable w and thus the system becomes 
more convergent at α > 1. By the same way, the field energy saved in 
these electric components and corresponding Hamilton energy can be 
estimated by  

Fig. 3. Case 2 Memristive Chua circuit in which the memristor is connected to 
the capacitor C2 in series. M and Rnon describe the memristor and Chua diode. 
R1 and R2 represent the linear resistors. 

Fig. 4. Case 3 Memristive Chua circuit in which the memristor is connected to 
the capacitor C1 in series. M and Rnon describe the memristor and Chua diode. 
R1 and R2 represent the linear resistors. 
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The superscript J and F represents the Joule heat and field symbol, 
respectively, and the terms indicate that the average Joule heat 
consumed and magnetic field energy in the memristor. Therefore, the 
Hamilton energy in the four electric components can be rewritten by 

(15) 

The Hamilton energy for the memristor contains two parts, one ac
count for the Joule heat and another term means the pumping of field 
energy. This energy is dependent on the intrinsic parameters in mem
ristor and other parameters for the capacitor and induction coil in the 

Chua circuit as well. In addition, external magnetic field can change the 
channel current and thus the dynamics of the memristive system can be 
controlled. The magnetic flux is controlled by magnetic field in presence 
of stochastic disturbance as follows 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ = αz’ − αf (x) − α(a’ + b’ϕ’2)w
ẇ = − αz’ + αf (x) − (α − 1)(a’ + b’ϕ’2)w

ż’ = γz1 − βx − βz’ − β(a’ + b’ϕ’2)w
ϕ̇’ = (β + γ)w + ξ(τ)

; (16) 

In fact, the memristor can also be connected to the capacitor C1, and 
the memristive circuit is plotted in Fig. 4. 

According to Fig. 4 and the Kirchhoff theorem, the voltage changes 
along the close loop connected the capacitor C1, C2, and memristor M 
follow VC1 + VM − VC2 + R2iR2 = 0, and the equivalent circuit equations 
are obtained by 

Fig. 5. Bifurcation diagram and distribution of three larger Lyapunov exponents for Case 1. For (a) β = 18, γ = 0, m0 = − 1.664, m1 = − 0.598, a’=1, b’=10; (b) α =
8,γ = 0, m0 = − 1.664, m1 = − 0.598, a’=1, b’=10; (c) α = 8, β = 18, γ = 0, m0 = − 1.664, m1 = − 0.598, b’=10; (d) α = 8, β = 18, γ = 0, m0 = − 1.664, m1 =

− 0.598, a’=1. The parameters are fixed at m0 = − 1.664, m1 = − 0.598, γ = 0.0, b′=0.25, and the initial values for Eq.(7) are selected as (x0, y0, z0, w0)=(0.1, 0.1, 
1.0, 0.1). 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

WC1 =
1
2
C1V2

C1
=

1
2

C1

C2
C2E2x2 =

1
2αW0x2;

WC2 =
1
2
C2V2

C2
=

1
2

C2(VC1 − VM)
2
=

1
2
C2E2(x − w)2

=
1
2

W0(x − w)2
;

WL1 =
1
2
L1i2

L1
=

1
2

L1
E2

R2
2
z’2 =

1
2β

W0z’2;

WM =
1
2

LMi2
M =

1
2

ϕiM =
1
2

ϕ(a + 3bϕ2)VM =
1
2

W0(
a’

β + γ
ϕ’ +

b’

β + γ
ϕ’3)w = WJ

M + WF
M ;

(14)   
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C1
dVC1

dt
= iM

C1
dVM

dt
= − iM + C1

dVC2

dt
− C1R2

diR2

dt

C2
dVC2

dt
= iL1 − iM − iNR

L1
diL1

dt
= − iL1 R1 − VC2

dϕ
dt

= VM

; (17) 

Similar scale transformation in Eq.(18) is applied for variables and 
parameters in Eq.(17), 

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x=
VC1

E
,w=

VM

E
,y=

VC2

E
,z=

iL1 R2

E
,ϕ

′

=
ϕ(R1 +R2)

EL1
,τ= t

R2C2
,m0 =R2Ga,

m1 = R2Gb,α=
C2

C1
,β=

C2R2
2

L1
,γ =

R1R2C2

L1
,a

′

=R2a,b
′

=
3bR2(EL1)

2

(R1 +R2)
2 ;

(18) 

In particular, the normalized current across the nonlinear resistor 
(Chua diode) is updated by 

f ′

(x) = m1(x + w)+ 0.5(m0 − m1)(|(x + w) + 1| − |(x + w) − 1| ; (19) 

In addition, the memristive system for Case 3 can be represented by   

Fig. 6. Developed attractors, evolution of variable and transition in the Hamilton energy in different electrical components are plotted by changing one parameter 
for Case 1. For stage 1, α = 10, β = 18, γ = 0, m0 = − 1.664, m1 = − 0.598, a’=5, b’=2; stage 2, α = 8, β = 18, γ = 0, m0 = − 1.664, m1 = − 0.598, a’=5, b’=2; stage 
3, α = 10, β = 24, γ = 0, m0 = − 1.664, m1 = − 0.598, a’=5, b’=2; stage 4, α = 10, β = 24, γ = 0, m0 = − 1.664, m1 = − 0.598, a’=5, b’=6. 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = α(a’ + b’ϕ’2)w

ẇ =
1

1 + (a’ + b’ϕ’2) + m1
[− 2b’ϕ’(β + γ)w2 − (m1α + 1 + α)(a’ + b’ϕ’2)w + z’ − f ’(x)]

ẏ = z’ − (a’ + b’ϕ’2)w − f ’(x)

ż’ = − βy − γz’

ϕ̇’ = (β + γ)w

; (20)   
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Compared the dynamical equations for Case 3 with the Case 1 and 
Case 2, more normalized parameters are involved. As a result, the dy
namics becomes more sensitive and dependent on these parameters. 
Similar field energy and Hamilton energy are also estimated for the Case 
3. 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

WC1 =
1
2
C1V2

C1
=

1
2
C1(VC2 − VM)

2
=

1
2
C1E2(y− w)2

=
1

2αW0(y− w)2
;

WC2 =
1
2
C2V2

C2
=

1
2
C2E2y2=

1
2
W0y2;

WL1=
1
2
L1i2

L1
=

1
2

L1
E2

R2
2
z’2=

1
2β

W0z’2;

WM=
1
2

LMi2
M=

1
2

ϕiM=
1
2

ϕ(a+3bϕ2)VM=
1
2
W0(

a’

β+γ
ϕ’+

b’

β+γ
ϕ’3)w=WJ

M+WF
M ;

(21) 

Furthermore, the equivalent Hamilton energy for case 3 can be 
updated as follows 

(22) 

From dynamical viewpoint, taming the normalized parameters in the 
memristor and electric components can change the dynamics of the 
memristive oscillator, and similar firing patterns (spiking, bursting) can 
be induced besides the chaotic or periodical firing modes. Furthermore, 
stochastic external magnetic field can be applied to control the channel 
current across the memristor, and then the dynamics of this memristive 
circuit can be regulated as follows 

Fig. 7. Evolution of the Hamilton energy H in this memristive circuit. For (a) α = 10, β = 18, b’=2; (b) α = 8, β = 18, b’=2; (c) α = 10, β = 24, b’=2; (d) α = 10, β =
24, γ = 0, b’=6, the other parameters are fixed at γ = 0, m0 = − 1.664, m1 = − 0.598, a’=5. 

Fig. 8. Distribution of CV by changing the noise intensity for Case 1. The pa
rameters are fixed at α = 10, β = 18, γ = 0, m0 = − 1.664, m1 = − 0.598, a’=5, 
b’=10, initial values are selected as (0.1, 0.1, 1.0, 0.1). 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = α(a’ + b’ϕ’2)w

ẇ =
1

1 + (a’ + b’ϕ’2) + m1
[− 2b’ϕ’(β + γ)w2 − (m1α + 1 + α)(a’ + b’ϕ’2)w + z’ − f ’(x)]

ẏ = z’ − (a’ + b’ϕ’2)w − f ’(x)

ż’ = − βy − γz’

ϕ̇’ = (β + γ)w + ξ(τ)

; (23)   
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In generic way, Gaussian white noise with zero average is often 
considered for describing the stochastic disturbance and its physical 
statistical properties are defined as < ξ(τ)>=0, <ξ(τ) ξ(τ′)>=2Dδ(τ − τ′), 
where D denotes the noise intensity and δ(*) means Dirac-δ function. 
From physical viewpoint, the electric components in the circuit will 
pump and store field energy when the capacitors are charged and cur
rent passed across the induction coil. Electric field energy and magnetic 
field energy can be injected and released from the capacitor and in
duction coil, respectively. On the other hand, the memristor can 
consume Joule heat and absorb magnetic field as well. For further 
nonlinear analysis and potential application in neurodynamics, the 
coherence degree can be estimated by calculating the coefficient vari
ability (CV) of interspike interval (ISI) series as follows 

CV =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
< T2 > − < T>2

√

< T >
; (24) 

where the T represents the denotes the period for two adjacent peaks 
(ISI) in the sampled time series for membrane potentials or output 
variables. In this paper, the ISI can be reduced from the sampled time 
series for the variable × directly. 

3. Numerical results and discussion 

When memristor is incorporated into different branches of the Chua 
circuit, the channel current across the memristor can regulate the out
puts voltage of the memristive circuit with different scales. As a result, 
the profile and firing modes of this memristive circuit will be controlled 
by the memristive variable even all the parameters are fixed. For 

Fig. 9. Developed attractors, evolution of variable and transition in the Hamilton energy in different electrical components are plotted by changing noise intensity 
for Case 1. For stage 1, D = 5; stage 2, D = 10, stage 3, D = 19; stage 4, D = 29, and the parameters are fixed at α = 10, β = 18, γ = 0, m0 = -1.664, m1 = -0.598, a’=5, 
b’=10, initial values are selected as (0.1, 0.1, 1.0, 0.1). 

Fig. 10. Evolution of the Hamilton energy H in this memristive circuit driven 
by noise for Case 1. For noise intensity (a) D = 5; (b) D = 10; (c) D = 19; (d) D 
= 29, the parameters are fixed at α = 10, β = 18, γ = 0, m0 = − 1.664, m1 = −

0.598, a’=5, b’=10. 
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Fig. 11. Evolution of variables and Hamilton energy are changed by switching one of the intrinsic parameters in different stages (Case 2). For stage 1, α = 1, a’=1, 
b’=1; stage 2, α = 0.1, a’=0.1, b’=0.1; stage 3, α = 0.01, a’=0.01, b’=0.01; stage 4, α = 0.001, a’=0.001, b’=0.001, the other parameters are fixed at β = 24, γ = 0, 
m0 = − 1.664, m1 = − 0.598. 

Fig. 12. Evolution of variables and the Hamilton energy H in this memristive circuit driven by noise (Case 2). For noise intensity (a) D = 0; (b) D = 10; (c) D = 20; (d) 
D = 30, the parameters for stage 3 are fixed at α = 0.01, β = 24, γ = 0, m0 = − 1.664, m1 = − 0.598, a’=0.01, b’=0.01. 

Y. Guo et al.                                                                                                                                                                                                                                     

25



AEUE - International Journal of Electronics and Communications 145 (2022) 154074

10

simplicity, the resistance for resistor R1 is removed and then the 
parameter γ = 0 without special statement. The fourth order Runge- 
Kutta algorithm is applied to find numerical solutions of these mem
ristive systems with time step h = 0.01. For the case 1, the memristive 
current is relative to the channel current and induction current across 
the induction coil, and the dynamics dependence on the intrinsic pa
rameters (α, β, a’, b’) is estimated by calculating the Lyapunov expo
nents and supplying the bifurcation analysis in Fig. 5. 

It is confirmed that slight changes in the parameters (α, β) mapped 
from capacitance and inductance can induce distinct mode transition 
from periodic to chaotic states, while the changes in the normalized 
parameters (a’, b′) in the memristor seldom changes the chaotic state 
effectively. Furthermore, the formation of attractors and evolution of 
Hamilton energy in this memristive circuit are calculated in Fig. 6 by 
changing one parameter. 

As presented in Fig. 6, the output voltages from the memristive cir
cuit and chaotic attractors are changed completely, in addition, the 
energy pumping in each electric component is also changed when the 
intrinsic parameters for capacitor and induction coil (α, β) are adjusted. 
However, the Hamilton energy for these components, chaotic attractors 
and output voltages seldom show distinct changes. The total Hamilton 
energy in this memristive circuit is also calculated in Fig. 7 when one of 
the intrinsic parameters is changed. 

The results in Fig. 7are consistent with the presentation shown in 
Fig. 6, the memristive circuit used to hold lower average Hamilton en
ergy when double scroll attractors are developed, while single scroll 
attractor enables higher Hamilton energy in this circuit. 

Noise is often applied on the nonlinear systems and excitable media 
for estimating the effect of stochastic disturbance. Nonlinear resonance 
such as stochastic resonance and coherence resonance can be induced 
and the disturbed systems often present distinct periodicity in the output 
variables by adjusting the noise intensity carefully. For the memristive 
system without external periodic stimulus, stochastic electromagnetic 
radiation can change the channel current across the memristor, and the 
other branch circuits can be controlled by the memristive current 
effectively when the intensity of electromagnetic radiation is changed. 
In Fig. 8, the noise intensity is changed to detect the nonlinear response 
from Eq.(10) when external electromagnetic radiation is applied with 
different intensities.The CV value shows distinct fluctuations with the 
increase of noise intensity, and it reaches a lowest value at D = 19 while 
the attractors show chaotic than periodic type. Furthermore, the evo
lution and transition in the output variable and Hamilton energy are 
calculated by changing the noise intensity, and the results are shown in 
Fig. 9. 

It is confirmed that the profile of double scroll attractors keep 
robustness to the noise even its intensity is further increased. The po
tential mechanism could be that the memristor is activated completely 
and its field energy is increased and then is pumped to the induction coil 
L1 for possible balance along this branch circuit. By the way, the evo
lution of total Hamilton energy in this memristive circuit is also calcu
lated in Fig. 10. 

In presence of double scroll attractors, the average Hamilton energy 
is much close to a lower value even the noise intensity is changed in wide 
range. It indicates that chaotic attractors are kept alive even noisy 

Fig. 13. Evolution of variables and Hamilton energy are changed by switching one of the intrinsic parameters in different stages (Case 3). For stage 1, α = 1, a’=1, 
b’=1; stage 2, α = 0.1, a’=0.1, b’=0.1; stage 3, α = 0.01, a’=0.01, b’=0.01; stage 4, α = 0.001, a’=0.001, b’=0.001, the other parameters are fixed at β = 24, γ = 5, 
m0 = − 1.664, m1 = − 0.598. 
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disturbance via the memristor is further increased. In fact, for the con
dition described in Case 1, the memristive current and field energy 
across the memristor are changed by external magnetic field, which is 
estimated by changing the magnetic flux variable. As a result, magnetic 
field energy is pumped into the induction coil. Therefore, the chaotic 
attractors keep alive to the changes of parameters for memristor, and 
external magnetic field has slight impact on the stability of chaotic 
attractors. It is also interesting to discuss the Case 2, from physical 
viewpoint, magnetic field energy can coexist with the electric field en
ergy along the same branch circuit. For Case 2, the firing mode, evolu
tion of Hamilton energy in the memristive circuit are plotted in Fig. 11. 
It is found that the involvement of memristor connected to capacitor C2 
can calm down the chaotic circuit, and the Hamilton energy is decreased 
to stable value. Furthermore, the stage 3 in Fig. 11 is extended to 5000 
time units, and it is confirmed that all the variables and Hamilton energy 
reach stable value finally. Because of the magnetic field effect in the 
magnetic flux-controlled memristor, the excitation of channel current 
can be converted to magnetic field energy and then the capacitor con
nected to this memristor is seldom excited. As a result, the processing of 
charge and discharge becomes discontinuous, and then the output 
voltage from the capacitor becomes stable within finite transient period. 
By the same way, external electromagnetic radiation is applied with 
different intensities, and the results are plotted in Fig. 12. 

Extensive numerical results confirmed that the chaos and oscillation 
in the memristor-coupled circuit is suppressed, and the Hamilton energy 
is stabilized because the variables become stable accompanied by the 
termination of energy pumping. We also investigate the same problem 
for Case 3, and the evolution of variable and transition of Hamilton 

energy are plotted in Fig. 13. 
Similar to the results approached for Case 2, the variables developed 

to a stable and certain saturation value when the memristor is connected 
to the capacitor C1, as a result, the oscillation in the memristive circuit is 
suppressed completely. Furthermore, external electromagnetic radia
tion is applied to discuss the stability and transition in the variable by 
applying the same parameters for stage 3, and the results are plotted in 
Fig. 14. 

The chaotic circuit began to reach stable state within certain tran
sient period and the oscillation is suppressed even external electro
magnetic radiation on this nonlinear circuit is further increased. 
According to Eq.(20), the variable w will be stabilized to stable value 
with large negative gain, and then the output voltage from capacitor C1 
will be kept balance. As a result, the channel current along this branch 
circuit becomes stable, and then the energy pumping and exchange are 
blocked. Therefore, continuous oscillation is terminated effectively. 

In the previous works, an additive branch circuit composed of iso
lated memristor is built to couple many chaotic circuits [67–70], and 
then the memristive current across the memristor will be considered as 
external stimulus, which has distinct excitation to the original chaotic 
circuit. In particular, the involvement of memristive function associated 
with memristor can induce multistability [71,72] in some nonlinear 
circuits. The dynamics becomes richer and complex in fractional order 
systems [73] composed of memristor, and hidden attactors [74,75] with 
different shapes of equilibrium points can be induced in some mem
ristive systems. The channel current across the memristor and its field 
energy have effective impacts on mode transition and energy transition 
in the memristive circuits. However, the connection of memristor to 

Fig. 14. Evolution of variables and the Hamilton energy H in this memristive circuit driven by noise. For noise intensity (a), D = 0; (b), D = 10; (c), D = 20; (d) D =
30, the parameters for stage 3 are fixed at α = 0.01, β = 24, γ = 5, m0 = − 1.664, m1 = − 0.598, a’=0.01, b’=0.01. 
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capacitor or induction coil along the same branch circuit may induce 
extreme state (death in oscillation, keeps chaotic) because of the balance 
and compensation of field energy between two electric components. On 
the other hand, memristor coupling is effective to realize synchroniza
tion [76–79], incorporation of memristor in the coupling channel just 
activates an equivalent additive branch circuit, and thus two chaotic 
circuits (neural circuits) can be guided and controlled to reach possible 
consensus in the states. Our results in this paper remind that the 
involvement of memristor to different electric components in the 
nonlinear circuit will has distinct effect on the dynamics and mode se
lection. Therefore, when more physical electric components such as 
phototube, thermistor, Josephson junction, piezoelectric device are used 
to couple resonators and nonlinear circuits, the effect of incorporation 
position and connection to which electric component should be 
discussed. 

4. Conclusions 

As is well known, the dynamics of nonlinear circuits becomes 
dependent of initial values even all the parameters are fixed, and this 
circuit is improved as memristive when a memristor is coupled to a 
nonlinear circuit by adding an additive branch circuit. That is, a 
connection of isolated memristor to the nonlinear circuit along an ad
ditive branch circuit in parallel will activate the memristive effect 
effectively because the memristive current across the memristor will 
regulate the nonlinear circuit as external stimulus. In this paper, a 
memristor is connected to the induction coil, capacitors in series along 
three different branch circuits, the energy pumping in each electric 
components and Hamilton energy in this improved circuit is calculated, 
respectively. It is confirmed that the chaotic circuit keeps alive when 
memristor is connected to the induction coil along the branch circuit, 
and the two components can share and exchange magnetic field energy 
continuously, therefore, this circuit still keeps alive even external 
magnetic radiation is applied. However, when memristor is connected to 
the capacitor along another two branch circuits, the magnetic field en
ergy in the memristor can compensate and keep balance the energy in 
the capacitor, as a result, continuous oscillation is suppressed and the 
nonlinear circuit tends to reach stable state within finite transient 
period. These results confirmed that connection of memristor to 
different electric components will have different impact on the stability 
of nonlinear circuits. 
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a b s t r a c t

Biological neurons are clustered and functional synapses are created to propa
signals accompanying with formation of spatial patterns in the neural net
physical aspect, fast synaptic connections to neurons provide an effective
energy exchange and keeping energy balance between neurons. In fact, fie
behaves effective bridge connections to neurons and then neural activi
controlled by spatial induction currents in the neural network. In this paper
neurons are controlled by magnetic flux by inducing gradient induction
presence of electromagnetic radiation without synaptic connections. Differ
previous uniform radiation, spatial radiation is imposed on the neural netw
stability of spatial patterns is explored by imposing a spatiotemporal disturb
network. Memristive neurons developed from Hindmarsh–Rose neurons b
memristive term and magnetic flux variable are used to build a chain net
lattice network under field coupling rather than using synaptic coupling. Syn
factors are calculated to discern the synchronization dependence on noise
and frequency in the spatial electromagnetic radiation. An isolated neuron
stochastic resonance under noise and radiation with diversity. Field couplin
energy exchange and local energy balance, and then synchronous patterns ar
in absence of synaptic coupling. External noise and spatial disturbance
certain diversity in induction current and excitability, therefore, approach
synchronization and development of regular patterns are blocked because of
balance under field coupling. These results indicate that energy injection
of energy flow are effective to prevent the occurrence of bursting syn
and coexistence of multiple firing modes is formed in neural network c
memristive neurons under spatial radiation.

© 2023 Elsevier B.V. All rig

1. Introduction

Biological neurons present intrinsic self-adaption to external stimuli and thus appropriate firing patte
guided and controlled completely. Indeed, any external physical stimuli used to inject energy into the m
chemical stimuli will change the ions flow and shape deformation, and then energy flow is guided to re
neural activities [1–5]. During continuous pumping and diffusion of intracellular ions and exchange with ex
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ions, the inner field energy is changed accompanying with the propagation of energy flow in/out of the cells. Sampled
data for membrane potentials are detected for nonlinear analysis, and then some theoretical models are proposed to
reproduce similar output series and then these models are handled as biological or mathematical neurons. From dynamical
aspect, continuous models [6–10] described by ordinary differential equations containing nonlinear terms and discrete
models [11–14] presented in maps can be controlled in the external stimulus and intrinsic parameters for showing similar
firing patterns including quiescent, spiking, bursting and even chaotic patterns, which can also be detected from biological
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In fact, the physical effect in the biological neurons becomes important for further predicting and con

neural activities of neurons and network in complex electromagnetic environments. It is also worthy of in
the intrinsic biophysical property of biological neurons for designing more artificial neural circuits [17–22] and
networks. For example, Yamakou et al. [18] calculated the nonlinear resonance in a memristive neuron under n
et al. [19] explored the effect of structural connectivity matrix of a human brain on bursting synchronization i
of stimulus. Kusbeyzi et al. [20] suggested a scheme for improving the biophysical function of mathematical neu
by supplying memristive terms associated with memristor [21]. Hansen et al. [22] demonstrated the role of
on synchronization stability in a neural network. The inner and outer cell membranes of biological neurons
capacitive property and the channel currents show the inductance characteristics of neurons. Therefore, both ca
inductor are necessary electric components for building an equivalent neural circuit. Because of the stochastic d
inner ions and complex exchange between field energy (magnetic field and electric field), nonlinear electric c
including negative resistor, memristor, piezoelectric element are often incorporated into the ion channels to
energy flow [23–27]. In addition, external voltage source is applied as external stimulus and constant voltage so
to the ion channels for proper measurement of inverse/resting potentials. These neural circuits can be approach
equivalent biophysical models [28–32] when scale transformation is applied on the physical variables and p
for the neural circuits. In this way, more biophysical neuron models can be obtained to discern external ill
acoustic wave, temperature changes and external magnetic field as well by embedding photocell, piezoelectri
thermistor, Josephson junction into one of the branch circuits [33–35]. For example, Zhang et al. [33] built a n
circuit by connecting Josephson junction and external magnetic field can be perceived effectively. Zhao et al. [35
a neural circuit by incorporating memristor into one branch and a spiking neuron model is obtained. In par
involvement of memristor can make a memristive system, which its dynamics can be controlled by the initial va
memristive variable even other parameters are fixed, and the inner effect of electromagnetic induction can be
well by involving additive magnetic flux variable and induction current into the neuron models [36–40].

Based on these mathematical and biophysical neuron models, complete bifurcation analysis, nonlinear
synchronization and anti-synchronization can be explored well [41–45]. For example, Lian et al. [41] inves
stability of antiphase synchronization in nonlinear circuits under field coupling. Zhang et al. [42] suggested a
estimating complexity by analyzing the order patterns. Li et al. [43] claimed that frequency analysis can be used
the parameters of nonlinear structural systems. Palabas et al. [46] confirmed the regulation on double coherence
in neuron coupled by astrocyte. Klinshov et al. [47] discovered the occurrence of rate chaos and memory life tim
network composed of spiking neurons. Parastesh et al. [48] confirmed that blinking coupling is helpful to synch
enhancement. Sar et al. [49] found that time-varying phase interactions have impacts on swarming and synch
For more guidance about collective self-organization in networks, clues can be found in the review [50]. B
external stimulus, adjacent synaptic currents also have important role in regulating the electric activities of neu
networks. For two or more neurons, the synchronous firing patterns are mainly dependent on the biophysical
of the coupling channels including electric synapse, chemical synapse, hybrid synapse and memristive synap
For biological neurons, the activation and modulation of synaptic connections are effective to propagate energ
then the firing pattern in each neuron can be adjusted to show appropriate firing modes, and the adjacent ne
reach energy balance and possible synchronization or phase lock [54–56].

The collective electric behaviors of neural networks are mainly estimated by developing spatial patter
including spiral waves, Turing patterns and even spatiotemporal patterns and stabilizing synchronization in o
multi-layer networks. For example, Wu et al. [61] explored the repulsion dynamics of spiral waves near the u
zone and clarified that repulsion behavior results from any changes in the natural frequency of the spiral
the unexcitable boundary. In a practical way, external noisy and periodic stimuli can be applied to control t
formation and synchronization stability of networks. For neural circuits and biological neurons, the EMR (electr
radiation) can enhance the effect of electromagnetic induction [64–68] by injecting field energy because the p
of intracellular ions can be affected by electromagnetic field. Considering the controllability in realistic sy
characteristic of self-adaption and robustness should be considered by applying optimization algorithm [69,
be confirmed for obtaining reliable controllers. In fact, biophysical models are enhanced in this self-adaptive pr
the self-organization of biological neurons can be discerned under field coupling, which enhances the signal
via energy exchange.

In this paper, based on a memristive neuron model, neurons are clustered under field coupling [71–74] and
formation under noise and EMR is discussed in the neural networks in absence of synaptic connections. C
the inner diversity of neurons and radiation emitted from more sources, spatial EMR is applied to investigat
propagation and pattern stability. The scientific contribution of this work can be summarized as follows. B
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memristive neuron including the electromagnetic induction effect, field coupling is activated without direct synaptic
coupling for discerning the synchronization approach and pattern formation in the memristive network. In particular,
EMR with non-uniform spatial distribution is considered by imposing spatial disturbance on the magnetic flux variable
for each neuron in the network, and diversity of induction current can further induce the diversity in excitability and
changes in firing modes. This scheme is useful to discern the neural activities in realistic biological media and nervous
system including cardiac tissue under inhomogeneous electromagnetic radiation [75]. It also explains why neurons can

e intrinsic
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(2)
present coexistent multiple firing modes in the electric activities because of diversity in excitability and som
parameters.

2. Model and scheme

As is known, continuous pumping and stochastic diffusion of intracellular and extracellular ions can indu
magnetic field in cells. On the other hand, external electromagnetic field has distinct impact on the distributi
field of the cell due to uncertain polarization and magnetization. The involvement of magnetic flux can well es
effect of magnetic field on the membrane potential of neuron. Firstly, magnetic flux variable and memristiv
induction current [36,37] are introduced into the Hindmarsh–Rose neuron and a memristive neuron model
to describe the effect of electromagnetic induction and EMR on neuron and neural networks [76].⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx
dt

= y − ax3 + bx2 − z + Iext − k1W (ϕ)x ;

dy
dt

= c − dx2 − y ;

dz
dt

= r[s(x + 1.56) − z];

dϕ
dt

= kxi − k2ϕi + ϕext ;

where the variables (x, y, z, ϕ) denote the membrane potential, recovery variable for slow current, adaptio
and magnetic flux, respectively. Iext represents external electric stimulus and it can be adjusted to trigger diffe
patterns in the neuron. The normalized parameters (a, b, c, d, r, s) are the same as the original Hindmarsh–Rose n
coefficient k1 for the memristive term (induction current) is relative to the intrinsic property of the media and th
of induction current across the cell membrane is controlled by the gain k1. Considering the magnetic field e
cell, an equivalent induction coil with N turns is suggested to estimate the magnetic field as 1/N = k, and so
neural circuits can be designed to reproduce similar dynamical property in biological neurons. Therefore, an
capacitor is often introduced into neural circuit for discerning the capacitance of cell membrane. Considering the
diffusion of ions in the direction, the coefficient k2 is introduced to estimate the appositive diffusion of ma
and leakage. The memristive term W (ϕ)x calculates the current in the memristive synapse/channel with me
W (ϕ) = dq(ϕ)/dϕ = α+3βϕ2, (α, β) are normalized parameters for the memristive channel, good explanation ca
Refs. [77,78]. When neurons are exposed to external electromagnetic field, the propagation and diffusion of in
ions will be changed greatly because of magnetization and driving/blocking from electric field. Therefore, the ma
across the cell membrane will be changed and then ϕext is often applied with different forms to match with low-
high-frequency and stochastic radiation on the neuron and neural networks.

For a chain neural network clustered with N neurons under field coupling without synaptic connection, th
flux is affected by the other N − 1 neurons and then the induction current for each neuron shows certain
Indeed, the spatial induction currents induce diversity in the excitability, and wave fronts are induced for
collision and interaction, which symmetric breaking can occur for developing specific regular patterns in
network. Furthermore, the involvement of additive noise ξ (t) can estimate the effect of stochastic fluctuation
field on the membrane potential of neurons, and continuous exposure to EMR (ϕext ) also regulates the firing
neurons. Considering the inner diversity in neurons, external EMR often induces spatial diversity on the mag
and induction current, therefore, ϕext can be selected with spatial form for discerning the non-uniform EMR
networks. The neural activities in a chain network under field coupling [74] in presence of additive noise an
be described by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dxi
dt

= yi − ax3i + bx2i − zi + Iext − k1W (ϕi)xi + ξ (t);

dyi
dt

= c − dx2i − yi;

dzi
dt

= r[s(xi + 1.56) − zi];

dϕi

dt
= kxi − k2ϕi − k3

N∑
j=1
i̸=j

(ϕj − ϕi) + ϕi
ext;
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The subscripts/superscripts (i, j) represents the node position of the network, and the third term in the right side of
the four formula describes the superposition of magnetic field on the ith neuron. The EMR (ϕext ) is selected as spatial form
given in ϕi

ext = Acos(ωt+i*λ), λ is a constant relative to the intrinsic property of the media and the intrinsic parameters (A,
ω) can be adjusted to describe the EMR on the neuron. ξ (t) represent noise. For estimating the synchronization stability
and formation of spatial patterns, a statistical synchronization factor R for a chain network is defined according to the
mean field theory as follows [36]

(3)
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the other
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(5)

rmation of
he symbol
culation. In
stants. The
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(6)

savage of
stochastic
membrane
(SNR) and
e [80–82].

(7)
F =
1
N

N∑
i=1

xi; R =
⟨F 2

⟩ − ⟨F⟩
2

1
N

∑N
i=1(⟨x

2
i ⟩ − ⟨xi⟩2)

;

For a chain network composed of N neurons, the noise intensity and EMR can be regulated to control the
neural activities. When all neurons become synchronous firing completely, the network becomes homogeneo
pattern is developed because of perfect synchronization with higher value in the synchronization factor R. On
hand, distinct spatial patterns can be developed when synchronization is corrupted with lower value for R.

For neural network in two-dimensional space on a lattice, the collective firing patterns under field coupl
controlled by noise and EMR as well, and the dynamics can be calculated by [76]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dxij
dt

= yij − ax3ij + bx2ij − zij + Iext − k1W (ϕij)xij + ξ (t);

dyij
dt

= c − dx2ij − yij;

dzij
dt

= r[s(xij + 1.56) − zij];

dϕij

dt
= kxij − k2ϕij − k3

N∑
m=1,n=1
m ̸=i,n̸=j

(ϕmn − ϕij) + ϕ
ij
ext;

Similar to the case for chain network, all neurons are connected via field coupling and synaptic conn
removed. The subscripts/superscripts (ij, mn) mark the node position for neurons, and spatial patterns will be
on the EMR(ϕij

ext ), external stimuli and stochastic excitation on the membrane potentials. The spatial radiation ϕ

node is different when the node position (ij) is changed. Similar definition for synchronization factor R [72] o
defined as follows

F =
1
N2

N∑
j=1

N∑
j=1

xij; R =
⟨F 2

⟩ − ⟨F⟩
2

1
N2

∑N
j=1

∑N
i=1(⟨x

2
ij⟩ − ⟨xij⟩2)

;

Within certain transient period, a higher value for R indicates that perfect synchronization is obtained and fo
regular patterns is suppressed. A lower value for R is helpful to develop regular patterns in the neural network. T
<*> means an average estimation of variables within finite transient period or running times for numerical cal
addition, the EMR on neurons in the square array is updated as ϕ

ij
ext = Acos(ωt + i*λ1 + j*λ2), λ1, λ2 are con

additive Gaussian white noise with zero average value and its statistical property is estimated by < ξ (t)ξ (t′)> =
D is the noise intensity and δ(*) represents Dirac-δ function.

On the other hand, the memristive current considers the consumption and storage of field energy when m
channel is involved to estimate the effect of electromagnetic induction. The energy in the memristive channel is
by [79]

E =
1
2
Lmi2m =

1
2
(Lm · im)im =

1
2
ϕ · im =

1
2
ϕ
dq(ϕ)
dt

=
1
2
ϕ
dq(ϕ)
dϕ

dϕ
dt

=
1
2
k1ϕW (ϕ)x

=
1
2
k1αxϕ +

3
2
k1βxϕ3

;

The first term in Eq. (6) discerns the consumption of Joule heat and the second term estimates the energy
magnetic field in the memristive channel developed from magnetic flux-controlled memristor. In presence of
disturbance as noisy driving, distinct regularity can be induced and detected in the sampled time series for
potentials by taming the noise intensity. In practical way, statistical functions including signal-to-noise ratio
coefficient variability (CV ) of ISI series are often calculated for predicting the occurrence of nonlinear resonanc⎧⎪⎨⎪⎩

SNR = 10 log 10(
S
B
) = Ppeak

fpeak
∆f

;

CV =

√
(⟨T 2⟩ − ⟨T ⟩

2)
⟨T ⟩

;
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Fig. 1. Bifurcation of ISI for membrane potential x vs. parameters A, ω, λ. For (a) ω = 0.1, λ = 0.2; (b) A = 2.1, λ = 0.2; (c) A =

Setting parameters Iext = I = 4.0, α = 0.4, β = 0.02, k = 0.5, k1 = 0.9, k2 = 0.4, a = 1.0, b = 3.0, c = 1.0, d = 5.0, r = 0.006,
= Acos(ωτ + λ), and initial values for variables in single neuron are selected as (0.02, 0.03, 0.01, 0.1).

where S and B represent the values of the output power spectrum density (PSD) at the peak (height of the s
and the base of the signal feature (the amplitude of the background noise measured at the base of the si
respectively. Ppeak denotes the peak height of power spectrum, ∆f represents the peak width at half-heigh
estimates the frequency for peak value in the power spectrum. The value for T discerns its value as interspi
(ISI), and appearance of lower value for CV means higher coherence degree in the neural activities under nois

3. Numerical results and discussion

In this section, reliable algorithm as fourth order Runge–Kutta algorithm is applied to find numerical solut
neuron model and neural network with time step h = 0.01 when no noisy excitation is applied. In presen
disturbance on the membrane potentials, the neuron model and network may show mode transition in neura
but distinct firing patterns are developed as well, the Euler forward algorithm [83] can be effective to obta
statistical analysis including distribution of SNR, CV and synchronization factors. It is believed that the Langzhiw
is suitable for finding numerical solutions of the stochastic dynamical systems. In Refs. [84,85], extensive s
are provided to find exact solutions for stochastic differential equations. In fact, mode selection in neuron
mainly controlled by the nonlinear terms including channel currents, and noisy excitation just can optimize
transition of firing modes and then distinct firing patterns are developed. Therefore, stochastic effect is sup
nonlinearity and Euler algorithm and even multi-step (Runge–Kutta like) numerical methods are suitable for th
implementation because they can be expressed as a sequence of explicit formulas [85]. The parameters for the m
neuron model are fixed at (a, b, c, d, r, s) = (1.0, 3.0, 1.0, 5.0, 0.006, 4.0) and α = 0.4, β = 0.02. For
k = 0.5, k1 = 0.9, k2 = 0.4, k3 = 0.0001, 0.00001, and external stimulus Iext = 4.0. No-flux boundary c
applied and initials are selected with certain diversity for the neural network. In mathematical definition for
media, ∂u/∂n = 0 is applied on the boundary of the media. For chain networks, u(N) = u(N+1), u(1) = u(2) can
mimic the setting for no-flux boundary condition in numerical results. The initial values for neurons in the n
be uniform in which each neuron has the same initials as other neurons. Surely, diversity in the initials can be
by selecting random values 0.0∼1.0 for each neuron in the network. At first, the bifurcation of ISI (interspike
for sampled membrane potentials is calculated in Fig. 1 by changing the amplitude, frequency and initial ph
radiation ϕi

ext = Acos(ωt+i*λ) = Acos(ωτ+i*λ), i = 1, respectively. The parameter λ introduces diversity in
phases for different nodes in the neural network. In the following numerical approach, evolution of membrane
energy and spatial patterns are presented within finite transient period (t = τ = 1000 time units).

For a single memristive HR neuron excited by ϕext = Acos(ωτ + λ), distinct firing mode in the neural acti
controlled effectively by taming one of the intrinsic parameters (A, ω) for the EMR when the external stimu
in Fig. 1. In particular, the neuron prefers to present chaotic patterns at Iext = 4.0, and chaotic states kee
different initial phases in the EMR by exploring the phase portraits and confirming positive Lyapunov expo
better showing, the firing patterns and energy growth in an isolated neuron under EMR are calculated in Fig
external noise being consideration.

From Fig. 2, it is demonstrated that spiking neuron often keeps higher energy than bursting neurons. In
periodic firing in neuron enables its much higher energy than spiking neuron because of higher regularity in
activities. When membrane potential becomes negative, the energy in the memristive synapse also shows neg
with time, it means that this memristive channel can absorb external field energy and then energy flow is
excite the neuron. As is known, neural activities can be controlled by noisy disturbance, and specific noise with
intensity can enhance the regularity and coherence in the electric activities accompanied with stochastic res
discerning the SNR (signal to noise ratio) in Fig. 3.
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Fig. 2. Evolution of membrane potential and energy level in the memristive channel. For (a1, a2) A = 0.48, ω = 0.1; (b1, b2) A = 1.0,
c2) A = 1.7, ω = 0.1; (d1, d2) A = 2.1, ω = 0.1; (a3, a4) A = 2.1, ω = 0.2; (b3, b4) A = 2.1, ω = 0.5; (c3, c3) A = 2.1, ω = 0.96; (d4
ω = 2.0. The rest parameters are set as I = 4.0, α = 0.4, β = 0.02, k = 0.5, k1 = 0.9, k2 = 0.4, a = 1.0, b = 3.0, c = 1.0, d = 5.
s = 4.0, λ = 0.02, and the initial values for variables in single neuron are selected as (0.02, 0.03, 0.01, 0.1).

Fig. 3. Distribution of SNR is plotted by changing noise intensity D. For (a1) A = 0.48, ω = 0.1; (b1) A = 1.0, ω = 0.1; (c1) A =

(d1) A = 2.1, ω = 0.1; (a2) A = 2.1, ω = 0.2; (b2) A = 2.1, ω = 0.5; (c2) A = 2.1, ω = 0.96; (d2) A = 2.1, ω = 2.0. Setting Iext =

β = 0.02, k = 0.5, k1 = 0.9, k2 = 0.4, a = 1.0, b = 3.0, c = 1.0, d = 5.0, r = 0.006, s = 4.0, λ = 0.02, and the initial values for varia
neuron are selected as (0.02, 0.03, 0.01, 0.1).

In presence of EMR with different amplitudes and frequencies, similar stochastic resonance can be in
discerned even the noise intensity for peak value for the SNR is different. Peak value is detected in the
SNR, and stochastic resonance occurs in this memristive neuron under EMR. It also indicates that careful
the noise intensity can control the effect of EMR on a single neuron and the distinct firing patterns can b
with high regularity under coherence. For discerning the synchronization stability of chain network excited b
synchronization factors are estimated in Fig. 4 when EMR is changed in the amplitude and frequency, respect

The synchronization factor shows distinct decrease when external EMR is increased in the amplitude. On
hand, further increase of the frequency of external EMR also has impact on the synchronization factors in
network, and fast frequency in EMR will induce quick change in induction current and the excitability sync
In fact, when external EMR is enhanced, magnetic flux and corresponding equivalent induction current s
difference and neurons become more different in induction current. As a result, diversity in excitability is gen
synchronization approach becomes difficult in the chain network composed of memristive neurons. According
the membrane potential for each neuron in the chain network is calculated and the spatial distribution at a
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Fig. 4. Distribution of synchronization factors R is estimated by changing the amplitude A or ω for ϕi
ext = Acos(ωt + i*λ). For (a) ω = 0.1

Setting Iext = 4.0, α = 0.4, β = 0.02, k = 0.5, k1 = 0.9, k2 = 0.4, a = 1.0, b = 3.0, c = 1.0, d = 5.0, r = 0.006, s = 4.0, k3 = 0.0001,
the initial values for variables in single neuron are selected as (0.02, 0.03, 0.01, 0.1).

Fig. 5. Development of spatial pattern is plotted at different amplitudes A for ϕi
ext = Acos(ωt + i*λ) in chain network composed of

For (a) A = 0.01; (b) A = 0.2; (c) A = 1.4; (d) A = 1.8. Setting Iext = 4.0, α = 0.4, β = 0.02, k = 0.5, k1 = 0.9, k2 = 0.4, a =

c = 1.0, d = 5.0, r = 0.006, s = 4.0, k3 = 0.0001, λ = 0.02, and the initial values for variables in single neuron are selected as (0.02, 0.
Snapshots are plotted in color scale and the spatial patterns discern the distribution of membrane potentials for neurons.

plotted to show the coherence under EMR. In Fig. 5, the wave propagation in the chain network is explored b
EMR with different amplitudes.

With the increase of amplitude in the EMR, spatial induction currents are enhanced in the diversity o
currents for all memristive neurons, and synchronization stability under field coupling is corrupted compl
result, spatial patterns become irregular and wave propagation becomes uncertain in the network. In additio
noise is applied to predict whether spatial regularity can be induced to aid the wave propagation in the ne
synchronization factors are obtained in Fig. 6 by applying membrane noise with different intensities.

In presence of EMR, the involvement of noise on the cell membrane can decrease the synchronization f
synchronization is destroyed in the chain network. It means that additive noise on the membrane potentia
for wave propagation along the chain network. Therefore, the spatial patterns for membrane potentials are ca
discern whether wave propagation can be controlled by noise in Fig. 7.

Wave fronts are induced while no regular wave propagation is continued along the chain network even
disturbance on membrane potential is further increased. That is, continuous collision between these wave fro
helpful to excite all the neurons but no regular wave profiles can be developed in presence of noise. We also ex
similar case on wave propagation and patterns formation in neural network on a lattice under field coupling ac
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Fig. 6. Distribution of synchronization factors R is estimated by changing noise intensity D. Setting A = 0.01, ω = 0.1, Iext = 4.0, α = 0
k = 0.5, k1 = 0.9, k2 = 0.4, a = 1.0, b = 3.0, c = 1.0, d = 5.0, r = 0.006, s = 4.0, k3 = 0.0001, λ=0.02, and initials of each neuron
network are selected as (0.02, 0.03, 0.01, 0.1).

Fig. 7. Development of spatial pattern is plotted under different noise intensities D. For (a) D = 0.1; (b) D = 0.4; (c) D = 0.8; (d) D =

A = 0.01, ω = 0.1, Iext = 4.0, α = 0.4, β = 0.02, k = 0.5, k1 = 0.9, k2 = 0.4, a = 1.0, b = 3.0, c = 1.0, d = 5.0, r = 0.006, s = 4.0,
λ = 0.02, and initials of each neuron in the chain network are selected as (0.02, 0.03, 0.01, 0.1). Snapshots are plotted in color scale an
patterns discern the distribution of membrane potentials for neurons.

with EMR, and the synchronization factors for the two-dimensional neural network are obtained in Fig. 8 by
external EMR in the intensity and phase, respectively.

Similar to the case for chain network composed of memristive neurons, the synchronization factors are less
EMR is increased in the amplitude or angular frequency. For better showing, the formation of spatial patte
explored in Fig. 9.

Most area of the network shows homogeneous state and the spatial patterns show distinct symmetry w
increase of the amplitude of external EMR. That is, horizontal and vertical disturbance from EMR can en
synchronization degree and more memristive neurons become synchronous in absence of noise. Furthe
synchronization stability is explored in presence of noise by estimating the synchronization factors in Fig. 10.

When noisy disturbance applied on membrane potential is activated, synchronization degree is decreased un
noise intensity. For better illumination, the formation of spatial patterns in the lattice under noise is plotted i
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Fig. 8. Distribution of synchronization factors R is estimated by changing the amplitude A or ω frequency in ϕ
ij
ext = Acos(ωt + i*λ1

(a) ω = 0.1; (b) A = 2.1. Setting Iext = 4.0, α = 0.4, β = 0.02, k = 0.5, k1 = 0.9, k2 = 0.4, a = 1.0, b = 3.0, c = 1.0, d = 5.0, r = 0.006, s = 4.0,
λ1 = λ2=λ = 0.02, and initials of each neuron in the 2D regular network are selected as (0.02, 0.03, 0.01, 0.1).

Fig. 9. Developed spatial patterns in the neural network on lattice at τ = 1000 time units by applying different ampl
ϕ
ij
ext = Acos(ωt + i*λ1 + j*λ2). For (a) A = 0.01; (b) A = 0.2; (c) A = 1.1; (d) A = 1.6. Setting Iext = 4.0, α = 0.4, β = 0.02, k =

k2 = 0.4, a=1.0, b = 3.0, c = 1.0, d = 5.0, r = 0.006, s = 4.0, k3 = 0.00001, λ1 = λ2 = λ = 0.02, and initials of each neuron in the 2D reg
are selected as (0.02, 0.03, 0.01, 0.1). Snapshots are plotted in color scale and the spatial patterns discern the distribution of membra
for neurons.

The results in Fig. 11 are consistent with the results in Fig. 10, and synchronization degree is suppressed
possible spatial patterns under noise. The neural network shows spatiotemporal chaos and regular patterns are
under noise accompanied by spatial EMR. It is interesting to discuss the case that EMR is not symmetrica
horizontal and vertical direction (λ1 ̸=λ2). In Fig. 12, the synchronization factors are calculated under non-un
and transition of spatial patterns are plotted as well.

The synchronization factor becomes to present a lower value when EMR is increased the amplitude, the spat
show distinct symmetry when the EMR is applied asymmetrically. Finally, external noise is imposed wit
intensities, and the selection of spatial patterns accompanying with changes in synchronization factors is plotte

Indeed, the regular spatial patterns are corrupted when noise is imposed on the neural network and the sy
tion factors show distinct decrease with further increasing the noise intensity. From dynamical viewpoint, the in
of spatial disturbance from non-uniform EMR just introduces spatial-dependent excitation on the neural netw
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Fig. 10. Distribution of synchronization factors R is estimated by changing noise intensity D. Setting A = 0.01, ω = 0.1, Iext = 4.0, α = 0
k = 0.5, k1 = 0.9, k2 = 0.4, a = 1.0, b = 3.0, c = 1.0, d = 5.0, r = 0.006, s = 4.0, k3 = 0.00001, λ1 = λ2 = 0.2, and initials of each n
2D regular network are selected as (0.02, 0.03, 0.01, 0.1).

Fig. 11. Developed spatial patterns are plotted at τ = 1000 time units in presence of noise. For noise intensity (a) D = 0.01; (b
(c) D = 0.1; (d) D = 0.7; (e) D = 1.2; (f)D = 2.0. Setting A = 0.01, ω = 0.1, Iext = 4.0, α = 0.4, β = 0.02, k = 0.5, k1 = 0.9, k2 =

b = 3.0, c = 1.0, d = 5.0, r = 0.006, s = 4.0, k3 = 0.00001, λ1 = λ2 = 0.2, and initials of each neuron in the lattice are selected a
0.01, 0.1).

dynamics can be approached by using similar stochastic network under field coupling as follows⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dxi
dt

= yi − ax3i + bx2i − zi + Iext − k1W (ϕi)xi + ξi(t);

dyi
dt

= c − dx2i − yi;

dzi
dt

= r[s(xi + 1.56) − zi];

dϕi

dt
= kxi − k2ϕi − k3

N∑
j=1
i̸=j

(ϕj − ϕi);

The last term in the fourth formula activates exchange of magnetic flux and field coupling becomes ac
networks. As a result, each neuron will receive memristive current (induction current) with diversity, and
stochastic diffusion of magnetic field will change the induction current, so the membrane potential is excited
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(a) A = 0.01;
4.0, α = 0.4,
each neuron

ity D. For (a)
.01, ω = 0.1,
.2, λ2 = 0.02,

(8b)

ise on the
iophysical
Fig. 12. Developed spatial patterns are plotted at τ = 1000 time units by changing the amplitude A for ϕ
ij
ext = Acos(ωt + i*λ1 + j*λ2). For

(b) A = 0.06; (c) A = 0.12; (d) A = 0.24; (e) distribution for synchronization factors R vs. amplitude A in EMR. Setting ω = 0.1, Iext =
β = 0.02, k = 0.5, k1 = 0.9, k2 = 0.4, a = 1.0, b = 3.0, c = 1.0, d = 5.0, r = 0.006, s = 4.0, k3 = 0.00001, λ1 = 0.2, λ2 = 0.02, and initials of
in the 2D regular network are selected as (0.02, 0.03, 0.01, 0.1).

Fig. 13. Developed spatial patterns in presence of non-uniform EMR are plotted at τ = 1000 time units by changing the noise intens
D = 0.01; (b) D = 0.1; (c) D = 0.8; (d) D = 1.2; (e) distribution for synchronization factors R vs. noise intensity D. Setting A = 0
Iext = 4.0, α = 0.4, β = 0.02, k = 0.5, k1 = 0.9, k2 = 0.4, a = 1.0, b = 3.0, c = 1.0, d = 5.0, r = 0.006, s = 4.0, k3 = 0.00001, λ1 = 0
and initials of each neuron in the 2D regular network are selected as (0.02, 0.03, 0.01, 0.1).

excitation.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dxij
dt

= yij − ax3ij + bx2ij − zij + Iext − k1W (ϕij)xij + ξij(t);

dyij
dt

= c − dx2ij − yij;

dzij
dt

= r[s(xij + 1.56) − zij];

dϕij

dt
= kxij − k2ϕij − k3

N∑
n=1
n ̸=j

N∑
m=1
m ̸=i,

(ϕmn − ϕij);

That is, the spatial disturbance from EMR can be approached by applying equivalent spatial correlated no
membrane potentials of neurons. The noise disturbance on each neuron is different and it is dependent on the b
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property of each neuron in the network under field coupling. In absence of noisy disturbance, it can be considered as the
similar case under uniform EMR. In feasible way, the energy for each neuron can be estimated. Considered the recent
work about energy in Hindmarsh–Rose (HR) neuron [86], additive energy in memristive synapse shown in Eq. (6), and
then the total energy in the memristive HR neuron can be obtained by

H =
1
2
[
2
3
dx3 + rsx2 + (y − z)2] +

1
2
k1αxϕ +

3
2
k1βxϕ3

; (9)

al EMR or
rgy flow is
r EMR, the
membrane
eaders can
EMR, and

s or Turing

mposed of
iversity in
s. Additive
and then
and mag-
ronization
urrent and
ve to reach

nection for
eurons for
functional
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ompanying
ve neurons
gy balance
is helpful

function is

ling rather
nder noise
euron, and
e magnetic
l EMR will
tial EMR is
d that the
l regularity
ppress the
rthermore,
y and local
ion will be
nd prevent

considers
d coupling
hemical or
of synapse
an also be
considered
the neural
For the neural network under field coupling, energy is kept in each neuron of the network. Any extern
disturbance on the membrane potential will change the energy distribution in the network, as a result, ene
guided to control the collective behaviors of the neurons under field coupling. By imposing different forms fo
distribution of energy in the neural network can be calculated in numerical way and the pattern formation of
potentials can be understood because different energy levels support different firing patterns in the neurons. R
extend this study in more memristive neural networks by calculating the energy distribution under noisy and
similar discussion can be applied for discerning the wave stability in cardiac tissue by detecting the spiral wave
patterns.

Above all, we discussed the pattern formation and synchronization approach in neural networks co
memristive neurons under field coupling and EMR. The involvement of spatial EMR introduces spatial d
induction currents, and excitability diversity occurs for exciting neurons in presenting different firing mode
noisy disturbance on the membrane potentials of memristive neurons enhances the diversity of excitability
these neurons are excited under field coupling. The activation of spatial EMR induces continuous polarization
netization in these neurons of the network accompanied by energy exchange and propagation, and the synch
approach and formation of regular patterns become difficult because of distinct diversity in the induction c
excitability. Indeed, the creation of synapses connection and further growth of synaptic coupling can be effecti
synchronization and energy balance.

As mentioned in the recent works [54–57,87,88], distinct energy diversity is helpful to create synapse con
reaching local energy balance because these flexible synapses can be guided to build bridge connections to n
exchanging energy quickly. In fact, field coupling is enhanced when more biological neurons are clustered in a
region and energy diversity is decreased. Therefore, adaptive creation of synapse connection and growth
coupling will be blocked. In presence of spatial EMR and noisy disturbance, local energy balance occurs acc
with local homogeneous state in the neural network. By further increasing the noise intensity, these memristi
become different in the excitability and firing patterns, complete synchronization is blocked and local ener
is reached to prevent the activation of synapses to neurons in the network. That is, appropriate spatial EMR
to prevent the occurrence of bursting synchronization and seizure in the neural network because synaptic
suppressed under field coupling.

4. Conclusions

In this work, memristive neurons are regulated in the collective behaviors of networks under field coup
than creating any synaptic connections. The isolated memristive neuron can present stochastic resonance u
and EMR. The effect of electromagnetic induction can be discerned in the local kinetics of a memristive n
the interaction between neurons without synapses coupling is estimated by field coupling, which controls th
flux on each neuron. Considering the intrinsic diversity between these memristive neurons, external spatia
induce non-uniform regulation on the magnetic flux and induction current on each neuron. Therefore, spa
applied to investigate the pattern stability and synchronization degree in the neural network. It is confirme
local spatial patterns can be developed and further noisy driving on the membrane potential can break spatia
in the network. The activation of field coupling among more neurons in the network can be helpful to su
energy diversity and then the growth of synaptic coupling is suppressed due to local energy balance. Fu
these memristive neurons show distinct diversity in excitability accompanied with slight difference in energ
energy balance is stabilized. Therefore, synchronization approach becomes difficult and bursting synchronizat
prevented effectively. These results predict that appropriate spatial EMR is helpful to control neural activities a
the occurrence of seizure in nervous system.

In the present work, no synaptic connections are considered in the neural network and local kinetics
no ion channel noise. According to our recent works, synaptic connection can be created during the fiel
because of local energy diversity, therefore, some neurons in the network can also be connected via electric, c
memristive synapses under energy flow. In the forthcoming works, the researchers can consider the creation
connection under field coupling when energy flow is propagated under non-uniform radiation. The scheme c
considered in the biological neuron models containing ion channels, and then the effect of channel noise can be
synchronously. The suggestions are helpful to know the potential mechanism for developing heterogeneity in
networks.
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ABSTRACT

The membrane potential of a neuron is mainly controlled by the gradient distribution of electromagnetic field and concentration diversity
between intracellular and extracellular ions. Without considering the thickness and material property, the electric characteristic of cell mem-
brane is described by a capacitive variable and output voltage in an equivalent neural circuit. The flexible property of cell membrane enables
controllability of endomembrane and outer membrane, and the capacitive properties and gradient field can be approached by double mem-
branes connected by a memristor in an equivalent neural circuit. In this work, two capacitors connected by a memristor are used to mimic
the physical property of two-layer membranes, and an inductive channel is added to the neural circuit. A biophysical neuron is obtained and
the energy characteristic, dynamics, self-adaption is discussed, respectively. Coherence resonance and mode selection in adaptive way are
detected under noisy excitation. The distribution of average energy function is effective to predict the appearance of coherence resonance.
An adaptive law is proposed to control the capacitive parameters, and the controllability of cell membrane under external stimulus can be
explained in theoretical way. The neuron with memristive membranes explains the self-adaptive mechanism of parameter changes and mode
transition from energy viewpoint.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0170121

The cell membrane is located on the surface of the cell, with
a thickness of usually 7–8 nm, and is composed of lipids and
proteins. Its most important characteristic is semipermeability,
also known as selective permeability, which has strong selec-
tive permeability for substances entering and exiting cells. The
electrophysiological environment inside and outside of the cell
membrane is different, two capacitive terms are effective to mimic
the physical energy characteristic, and exact description of con-
trollability and flexibility in the cell membrane needs controllable
physical definition and description. A memristive connection to
two-layer cell membranes is suggested, and its equivalent circuit
combination is expressed by connecting two capacitors via mem-
ristor in the equivalent neural circuits. Shape deformation of cell
membrane and external energy injection will regulate the capaci-
tive parameter under energy flow, and then suitable firing modes
are induced under external stimulus. From physical viewpoint,

the energy diversity for capacitive field is adjusted with the change
of membrane parameter ratio.

I. INTRODUCTION

Biological neurons show distinct controllability and the mode
selection in the firing patterns is induced under external stimuli
and noisy disturbance.1–5 When electric stimuli and physical field
are applied, the media suffers from continuous polarization and
magnetization because of energy injection. As a result, the injected
energy flow is shunted into different ion channels for regulating
energy balance6–10 and local synchronization stability between adja-
cent neurons. For a single neuron, continuous energy injection
and larger stimulus may induce local shape deformation and some
intrinsic parameters are forced with possible shift accompanying
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with synchronous mode transition in the electric activities and firing
patterns.11 For two identical neurons, diversity in energy can induce
adaptive parameter jump, and desynchronization12 appears to keep
energy balance between two non-identical neurons. For more neu-
rons, non-uniform energy distribution can induce formation of local
defects or heterogeneity for keeping local energy balance in the
neural network.13,14

In fact, membrane potential is a detectable variable and the
sampled time series are often obtained for further signal analysis
due to the application of patch clamp technology. Based on elec-
tromagnetic field theory, the membrane potential depends on the
distribution of electromagnetic field in a neuron can be calculated
theoretically and in experimental way. The effect of external field15

on neural activities can be recognized by using nonlinear analysis.
Most of the generic neuron models contain variables for membrane
potential, slow variable for channel current or gate variable, and
external stimuli are mapped into an equivalent transmembrane cur-
rent imposed on the cell membrane. In fact, biological neurons are
considered as artificial signal processors, therefore, a variety of elec-
tric components are connected to build different neural circuits,16–20

which can produce similar firing patterns observed in the biologi-
cal neurons, and, thus, more physical effect can be considered and
explained. The physical basis is that the inner electromagnetic field
in the biological neurons can be reproduced in the capacitive and
inductive components; therefore, equivalent neural circuits can be
designed to mimic the neural activates in neurons.

Biological neurons can perceive external signals synchronously
and an isolated neuron prefers to trigger suitable firing patterns
induced by external stimulus with higher energy density.21,22 For
more neurons in a network, multi-channel stimuli will be per-
ceived by different neurons and the collective responses in electrical
activities will depend on the cooperation and self-organization of
neurons, and coexistence of multiple firing modes can be devel-
oped in the network by creating different spatial patterns.23–28 The
energy characteristic of biological neurons can be expressed and
discussed in some equivalent neural circuits by combining a few
specific electronic components including memristor,29–32 Joseph-
son junction,33,34 piezoelectric device,35,36 and phototube37–39 into the
branch circuits of some nonlinear circuits. In particular, memristor-
based artificial synapse40–44 can quantify the electromagnetic effect
induced by continuous diffusion of intracellular ions, and the con-
trollability of synapses in neurons can be realized in practice. Dis-
tinct spatial patterns and chimera states can be developed in these
memristive networks45–49 and external noisy disturbance can control
these patterns and synchronization stability. The main characteristic
of memristive synapse can be its biophysical property for repro-
ducing similar functional regulation as chemical synapse,50–52 and
external field is applied to control the firing modes in electrical activ-
ities. Based on some generic neuron models, bifurcation analysis53–59

and pattern selection can provide possible clues to explain the poten-
tial mechanism for seizure occurrence,60–63 and then reliable schemes
can be used to suppress the occurrence of some neural disease. For
more comments on neurodynamics, readers can refer to the recent
review in 2023.64

For simplicity, a variety of nonlinear oscillators and nonlin-
ear circuits are tamed to produce similar firing patterns as those
observed in biological neurons by generating spiking, bursting, and

even chaotic patterns. Furthermore, specific terms such as mem-
ristive function are used to describe the physical effect during
release of action potential in the excitable media. Bifurcation anal-
ysis and Lyapunov exponents provide easy way for detecting the
transition between chaos and periodic oscillation. As claimed in
2016,65 introducing memristive current and magnetic flux variable
can describe the effect of electromagnetic induction and radiation
in a neuron. Furthermore, more researchers designed different neu-
ral circuits to mimic the nonlinear response in physical neurons and
some memristive neurons are guided to develop collective cooper-
ation and spatial patterns under field coupling. The involvement
of memristor into nonlinear circuits can induce multistability and
coexistence of chaos. However, most of the works about mem-
ristive circuits66–70 keep eyes on the regulation from memristive
current across the additive channel composed of memristor. The
most important application of memristor into artificial neural cir-
cuits is relative to morphological calculation and setting reliable
signal processors with distinct self-adaption. In fact, a single neuron
can process finite information and understanding the cooperation
between neurons requires investigation on collective behaviors in
neural networks, and synchronization stability. Pattern formation
shows the cooperation and self-organization in the network, and
it can be affected by the interaction and self-adaptive property in
the neurons and synaptic channels completely.71–73 In presence of
noisy excitation, appropriate intensity can induce nonlinear reso-
nance including stochastic resonance and coherence resonance74,75

in the media, and regular oscillation can be detected in the variables.
The field distribution inner and outer of the cell/neuron is

different, and two capacitive variables are useful to describe the
physical characteristics of cell membrane, which is considered as
two-layer form. That is, the cell membrane with certain thickness
can also be considered with double layers, and the filler materials
are considered as a kind of memristor. The memristive membrane
can regulate the energy diversity between in and out of the neu-
ron/media in adaptive way. Furthermore, this neuron with mem-
ristive membrane can be mimicked by an equivalent circuit. In this
paper, two capacitors are connected via a magnetic flux-controlled
memristor for mimicking a flexible two-layer membrane of a bio-
physical neuron; inductor and nonlinear resistor are combined to
build a feasible neural circuit considering the electromagnetic induc-
tion effect. Intrinsic energy function for the neural circuit is defined
and its equivalent Hamilton energy for the neuron is obtained in
theoretical way. The energy function can affect the firing mode and
patterns, and noisy disturbance is applied to detect the occurrence
of coherence resonance in the neuron. In particular, the adaptive
mechanism for parameter shift is explained under energy flow.

II. MODEL AND SCHEME

Cell membrane has two sides and its field properties can be
described by capacitive terms. Its flexibility means that the con-
nection between capacitors is controllable in the neural circuit.
Therefore, a memristor is used to connect two capacitors and the
effect of channel current is described by adding an inductor in paral-
lel with the capacitors. Furthermore, a nonlinear resistor with cubic
relation for the channel current and voltage are used to regulate the
energy exchange between magnetic field and electric field in Fig. 1.

Chaos 33, 113106 (2023); doi: 10.1063/5.0170121 33, 113106-2

Published under an exclusive license by AIP Publishing

 13 D
ecem

ber 2023 11:55:04

47

https://pubs.aip.org/aip/cha


Chaos ARTICLE pubs.aip.org/aip/cha

FIG. 1. Schematic diagram for a neural circuit with memristive connection and memristive membrane. IM denotes the channel current across the memristor, and iNR estimates
the current along the nonlinear resistor NR. Double arrows indicate the exchange and propagation of intracellular and extracellular ions, the filler material between two-layer
membranes has similar property in memristor.

Based on Kirchhoff’s theorem, the correlation between the
physical variables is expressed by
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where the physical parameters (C1, C2, L, a, b, V0, ρ) are selected
with suitable values, and this neural circuit can be adjusted for pre-
senting similar bursting, spiking, and even chaotic patterns. These
physical variables are replaced with dimensionless variables under
scale transformation,76















x =
VC1

V0

, y =
VC2

V0

, z =
iLρ

V0

, ϕ′ =
ϕ

ρC2V0

, τ =
t

ρC2

,

α =
C2

C1

, β =
ρ2C2

L
, γ =

ρRC2

L
, a′ = aρ, b′ = 3bρ3C2

2V
2
0.

(2)

The dynamics of this memristive neuron with two capacitive
terms/double membranes is described by
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The appearance of memristive term introduces more adjustable
parameters into the biophysical neuron model, and the normalized
parameters (a′, b′) are relative to the property of cell membrane.
Continuous diffusion and exchange of intracellular and extracel-
lular ions induce time-varying electromagnetic field accompanying
with certain distribution of field energy, and the inner energy in the
memristive neural circuit is estimated by

WE = −
1

2
C1V

2
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1

2
C2V
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C2 +

1
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(4)

The energy is kept in the media (neuron) by introducing elec-
tromagnetic field. For neural circuits, energy is saved in these electric
components, while resistor just consumes Joule heat and the injected
energy from external stimuli will be shunted and saved in differ-
ent forms. The physical field energy is replaced by an equivalent
Hamilton energy H as follows

H =
WE

C2V
2
0

= −
1

2α
x2 +

1

2
y2 +

1

2β
z2 +

1

2

(

a′ϕ′ + b′ϕ′3
)

(y − x).

(5)

The normalized parameters (a′, b′, α, β , γ ) are mapped from
the physical parameters for the capacitors, inductor, and memris-
tor, and any changes of these dimensionless parameters have direct
impact on the energy level and then mode transition in neural activ-
ities is also switched effectively. It is important for neurons to select
some firing patterns rather than keeping silent or resting states.
Therefore, the energy function in Eq. (5) can be considered as a reli-
able Lyapunov function, and the neuron terminates its firing states
at dH/dτ < 0. When one or more parameters are changed, mode
transition and stability in the neuron will be switched, and this con-
firmation can be solved in numerical way by fixing some parameters.
On the other hand, Jacobi matrix for Eq. (3) can also be obtained by
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using stability analysis, and then the firing stability of the neuron
can be carried out. Furthermore, the energy function in Eq. (5) can
be obtained and confirmed by using the Helmholtz theorem,12,31,64

detailed proof can refer to the Appendix,

Ẋ = Fc(X) + Fd(x), ∇HTFc(X) = 0, dH/dt = ∇HTFd(X),
(6)

X = {x1, x2, . . . xn}.

Realistic neurons can perceive external signals and appropri-
ate noise intensity enhances the signal detection under stochastic
resonance in noisy condition. Electric stimulus shows distinct pen-
etrability and energy is injected to change the distribution and
propagation of intracellular ions. That is, these stimuli will be con-
verted into equivalent transmembrane current and then the mem-
brane potential is changed synchronously. A generic neuron model
can present distinct mode transition from spiking to bursting and
even chaotic patterns when the parameters or external stimulus
is changed, respectively. In particular, noisy excitation can induce
coherence resonance in the neuron, and the dependence of coef-
ficient variability (CV) of ISI series on noise intensity is often

calculated to predict the occurrence of coherence,

CV =
√

〈T2〉−〈T〉2

〈T〉 , (7)

where T measures value for each ISI and 〈∗〉 detects the average value
within a running time or transient period. A lowest value for CV
means that the sampled time series for membrane potential show
distinct periodicity under moderate noise intensity. When additive
noise is imposed on the formula for membrane potential, it means
that noisy electric field has important impact on the neural activities.
On the other hand, it means that the noisy magnetic field with fluc-
tuation controls the neural activities when additive noise is imposed
on the formula for the channel current or recovery variable. The
mainly energy in the neuron is kept in the form of magnetic field
and electric field, and similar energy function in Eq. (5) is obtained
for the neuron driven by external physical signals even in pres-
ence of noisy disturbance. Indeed, the average value for the energy
function 〈H〉 is effective to predict the appearance of coherence res-
onance when external noise or radiation is adjusted. The membrane
potential will present perfect periodicity and the 〈H〉 reaches a high-
est value when the neuron is driven by noise. In the presence of
noisy disturbance, the electric activities of the memristive neuron

FIG. 2. Bifurcation of ISI (interspike interval) of membrane potentials and average energy. (a) and (c) α < 1, periodic stimulus controls first variable and (b) and (d) α > 1,
periodic stimulus regulates the second variable.
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in Eq. (3) can be expressed by
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(8)

The last term for the second, third, and fourth formula in
Eq. (8) can be considered as Gaussian white noise, and the statistical
properties with intensity D are defined by
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〈ξ(τ )〉 = 0, 〈ξ(τ )ξ(s)〉 = 2Dδ(τ − s),
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〈η(τ)〉 = 0, 〈η(τ)η(s)〉 = 2Dδ(τ − s).

(9)

From physical viewpoint, external noisy disturbance also
changes the energy flow in the neural circuits and biological neu-
rons. When the energy flow is beyond threshold, local shape defor-
mation is induced in the cell and some intrinsic parameters can
show possible jumps. For a capacitive neuron, shape deformation of

cell membrane can control the parameter α when the electric field
energy is beyond certain threshold as follows:
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ϑ(P) = 1, P ≥ 0, ϑ(P) = 0, P < 0,

HC2 =
1

2
y2,

(10)

where λ measures the energy threshold and σ denotes the gain for
increasing parameter α. The outer membrane often holds higher
capacitance vale than the inner membrane and shape deformation
due to energy injection and accommodation will adjust the parame-
ter α effectively. On the other hand, the energy HC1 can also be used
to adjust the growth of the parameter α or one memristive parame-
ter for the double membranes of the neuron, and suitable threshold
in the Heaviside function in Eq. (10) can be selected to express the
self-adaptive growth of intrinsic parameters under energy flow.

III. NUMERICAL RESULTS AND DISCUSSION

A fourth order Runge-Kutta algorithm can be applied
to detect numerical solutions for the memristive oscillator in
Eqs. (3) and (8) under Gaussian white noise. For simplicity, the
parameters are fixed at a′ = 0.07, b′ = 0.03, β = 0.01, γ = 0.01,

FIG. 3. Membrane potential at α < 1 under periodic stimulus. For (a) α = 0.2; (b) α = 0.35; (c) α = 0.4; and (d) α = 0.98.
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us = Acos(2π fτ ) = cos(0.2πτ ), and the membrane parameter α can
be adjust to trigger different firing patterns in the neural activities.
The initial values for the four variables are selected with (0.1, 0.2, 0.3,
and 0.1). Surely, these intrinsic parameters can also be selected with
another group of values and similar bifurcation analysis can be car-
ried out. In Fig. 2, the peak values for the membrane potential and
average Hamilton energy are calculated to predict mode transition
when parameter α is adjusted carefully.

From Fig. 2, the increase of the average energy level is crucial
to keep continuous firing activities. In case of α < 1, the Hamil-
ton energy prefers to keep negative value and energy flow mainly
pumps into the inner cell membrane by capturing energy from
external periodic stimulus. According to the definition for the capac-
itive ratio α = C2/C1, the value for α describes the physical property
of the memristive membrane because outer membrane has higher
capacitance value than inner membrane. The outer and inner cell
membranes are connected by a kind of memristive media, and the
ratio for α can switch the definition of outer membrane and inner
membrane. For α < 1, capacitor C1 behaves similar outer mem-
brane and these channels pumps extracellular ions into the inner
membrane. For α > 1, C2 behaves similar outer membrane and C1

behaves as inner membrane to pump intracellular ions out. In fact,
the energy level becomes positive at α > 1 and external stimulus
applied on the outer membrane is effective to excite the memristive

neuron for presenting different firing modes. In Fig. 3, the firing
patterns are plotted for α < 1, and transition in the energy level is
plotted in Fig. 4 when external forcing is imposed to excite the first
variable x.

The firing patterns are affected by the energy level of the
memristive neuron, and changes of parameter α will induce mode
transition for keeping suitable energy level in the neuron. We also
investigate the case for α > 1 and periodic signal is applied to con-
trol the second variable, and evolution of firing patterns is plotted in
Fig. 5.

The value for parameter α is further increased; the bursting
neuron will be regulated to present chaotic series because of con-
tinuous periodic exciting on the membrane potential. In addition,
energy transition is plotted in Fig. 6.

The energy for the memristive neuron presents chaotic charac-
teristic when the neural activities are discerned with chaotic behav-
iors. Both noisy disturbance and periodic stimulus can regulate the
energy level and energy shunting between capacitive and induc-
tive forms because external excitation can inject energy flow into
the media. To discern the self-regulation in the neuron, bifurcation
parameter α is adjusted to predict the energy level without applying
noise and periodic forcing on neuron, and the average energy is cal-
culated in Fig. 7 by showing the evolution of membrane potential as
well.

FIG. 4. Hamilton energy at α < 1 under periodic stimulus. (a) α = 0.2; (b) α = 0.35; (c) α = 0.4; and (d) α = 0.98.
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FIG. 5. Membrane potential at α > 1 under periodic stimulus. For (a) α = 1; (b) α = 2; (c) α = 3; and (d) α = 6.

Without external exciting and disturbance, the neuron presents
distinct periodic patterns and the average energy level is also
increased slightly by applying larger parameter α, and the neuron
fires with shorter period in electric activities. For a generic neuron
model, additive noise can induce coherence resonance. For sim-
plicity, only Gaussian white noise is considered in Eq. (8) and no
periodic stimulus is applied to estimate the distribution of CV and
average Hamilton energy. The parameters are used for the mem-
ristive neuron, which can also present spiking, bursting, chaotic
patterns when parameter α is changed in Fig. 8.

Indeed, both external periodic forcing and noisy disturbance
have direct impact on the mode transition of neural activities
because external energy flow can break the energy balance between
capacitive and inductive channels. As shown in Eq. (8), when noisy
disturbance is applied on different channels/variables, energy flow
is shunted with different ways and the energy flow is controlled to
keep suitable energy level. To predict the emergence of coherence
resonance, distribution for CV values is calculated when noise is
imposed on channel shown in Eq. (8). In Fig. 9, noisy disturbance
is applied to regulate the variable y.

The CV value decreases with time while the average energy
keeps further increase with time, it means large noise intensity will
be helpful to induce distinct periodic patterns, and regularity is
enhanced under higher energy level. For example, CV gets lowest

value 0.0967 and average energy reaches highest value 0.0017 at
noise intensity D = 1.8, and it means this neuron presents distinct
regularity in electric activities because of coherence resonance under
this noise intensity. In fact, the outer membrane captures energy
flow under noisy disturbance when electric field is fluctuated with
time (capacitor C2 is excited by external forcing). The same noisy
disturbance is applied to excite memristive channel under noisy
electric field, and the transition of CV and average energy are plotted
in Fig. 10.

Similar to the case presented in Fig. 9, the average energy is
kept with lower value, and the memristive neuron will keep chaotic
patterns when stochastic electric field is applied to affect the mem-
ristive channel. At noise intensity D = 1.95, coherence resonance is
induced with lowest CV value 0.3764 and highest average energy
level 0.2246, the neuron is excited to present periodic firing pat-
terns. Noisy exciting is also imposed to regulate the fourth variable
in Eq. (8), it can mimic the effect of noisy radiation on the neural cir-
cuit due to fluctuation of magnetic field, and the results are shown
in Fig. 11.

Distinct peak (1.5484) is found in the curve for average energy
when noise intensity is tamed carefully, and CV also finds lowest
value at 0.0062 synchronously at noise intensity D = 1.4, it means
that this neuron is guided to keep regularity in the electric activities
under coherence resonance. That is, noisy disturbance from external
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FIG. 6. Hamilton energy at α > 1 under periodic stimulus. (a) α = 1; (b) α = 2; (c) α = 3; and (d) α = 6.

field has different impacts on the membrane potential, channel cur-
rents, and then the mode transition and occurrence of coherence
resonance will be induced with different noise intensities.

External energy injection due to electric stimulus and electro-
magnetic radiation, shape deformation of media and components
will change some intrinsic parameters. The parameter α suffers from
certain jump and shift when energy flow is accumulated beyond
the capacitive ability. According to Eq. (10), parameter shift is
controlled by the energy threshold λ, and continuous increase of
parameter α is controlled with a Heaviside function. In Fig. 12,
different thresholds for λ are applied to predict the mode transi-
tion and changes of the ratio for two capacitive comments α with
time.

With higher energy threshold, the membrane ratio can increase
to be close saturation value and chaotic patterns can be suppressed to
present bursting patterns. As a result, capacitive energy for the outer
membrane can keep higher energy value and the electric activities
for inner membrane can be controlled by the energy flow. The effect
of gain σ is considered in Fig. 13.

It is found that higher gain for σ can be effective to suppress
chaotic states and the membrane ratio parameter α will increase to
certain saturation value within finite transient period, and the neu-
ron will present periodic firing patterns. By the way, similar adaptive
growth of membrane ratio is considered when external noise is

added to affect the outer membrane (output voltage on capacitor
C2), and the changes of CV values are calculated in Fig. 14.

The involvement of noise on outer cell membrane can induce
similar coherence resonance and distinct bottom values are detected.
Make a contrast with the results in Fig. 13 with Fig. 9, the curve for
CV values is changed but the threshold of noise for developing dis-
tinct regularity in electric activities under noise is decreased. In fact,
the membrane ratio parameter α begins its growth from a larger
value, and it is helpful to keep against external noisy disturbance
because of its capacitive energy level keeps high value. In addition,
the bursting and chaotic neurons are able to develop regular firing
patterns with lower noise intensity under coherence resonance.

In this memristive neuron considering double membranes and
biophysical properties are much dependent on the membrane ratio
α. In fact, at α > 1, the variable y is suitable to describe the char-
acteristic of outer membrane and ion channels have direct impact
on the electric activities of inner membrane described by variable x.
On the other hand, in case of α < 1, variable x describes the charac-
teristic of outer membrane and channel ions are embedded into the
outer membrane rather than into the inner membrane described by
y. Therefore, noisy disturbance on the mode transition and energy
level are relative to the selection of membrane ratio α because the
regulation and energy shunting in the ion channels have different
scales of impact on the membrane potentials.
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FIG. 7. Dependence of average energy on membrane ratio α and firing patterns. (b) α = 0.5; (c) α = 0.78; and (d) α = 8.

IV. OPEN PROBLEMS

Each ion channel has certain reverse potential, and external
stimulus can break the balance to activate exchange between intra-
cellular and extracellular ions. To implement an equivalent neural
circuit, constant voltage connected in the branch circuits will be
mapped into constant parameter in the improved neuron models.
As shown in Fig. 1(a), two different constant voltage sources E1 and
E2 can be connected to the inductor and nonlinear resistor, respec-
tively. By using the same reference voltage, the memristive neuron is
updated as follows:
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(11)

That is, the involvement of constant voltage in the branch cir-
cuit composed of NR seldom changes the circuit equations directly.
By the way, noisy disturbance and external stimuli can be applied to

explore the mode transition and jump between energy levels, readers
can further discuss this case and dynamics in networks.

In a summary, a simple memristor is used to connect two
capacitors for regulating energy balance, and inductive channel can
shunt the field energy. The Chua circuit also has two capacitors, and
the connection to memristor in additive branch circuits can regu-
late the dynamics of the memristive Chua systems.77–81 In this work,
memristor is used to regulate the energy difference between inner
and outer fields separated by two membranes, and the filler media
between two-layer membranes is considered with memristor prop-
erty. Therefore, the memristive membrane is suitable to mimic the
flexibility and controllability of cell membrane for biological neu-
rons. In the recent work,82 a linear resistor is used to couple two
capacitors in a memristive circuit, and a memristive neuron with
two capacitive membranes is suggested. The membrane property is
described by resistive form, which two capacitors are connected via
a resistor, and the energy diversity between inner membrane and
outer membrane is controlled by Joule Heat across the resistor. This
work is some different from the model in Ref. 82, which double
membranes are connected with resistive channel, and an adaptive
law is presented to explain the regulation of energy level on the
capacitive property. In addition, a smooth function is applied for
the nonlinear resistor and its intrinsic parameters are used as ref-
erence values during scale transition. In practical way, external field
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FIG. 8. (a) Bifurcation of peak value xmax for membrane potential vs parameter α and (b) distribution of two larger Lyapunov exponents. Setting parameters a′ = 0.48,
b′ = 0.001, β = 11.0, γ = 0.001, A= 0.3, ω = 0.9, and external periodic forcing us = Acos(ωτ ) is used to drive the first variable x.

FIG. 9. Dependence of CV value (a) and average energy (b) on noise intensity D when noise is added to excite the second variable in Eq. (8). Setting parameters α = 5.0,
β = 8.55, γ = 0.01, a′ = 0.1, b′ = 0.01, and A= 0.0. CV minima is 0.0967.

FIG. 10. Dependence of CV value (a) and average energy (b) on noise intensity D when noise is added to excite the third variable in Eq. (8). Setting parameters α = 5.0,
β = 8.55, γ = 0.01, a′ = 0.1, b′ = 0.01, and A= 0.0. CV minima is 0.3764.
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FIG. 11. Dependence of CV value (a) and average energy (b) on noise intensity D when noise is added to excite the fourth variable in Eq. (8). Setting parameters α = 5.0,
β = 8.55, γ = 0.01, a′ = 0.1, b′ = 0.01, A= 0.0. CV minima is 0.0062.

FIG. 12. Evolution of membrane potential and increase of membrane ratio α with initial value α0 = 7.0. Setting parameters β = 8.55, a′ = 0.1, b′ = 0.01, γ = 0.01,
σ = 0.001. For (a) (d) λ= 0.5; (b),(e) λ = 0.8; (c),(f) λ= 1.0.

FIG. 13. Evolution of membrane potential and increase of membrane ratio α with initial value α0 = 7.0. Setting parameters β = 8.55, a′ = 0.1, b′ = 0.01, γ = 0.01, and
λ= 0.8. For (a) and (d) σ = 0.00009; (b) and (e) σ = 0.0003; and (c) and (f) σ = 0.0006.
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FIG. 14. Distribution of CV under noisy disturbance imposed to regulate the second variable. Setting parameters β = 8.55, a′ = 0.1, b′ = 0.01, γ = 0.01, λ= 0.8, and
σ = 0.001. (a) α0 = 8; (b) α0 = 9; and (c) α0 = 10.

has direct impact on the membrane potential and continuous energy
accommodation will induce parameter shift because of local shape
deformation in non-uniform radiation or stimuli. From dynamical
viewpoint, this memristive neuron can be more suitable to produce
the biophysical property of biological neurons, and it can be used to
build neural networks considering the self-organization under exter-
nal electromagnetic radiation and noisy disturbance. This neuron
model is much different from most of the neuron models with only
one capacitive variable, and it provides good clues to design artificial
membrane and understand the application of memristor in neural
circuits.

The most contribution of this work is that memristor is used
to mimic the controllability of cell membrane with two capacitive
variables, while most of the previous works confirmed that mem-
ristors in different forms of memductance are effective to describe
the effect of ion channels. In particular, the involvement of mem-
ristors into nonlinear circuits can induce multistability, and these
memristive circuits are useful in neuromorphic computing.83–85

V. CONCLUSIONS

Bi-directional propagation and exchange of ions and stochas-
tic diffusion of intracellular ions induce complex electromagnetic
field in the media and then membrane potential is regulated syn-
chronously to present suitable firing modes and keep appropriate
energy level. Each coin (or membrane) has two sides, the physical
characteristic of cell membrane is considered as double-layer forms
because the inside and outside electrophysiological environment of
cells is much different. Considering the controllability and flexi-
bility of cell membrane, the inner media of the cell membrane is
assumed with memristive property. To mimic its characteristic in
neural circuit, a memristor is used to connect two different capac-
itors, and the outputs are used to describe the membrane potential
for the two-layer membranes, respectively. Accompanying with the
C–M–C (capacitor–memristor–capacitor), an inductor, nonlinear
resistor are used build a physical neural circuit. The neuron model
with memristive cell membrane can mimic the biophysical proper-
ties of biological neurons, and energy function is defined to discern
the dependence of firing mode on the energy level. Coherence reso-
nance is induced under noisy disturbance on the neuron. Indeed, a

mode transition results from the large energy accommodation from
external stimuli, and adaptive parameter growth is induced to keep
certain energy level and firing patterns. This biophysical neuron is
suitable to explore the self-organization and energy balance in neu-
ral networks, and appropriate regulation of capacitive parameter is
effective to control the energy flow and firing patterns.
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APPENDIX: VECTOR FORM FOR NEURON MODEL
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ż

ϕ̇′













=

















α

[

(

a′ + b′ϕ′2) (y − x) + x −
1

3
x3

]

(

a′ + b′ϕ′2) (x − y) + z

−βy − γ z

y − x

















= Fc

(

x, y, z, ϕ′) + Fd

(

x, y, z, ϕ′)

=

























α
(

a′ + b′ϕ′2) y + z +
1

2
α

(

a′ + 3b′ϕ′2) +
α

4

(

a′ϕ′ + b′ϕ′3) (

3a′ + 5b′ϕ′2)

(

2a′ + 4b′ϕ′2) x + z +
α

4

(

a′ϕ′ + b′ϕ′3) (

3a′ + 5b′ϕ′2) −
1

2

(

a′ + 3b′ϕ′2) y

−βy +
β

α
x

y − x +
1 + α

2

(

a′ϕ′ + b′ϕ′3)

























+



























α

[

−x
(

a′ + b′ϕ′2) + x −
1

3
x3 −

1

2

(

a′ + 3b′ϕ′2) −
1

4

(

a′ϕ′ + b′ϕ′3) (

3a′ + 5b′ϕ′2)
]

− z

−
(

a′ + b′ϕ′2) y −
(

a′ + 3b′ϕ′2) x −
α

4

(

a′ϕ′ + b′ϕ′3) (

3a′ + 5b′ϕ′2) +
1

2

(

a′ + 3b′ϕ′2) y

−γ z −
β

α
x

−
1 + α

2

(

a′ϕ′ + b′ϕ′3)



























=













0 A β −α

−A 0 β −1

−β −β 0 0

α 1 0 0





































−
1

α
x −

1

2

(

a′ϕ′ + b′ϕ′3)

y +
1

2

(

a′ϕ′ + b′ϕ′3)

1

β
z

1

2

(

a′ + 3b′ϕ′2) (y − x)

























+













A11 0 0 0

0 A22 0 0

0 0 A33 0

0 0 0 A44





































−
1

α
x −

1

2

(

a′ϕ′ + b′ϕ′3)

y +
1

2

(

a′ϕ′ + b′ϕ′3)

1

β
z

1

2

(

a′ + 3b′ϕ′2) (y − x)

























,

A11 =
α

[

−x
(

a′ + b′ϕ′2) + x − 1
3
x3 − 1

2

(

a′ + 3b′ϕ′2) − 1
4

(

a′ϕ′ + b′ϕ′3) (

3a′ + 5b′ϕ′2)] − z

− 1
α
x − 1

2

(

a′ϕ′ + b′ϕ′3
) ,

A22 =
−

(

a′ + b′ϕ′2) y −
(

a′ + 3b′ϕ′2) x − α

4

(

a′ϕ′ + b′ϕ′3) (

3a′ + 5b′ϕ′2) + 1
2

(

a′ + 3b′ϕ′2) y

y + 1
2

(

a′ϕ′ + b′ϕ′3
) ,

A33 =
−βγ z − β2

α
x

z
, A44 =

−(1 + α)
(

a′ϕ′ + b′ϕ′3)

(

a′ + 3b′ϕ′2
)

(y − x)
, A =

α

2

(

3a′ + 5b′ϕ′2
)

.

According to the criterion in Eq. (6), the same energy function in Eq. (5) is obtained by using Helmholtz theorem, and similar approach
of energy function for other models can refer to Refs. 8, 11, and 82.
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Abstract During the release and propagation of

intracellular and extracellular ions, electromagnetic

field is induced accompanying with propagation of

energy flow. The firing mode is dependent on the

energy level, and external energy injection will induce

distinct mode transition. Exact energy function for a

neuron developed from a neural circuit can be

obtained directly by applying scale transformation

for the physical field energy. For generic neuron

models, dimensionless Hamilton energy function can

be obtained by using Helmholtz theorem, and this

energy function can be considered as a specific

Lyapunov function. In this review, approach of energy

function for memristive neuron is discussed by

designing equivalent neural circuit coupled by two

kinds of memristors, which are dependent on the

magnetic flux and charge flux, respectively. A

scheme is suggested to get equivalent energy function

for memristive neuron in the form of map by

introducing a scale parameter. The memristive map

reduced from the memristive neuron can produce

similar attractors and firing modes under applying the

same parameters, and the average Hamilton energy for

the map neuron is decreased because of regulation

from the scale parameter. On the other hand, a

memristive map is replaced by an equivalent memris-

tive oscillator for finding an equivalent Hamilton

energy function according to the Helmholtz theorem.

The energy scheme can be helpful for further inves-

tigating energy property of artificial neurons, maps

and discrete memristors. It also provides evidence that

maps are more suitable for investigating neural

activities than neuron oscillators.

Keywords Hamilton energy � Memristive neuron �
Neural circuit � Memristor

1 Introduction

The occurrence of chaos and chaos in nonlinear

circuits depends on the involvement of electric

components, and one nonlinear component with

nonlinear relation between voltage and channel cur-

rent is required at least. When these circuits are

activated, capacitive energy is shunted to inductive

channels and memristive channels based on memris-

tors [1–5]. A simple nonlinear circuit requires the
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combination and connection to capacitor, inductor,

negative resistor and even external signal source, and

appropriate setting in parameters will develop chaos in

these nonlinear circuits [6–10]. In particular, some

nonlinear circuits can be tamed and improved to

present bursting, spiking patterns, and neural circuits

are obtained to propose equivalent neuron models.

Indeed, piezoelectric ceramic [11], Josephson junction

[12, 13], photocell [14, 15], thermistor [16, 17],

memristor can be connected to some neural circuits for

building reliable neural circuits for further considering

the physical effect during activating neural activities

in biophysical neurons[18–22].

From physical aspect, energy is exchanged and

propagated when biological neurons present different

firing modes and patterns. For nonlinear circuits,

continuous oscillation needs stable energy supply and

shunting between different electric components. The

physical energy in nonlinear circuits can be obtained

by considering the energy in the capacitive, inductive

and memristive channels, and then the physical field

energy can be converted into equivalent dimensionless

energy function [23–25] by applying scale transfor-

mation on the variables and parameters in the field

energy function. On the other hand, suitable Hamilton

energy function can be confirmed in a nonlinear

oscillator by using Helmholtz theorem [26–28].

However, it keeps open for discrete systems and maps

to get energy function, and the involvement of discrete

memristor makes the question become more interest-

ing and worthy of investigation.

In this review, based on a memristive map [29, 30],

a scheme is used to estimate the energy function in

theoretical way. A scale parameter is introduced to

build a equivalent continuous dynamical system for

getting the Hamilton energy function and then the

value for the scale parameter is confirmed by bifur-

cation analysis, which the memristive map has the

same maximal value or phase space with the memris-

tive oscillator. This scheme can be further used to

calculate energy for more maps and energy level will

be switched to control the chaos in maps.

2 Energy in nonlinear circuit and continuous

oscillator

Quiescent biological neurons develop static distribu-

tion of electric field, and themembrane potential keeps

certain constants for keeping propagation balance of

intracellular and extracellular ions. In presence of

external stimulus beyond the threshold, certain firing

mode is triggered to present continuous firing patterns

accompanying with jumping between energy levels.

That is, distinct physical effect becomes distinct and it

can be reproduced in some equivalent neural circuits

by considering the main physical properties. The

capacitive energy can be described by the capacitors

and charge-controlled memristor [31–34], the induc-

tive energy can be mimicked by inductors and

magnetic-flux dependent memristor [35–38], nonlin-

ear resistor in parallel with the inductive channel can

be used to bridge connection to the magnetic field and

electric field. In addition, involvement of constant

voltage sources into the inductive channel or memris-

tive channel is suitable to represent the resting

potentials of ion channels. Biological neurons can

induce electrical field and magnetic field, and ion

channels are important for exchange and propagation

of ions including calcium, potassium and sodium.

Therefore, a capacitor and its output voltage are used

to mimic the electric field and membrane potential,

inductor and its channel current can describe the

magnetic field and the transmembrane current. Addi-

tive memristors are used to estimate the physical field

effect and special property of ion channels, such as

detecting external field and self-adaption and control-

lability. In Fig. 1, a simple neural circuit is built by

connecting one capacitor, two different kinds of

memristors, one nonlinear resistor with cubic relation

between channel current and across voltage, and

Fig. 1 Memristive neural circuit coupled by memristors. C, L,
M1, M2, and NR describe capacitor, inductor, magnetic flux-

dependent memristor, charge-controlled memristor, nonlinear

resistor, respectively. Constant E denotes reverse potential, is
represents external forcing current, the output voltage for

capacitor is v
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external stimulus can be time-varying or sampled from

specific signal source within specific frequency band.

In Fig. 1, three different constant voltage sources

are introduced to mimic the effect of reverse voltage in

these ion channels. The involvement of NR is used to

describe the nonlinear relation of energy flow between

capacitive and inductive field. The channel current

across the two memristors and nonlinear resistor is

respectively estimated,

iNR ¼ � 1

q
v� 1

2

v2

V0

� 1

3

v3

V2
0

� �
;

iM1 ¼ MðuÞðv� E1Þ ¼ ðaþ 3bu2Þðv� E1Þ;
iM2 ¼

ðv� E2Þ
WðqÞ ¼ ðcþ dq2Þðv� E2Þ;

8>>>><
>>>>:

ð1Þ

where the physical parameters (q, V0), (a, b), (c, d) are

relative to the material properties of the NR, M1 and

M2, respectively. The parameters (q, V0) can be

discerned from the i-v (current and voltage across the

nonlinear resistor) curve when the nonlinear resistor is

connected to a simple circuit. u and q describe the

magnetic flux and charges across the two kinds of

memristors. v and iL measure the voltage across the

capacitor and channel current across the inductor.

Furthermore, the field energy in each electric compo-

nent, and the total energy function are respectively

calculated by

WC ¼ 1

2
Cv2; WL ¼ 1

2
Li2L;

WM1 ¼
1

2
LMi

2
M1 ¼

1

2
uiM1 ¼

1

2
ðaþ 3bu2Þðv� E1Þu;

WM2 ¼
1

2
CMv

2
M2 ¼

1

2
qvm2 ¼

1

2
ðv� E2Þq;

W ¼ 1

2
Cv2 þ 1

2
Li2L þ

1

2
ðaþ 3bu2Þðv� E1Þuþ 1

2
ðv� E2Þq;

8>>>>>>>>>><
>>>>>>>>>>:

ð2Þ

An equivalent Hamilton energy function H in

dimensionless form can be obtained by

H ¼ W

CV2
0

¼ 1

CV2
0

1

2
Cv2 þ 1

2
Li2L þ

1

2
ðaþ 3bu2Þðv� E1Þuþ 1

2
ðv� E2Þq

� �

¼ W

W0

¼ 1

2
x2 þ 1

2a
y2 þ 1

2
ða0 þ b0z2Þðx� e1Þzþ

1

2
ðx� e2Þw;

ð3Þ

As a result, any changes of the variables and

memristive parameters will trigger shift of energy

level, and energy is shunted between capacitive,

inductive and memristive types. The normalized

parameters and dimensionless variables for physical

variables and intrinsic parameters are defined by

x ¼ v

V0

; y ¼ qiL
V0

; z ¼ u
qCV0

; w ¼ q

CV0

; s ¼ t

qC
;

a ¼ q2C
L

; n ¼ R

q
;

a0 ¼ qa; b0 ¼ 3bq3C2V2
0 ;W0 ¼ CV2

0 ; e ¼
E

V0

;

e1 ¼
E1

V0

; e2 ¼
E2

V0

;

8>>>>>>>>>>><
>>>>>>>>>>>:

ð4Þ

According to Eq. (3), the neuron shows jump

between energy levels when the electric activities

are switched from periodical, spiking, bursting to

chaotic patterns. The memristive oscillator regulates

its energy value close to certain energy level in

presenting sole firing mode. In presence of multiple

firing modes, energy level is switched with time.

External stimulus can inject energy flux and external

electromagnetic field can change the energy shunting

between the capacitive and inductive channels, and it

explains the mode transition in excitable media under

continuous polarization and magnetization.

The circuit equation for Fig. 1 can be obtained as

follows

C
dv

dt
¼ is � iL � iM1 � iM2 � iNR;

L
diL
dt

¼ vþ E � RiL;

du
dt

¼ v� E1;

dq

dt
¼ iM2 ¼ ðcþ dq2Þðv� E2Þ;

8>>>>>>>>>><
>>>>>>>>>>:

ð5Þ

Indeed, the dynamics of the neuron with double

memristive channels can be described by equivalent

and dimensionless form as follows

dx

ds
¼ i0s � y� ða0 þ b0z2Þðx� e1Þ

� ðc0 þ d0w2Þðx� e2Þ þ x� 1

2
x2 � 1

3
x3;

dy

ds
¼ aðx� nyþ eÞ;

dz

ds
¼ x� e1;

dw

ds
¼ ðc0 þ d0w2Þðx� e2Þ;

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð6Þ

By applying and taming the normalized parameters

and external forcing current, the firing mode and

patterns in the memristive oscillator in Eq. (6) can be
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controlled effectively. From Eq. (5) to Eq. (6), scale

transformation Eq. (4) is required, and additive scale

transformation is used as follows

i0s ¼
qis
V0

; n ¼ q
R
; e ¼ E

V0

; c0 ¼ qc; d0 ¼ qdC2V2
0 ;

ð7Þ

The neural circuit contains magnetic field and

electric field energy, and its dynamics can be replaced

by equivalent vector form. According to the Helm-

holtz theorem [39, 40], the solution for the Hamilton

energyH of generic nonlinear oscillator in vector form

and its derivative of time meets the criterion as follows

dX

ds
¼ FcðXÞ þ FdðXÞ; X � Rn;

rHTFcðXÞ ¼ 0;

rHTFdðXÞ ¼
dH

ds
;

8>>><
>>>:

ð8Þ

The physical field is composed of gradient term

Fd(X) and curl field term Fc(X), which corresponds to

the electric field in the capacitor and magnetic field in

inductor of nonlinear circuit, respectively. By the way,

the memristive system in Eq. (6) is updated for getting

suitable Hamilton energy function, see appendix. An

identical energy function as the form in Eq. (3) can be

obtained to confirm the reliability of this scheme. The

memristive oscillator in Eq. (6) can be approached by

discrete form with suitable time step, which is

considered as scale parameter e, and it is defined by

xnþ1 ¼ xn þ e i0ns � yn � ða0 þ b0z2nÞðxn � e1Þ
�

�ðc0 þ d0w2
nÞðxn � e2Þ þ xn �

1

2
x2n �

1

3
x2n

�
;

ynþ1 ¼ yn þ eaðxn � nyn þ eÞ;
znþ1 ¼ zn þ eðxn � e1Þ;
wnþ1 ¼ wn þ eðc0 þ d0w2

nÞðxn � e2Þ;

8>>>>>>>>><
>>>>>>>>>:

ð9Þ

In addition, the energy function in discrete form is

updated as follows

Hn ¼ e
1

2
x2n þ

1

2a
y2n þ

1

2
ða0 þ b0z2nÞðxn � e1Þzn þ

1

2
ðxn � e2Þwn

� �
;

ð10Þ

The scale parameter e has similar role as the time

step to discretize memristive oscillator presenting in

differential equations into a simple map, and its value

can be detected by matching the maximal value for

variable x in Eq. (6) and xn in Eq. (9). That is, all the

corresponding parameters are selected the same value,

and the scale parameter e is changed carefully until the
two systems cover the same region and maximal value

in the phase space. That is, introducing suitable value

for the scale parameter e, the memristive oscillator in

Eq. (6) and memristive map in Eq. (9) should have the

same dynamical properties including attractors, attrac-

tion domain, maximal Lyapunov exponent and same

size of phase portrait. When it is considered as a

memristive neuron, both of them can present complete

spiking, bursting and even chaotic patterns. In this

way, the energy function in Eq. (10) with suit-

able value for e can measure the energy level for

memristive neuron in the form of map. In particular,

the memristive map will keep low energy level than

thememristive oscillator because the scale parameter e
is often selected with low value (e\ 1). In practical

way, memristive map requires low energy than

memristive oscillator in signal processing and show-

ing the same dynamical properties. It is important to

clarify the approach of energy for some maps by

developing equivalent oscillator model so that Helm-

holtz theorem can be applied for theoretical analysis

and prediction for the energy function under periodic

stimulus is
0 = I0 ? Acos(xs).

It is interesting to discuss the scheme for energy

approach for Eqs. (6) and (9) by setting the same group

of parameters as a = 0.01, b = 0.01, c = 0.01,

d = 0.01, e = 0.05, e1 = 0.05, e2 = 0.06, a = 1.21;

n = 0.15, A = 1.0, I0 = 0.9, and same initials setting

are selected for the variables (x, y, z, w) = (xn, yn, zn,

wn) = (0.2, 0.1, 0.01, 0.01). The bifurcation analysis

and average energy are plotted in Fig. 2.

The firing mode, profile of attractors and average

energy of the memristive neuron will be controlled by

external stimulus with changing the angular fre-

quency. To confirm the consistence and similarity of

attractors and firing patterns between the memristive

neuron and map, scale parameter is adjusted to track

the maximal value for membrane potential and

average energy in Fig. 3.

From Fig. 3, the memristive neuron in Eq. (6) can

be reproduced the same firing patterns and attractors in

the memristive map in Eq. (9) by setting suitable value

for scale parameter e. The energy level and firing mode

in the neuron in Eq. (6) are dependent on the angular

frequency of external stimulus. From Eqs. (3)–(10),

the discrete neuron is endowed with scale parameter e,
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as a result, its average energy\Hn[ becomes less

than\H[ because e\ 1. Therefore, it is suitable to

reproduce similar firing patterns and attractors of

nonlinear oscillators in some equivalent maps by

setting appropriate value for the scale parameter when

they are selected with the same parameters. Particu-

larly, the energy level in the equivalent map is

decreased greatly than the memristive oscillator. In a

word, scale parameter can be introduced into the

discrete energy function for the equivalent map

reduced from the memristive oscillator with the same

parameters setting. It is important to calculate the

energy function for a memristive map by developing

similar memristive oscillator, and then the energy

function will be discretized by removing the scale

parameter directly.

3 Energy descriptions in memristive map

From dynamical viewpoint, discrete systems and maps

can be considered as discretized forms for continuous

dynamical systems by applying Euler algorithm

approach with suitable time step. For a generic

dynamical system expressed by differential equations,

dx

ds
¼ f ðx; y; zÞ ;

dy

ds
¼ gðx; y; zÞ ;

dz

ds
¼ hðx; y; zÞ ;

8>>>>>><
>>>>>>:

ð11Þ

Its equivalent discrete form is obtained by

xnþ1 ¼ xn þ ef ðxn; yn; znÞ ;
ynþ1 ¼ yn þ egðxn; yn; znÞ ;
znþ1 ¼ zn þ ehðxn; yn; znÞ ;

8><
>: ð12Þ

where the parameter e denotes the time scale, Eq. (12)

will match with Eq. (11) in dynamical characteristic

by setting suitable values for e. Based on Helmholtz

theorem, the Hamilton energy function for dynamical

systems similar to Eq. (11) can be obtained theoret-

ically. From Eq. (3), the continuous energy function is

dependent on some intrinsic parameters and all the

variables in the memristive system, and any changes in

the firing patterns will induce fluctuations in the

energy levels. For discrete systems, energy function

becomes discrete as well. Indeed, appropriate scale

parameter with time can be applied to convert discrete

systems into equivalent continuous system for obtain-

ing energy function.

xnþ1 ¼ Fðxn; yn; znÞ ;

ynþ1 ¼ Gðxn; yn; znÞ ;

znþ1 ¼ Wðxn; yn; znÞ ;

8>><
>>:

)

1

e
½xnþ1 � xn� ¼

1

e
½Fðxn; yn; znÞ � xn� ;

1

e
½ynþ1 � yn� ¼

1

e
½Gðxn; yn; znÞ � yn� ;

1

e
½znþ1 � zn� ¼

1

e
½Wðxn; yn; znÞ � zn� ;

8>>>>>><
>>>>>>:

)

dx

ds
¼ 1

e
½Fðx; y; zÞ � x� ;

dy

ds
¼ 1

e
½Gðx; y; zÞ � y� ;

dz

ds
¼ 1

e
½Wðx; y; zÞ � z� ;

8>>>>>>><
>>>>>>>:

ð13Þ

According to the criterion in Eq. (8), the Hamilton

energy for the discrete system in Eq. (13) can be

expressed in generic form

H ¼ Hðe; x; y; zÞ ;
Hn ¼ Hðxn; yn; znÞ ;

(
ð14Þ

Fig. 2 Bifurcation of ISI (interspike interval) from membrane potential, xmax = x(max) for maximal value of membrane potential, and

average Hamilton energy\H[with changing frequency x in Eq. (6)
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For a memristive map developed from Hénon map,

xnþ1 ¼ 1þ byn � ax2n � ðaþ 3bu2
nÞxn;

ynþ1 ¼ xn;
unþ1 ¼ un þ cxn;

8<
: ð15Þ

By introducing appropriate scale parameter, it

obtains equivalent memristive oscillator as follows

dx

ds
¼ 1

e
1þ by� ax2 � ðaþ 1þ 3bu2Þx
� �

;

dy

ds
¼ 1

e
ðx� yÞ;

du
ds

¼ c

e
x;

8>>>>><
>>>>>:

ð16Þ

From dynamical viewpoint, appropriate setting for

the scale parameter in Eq. (16) will reproduce similar

dynamical characteristic as in Eq. (15) under setting

the same parameters. In practical way, appropriate

Fig. 3 Different attractors for the memristive neuron/map in

Eqs. (6) and (9) under suitable scale parameter e, and the average
energy\Hn[ and xn(max) in memristive discrete neuron via

scale parameter e. For a burstingx = 0.035, e = 0.104; b spiking
x = 0.53, e = 0.29; c periodic x = 1.0, e = 0.0013; d chaotic

x = 2.9, e = 0.5
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electric components can be combined to reproduce

similar signals in the analog circuit by applying

suitable physical parameters for these potential elec-

tric components. Based on the Helmholtz theorem, the

energy function for Eq. (16) can be defined and

obtained in theoretical way. It can be expressed in the

vector form containing two kinds of physical fields as

follows

_x

_y

_u

0
BB@

1
CCA ¼Fc þ Fd ¼

� by

e
� bc

2e
ðaþ 3bu2Þx

x

e
� 1

e
bbu3

cx

e
þ buy

ex
þ bc

2e
ðauþ bu3Þ

0
BBBBBBB@

1
CCCCCCCA

þ

1

e
½1þ 2by � ax2 � ðaþ 1þ 3bu2Þxþ bc

2
ðaþ 3bu2Þx�

� y

e
þ 1

e
bbu3

� buy
ex

� bc

2e
ðauþ bu3Þ

0
BBBBBBB@

1
CCCCCCCA

¼

0 � b � bc

b 0 � bu
x

bc
bu
x

0

0
BBBBB@

1
CCCCCA

x

eb
þ 1

2e
ðau þ bu3Þ

y

e
x

2e
ðaþ 3bu2Þ

0
BBBBBB@

1
CCCCCCA

þ

A11 0 0

0 A22 0

0 0 A33

0
BB@

1
CCA

x

eb
þ 1

2e
ðauþ bu3Þ

y

e
x

2e
ðaþ 3bu2Þ

0
BBBBBB@

1
CCCCCCA

;

ð17Þ

The coefficient for the matrix in Eq. (17) is defined

by

A11 ¼
1� ax2 � ðaþ 1þ 3bu2Þxþ bc

2
ðaþ 3bu2Þx

1
b xþ 1

2
ðauþ bu3Þ

;

A22 ¼
�yþ bu3

y
; A33 ¼

� 2buy
x � bcðauþ bu3Þ
ðaþ 3bu2Þx ;

8>>><
>>>:

ð18Þ

The solution for Hamilton energy function can be

suggested as follows

H ¼ 1

e
½ 1
2b

x2 þ 1

2
y2 þ 1

2
ðauþ bu3Þx�; ð19Þ

As a result, the discrete energy function for Eq. (15)

is updated by

Hn ¼ H1 þ H2 þ HM

¼ 1

2b
x2n þ

1

2
y2n þ

1

2
ðaun þ bu3

nÞxn; ð20Þ

Compared to Eq. (15), and additive scale parameter e
is introduced into Eq. (16), bifurcation analysis can be

applied to detect the region for ewhen other parameters

are fixed the same setting for the memristive map in

Eq. (15). Three terms includingH1,H2 andHMmark the

capacitive, inductive energy and memristive energy,

respectively. To cover the same phase space, the

parameter e is changed from 0.001 to a finite threshold,

and the maximal value (xmax) for the variable x is

selected to match the maximal value xmax(n) and then

the suitable value for parameter ewill be confirmed. By

taming the value for the scale parameter e, the dynamics

of thememristivemap inEq. (15)will be reproduced by

memristive oscillator in Eq. (16) completely by show-

ing the same attractor, sampled time series, maximal

Lyapunov exponent, size of phase portrait in the phase

space. In simple way, both the continuous and discrete

systems have the same maximal value for the first

variables, and it can be confirmed via bifurcation

analysis with changing the parameter e carefully. As a
result, the energy function in Eq. (19) with exact

parameter e will address the energy property for the

memristive map in Eq. (15) well.

In fact, there are three terms for energy sources kept in

certain channels or components, and theoscillatory state is

dependenton the energy shuntingbetween these channels.

Any changes of parameters in Eq. (15) will modify the

oscillatory mode and the energy level in Eq. (20) will be

adjusted synchronously. As a result, energy ration

between the three terms will be adjusted when oscillation

is changed. The energy ratio is defined in

p1 ¼
H1

Hn
¼

1

2b
x2n

1

2b
x2n þ

1

2
y2n þ

1

2
ðaun þ bu3

nÞxn
;

p2 ¼
H2

Hn
¼

1

2
y2n

1

2b
x2n þ

1

2
y2n þ

1

2
ðaun þ bu3

nÞxn
;

p3 ¼
HM

Hn
¼

1

2
ðaun þ bu3

nÞxn
1

2b
x2n þ

1

2
y2n þ

1

2
ðaun þ bu3

nÞxn
;

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð21Þ

In fact, H1 and H2 can present capacitive and

inductive energy, and the ratioH1:H2 is also effective to

predict mode transition in the oscillatory states. Similar

energy proportion P1=H1/H, P2 = (H2?HM)//H can be
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defined to estimate the regulation on dynamics from

capacitive and inductive energy, respectively. From the

memristive map in Eq. (15) and memristive oscillator

in Eq. (16), parameters can be adjusted to trigger

periodic or chaotic behaviors. The involvement of scale

parameter into energy function in Eq. (19) can increase

the energy level directly during the conversion from

memristive map to nonlinear oscillator. In Fig. 4,

parameters are selected to develop chaotic attractors in

the memristive map, and the same parameters and

suitable scale parameter are endowed to mimic the

oscillatory characteristic in the memristive map. The

scale parameter is also adjusted to track the evolution

of the average energy and maximal value for the

variable x in the memristive oscillator in Eq. (16) as

well.

Two chaotic rings are formed in the phase space for

the memristive map, while chaotic attractors are

induced in the memristive oscillator in Eq. (16) by

taming the scale parameter e=0.0073. The maximal

value for the memristive map and memristive oscil-

lator has similar oscillation, while their average

energy has distinct diversity because of the involve-

ment of scale parameter. Indeed, the scale parameter is

adjusted carefully but the maximal values still show

some difference even they can present similar oscil-

latory characteristic with time. It indicates that the

memristive oscillator has no bridge to potential

equivalent nonlinear circuits.

On the other hand, the same parameters setting for

memristive map in Eq. (15) and memristive oscillator

in Eq. (16) can be applied, the scale parameter e can be
adjusted to keep them in same energy level as H=Hn

synchronously even they can present different attrac-

tors and firing patterns. In fact, the weight for each

energy term is crucial for selecting the firing patterns

and mode, and the introduction of scale parameter e
seldom changes the energy proportion among the

capacitive, inductive and memristive energy terms. In

this way, most of the maps can be updated with

equivalent oscillators, which the corresponding

Hamilton energy functions are obtained by using

Helmholtz theorem, the suitable energy function for

the maps can be obtained by removing the scale

parameters for the Hamilton energy function for the

nonlinear oscillators. In Fig. 5, the scale parameter is

adjusted to keep the memristive map and memristive

oscillator with the same energy level by changing the

scale parameter carefully and parameters for the two

memristive systems are different.

When the memristive map and memristive oscilla-

tor are endowed with different parameters setting,

appropriate selection of scale parameter can ensure

two memristive systems keep the same energy level

and same oscillatory state. In fact, the Hamilton

Fig. 4 a Attractor in memristive map in Eq. (15); b average

energy\H[ and xmax versus with scale parameter e; c chaotic
attractor in Eq. (16) at e = 0.0073. Equations (15) and (16)

select the same parameters as b = 1.0, a = 0.05, a = 0, b = 0,

c = 0.1; initials (x, y, u) = (xn, yn, un) = (0.02, 0.01, 0.01)
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energy function is a kind of Lyapunov function and

restricts the cooperation between different variables of

the system. For physical oscillators converted from

nonlinear circuits, the sole Hamilton energy is derived

from the field energy including inductive, capacitive

and memristive components. The weight for each term

of the energy function is decided by the normalized

parameters after scale transformation for all physical

variables and parameters. As a result, these weights

are more important in the energy function than the

scale parameter. From a nonlinear oscillator to a map,

continuous energy function is replaced by discrete

energy function with suitable scale parameter. From a

map to a continuous oscillator, the weight for each

energy term can be confirmed and energy function for

the map has no scale parameter, but the discrete energy

function is helpful to predict the mode transition

accompanying with shift in energy level.

From physical viewpoint, most of the nonlinear

oscillators in mathematical form can be derived from

equivalent circuit equations and mechanical systems.

The activation and exchange of energy flow are

dominated by the physical properties of physical

elements, which also govern the nonlinear terms in the

dynamical equations and mathematical models. For

most of the nonlinear circuits, the field energy can be

obtained by summing the energy in each electric

component, and they can be converted into dimen-

sionless energy function after scale transformation.

For generic nonlinear oscillators, the application of

Helmholtz theorem provides help to get the Hamilton

energy function, which is considered as a kind of

Lyapunov function, and specific terms for energy

terms means special electric components should be

used in this circuit. Memristor is a functional electric

competent, and its memristive properties throw lights

for activating self-adaptive property of nonlinear

terms in the physical systems and network, and energy

flow can be controlled in adaptive way in presence of

external field. As a result, the involvement of mem-

ristive term into dynamical systems can explain the

self-controllability and adaption greatly [41–43].

Energy characteristic of nervous and neural circuits

is very important [44], and physical energy in neural

Fig. 5 Attractors in Eqs. (15) and (16) with the same energy

level, average energy\H[ and xmax versus under different

value for e. For a chaotic map, b = 0.002, e = 0.0204,

b’ = 0.154; b periodic map, b = 0.08, e = 0.02109,

b’ = 0.154. Setting b = 0.1, a = 0.62, a = 0.1, b = 0.01,

c = 0.2 in Eq. (15); b’ = 0.102, a’ = 1.725, a’ = 2.05,

b’ = 0.154, c’ = 0.0009 in Eq. (16); same initials (x, y,
u) = (xn, yn, un) = (0.02, 0.01, 0.01). In the figures, xmax-
= x(max), xn(max) denote the maximal value in the sampled

time series for two memristive systems
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circuits can be obtained in theoretical way, which

Helmholtz theorem can confirm its correctness when

the physical energy is converted into dimensionless

Hamilton energy. In experimental way, the transient

performances of the circuit should be considered [45]

in the realization of analog circuits, and so the

reliability of the neural circuits can be verified and

evaluated.

For discrete systems and maps, scale parameter is

introduced to build an equivalent nonlinear oscillator

in the form of ODEs (Ordinary differential equations)

and its energy function also contains the same scale

parameter. Based on the Helmholtz theorem, energy

function for the nonlinear oscillator is obtained and

then it is discretized to denote the energy function

without scale parameter for the map. In the phase

space, the nonlinear oscillator will cover the same

phase size and maximal value as the map when the

scale parameter is adjusted carefully. For some

specific maps defined in mathematical form, there

are some differences in the maximal value for

variables in the map and nonlinear oscillator. Refer-

ring to the energy characteristic of the known electric

components, the generic form of the Hamilton energy

function can be suggested, and scale parameter is

introduced to confirm its exact value when the

nonlinear oscillator model matches with the map in

phase space completely. The scheme can be further

used to explore the formation of defects and hetero-

geneity [46, 47] in discrete networks when energy

function for each node is estimated exactly.

For obtaining exact energy function for generic

maps, equivalent nonlinear oscillators can be designed

by defining appropriate transformation for the param-

eters and discrete variables as follows.

xnþ1 ¼ f ðxn; kÞ )
dy

ds
¼ f ðy; pÞ; y ¼ fy1; y2; � � � ; yn; � � �g;

k ¼ kðp; hÞ; xn ¼ xnðyn; h; pÞ; or
p ¼ pðk; hÞ; yn ¼ ynðxn; h; kÞ; h is time step

8><
>:

ð22Þ

where the map and continuous oscillator has the

same local kinetics but the parameters and variables

have certain relevance, that is, the parameter p differs

from k for presenting the same dyanmics. For

example, the Logistic map can be described by a

Logistic oscillator by using the transformation in

Eq. (22) [48].

4 Conclusions

In this work, field energy for a memristor-coupled

circuit is defined and its equivalent dimensionless

Hamilton energy for the memristive oscillator is

obtained by applying scale transformation. The

approach of energy function is also confirmed by

using Helmholtz theorem. The memristive oscillator is

reduced into discrete map and its equivalent energy

form is obtained by setting suitable scale parameter.

Keeping the same dynamical characteristics, memris-

tive map shows lower energy level than the memris-

tive oscillator. In addition, a memristive map

developed from Hénon map added with memristive

term is integrated into equivalent continuous oscillator

by introducing suitable scale parameter, and its energy

function is approached in theoretical way. Further-

more, discrete energy function is confirmed to

describe the energy characteristic of the memristive

Hénon map. This scheme can be further used to

estimate the energy function for other discrete systems

even discrete memristor is coupled. That is, maps are

updated with equivalent nonlinear oscillators for

getting theoretical energy function with scale param-

eter, and the generic energy function for the map can

be obtained by removing the scale parameter for the

energy function of its equivalent nonlinear oscillator.
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Appendix

A11 ¼
i0s þ ða0 þ b0z2Þðx� e1Þ � ðc0 þ d0w2Þðx� e2Þ þ x� 1

2
x2 � 1

3
x3 þ 1

2
ðx� e1Þða0 þ 3b0z2Þ þ 1

2
c0ðx� e2Þ

xþ 1

2
ða0zþ b0z3Þ þ 1

2
w

A22 ¼
a2½e� ny� 1

2
ða0zþ b0z3Þ � 1

2
w� 3b0

2a0
z2ðx� e1Þ �

1

2
ðe2 � e1Þ�

y

A33 ¼
�2e1 � ða0zþ b0z3Þ � wþ 2

y

a0

ðx� e1Þða0 þ 3b0z2Þ

A44 ¼
�2c0e2 þ 2d0w2ðx� e2Þ � c0ða0zþ b0z3Þ � c0w� 2y

ðx� e2Þ

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ðA1Þ

_x

_y

_z

_w

0
BBBBB@

1
CCCCCA

¼Fc þ Fd ¼

�y� 1

2
ðx� e1Þða0 þ 3b0z2Þ � 1

2
c0ðx� e2Þ

axþ 1

2
aða0zþ b0z3Þ þ 1

2
awþ 3ab0

2a0
z2ðx� e1Þ þ

1

2
aðe2 � e1Þ

xþ 1

2
ða0zþ b0z3Þ þ 1

2
w� y

a0

c0xþ 1

2
c0a0zþ b0z3Þ þ 1

2
c0wþ y

0
BBBBBBBBBB@

1
CCCCCCCCCCA

þ

i0s þ ða0 þ b0z2Þðx� e1Þ � ðc0 þ d0w2Þðx� e2Þ þ x� 1

2
x2 � 1

3
x3 þ 1

2
ðx� e1Þða0 þ 3b0z2Þ þ 1

2
c0ðx� e2Þ

ae� any� 1

2
aða0zþ b0z3Þ � 1

2
aw� 3ab0

2a0
z2ðx� e1Þ �

1

2
aðe2 � e1Þ

�e1 �
1

2
ða0zþ b0z3Þ � 1

2
wþ y

a0

�c0e2 þ d0w2ðx� e2Þ �
1

2
c0ða0zþ b0z3Þ � 1

2
c0w� y

0
BBBBBBBBBB@

1
CCCCCCCCCCA
;

¼

0 � a � 1 � c0

a 0
a
a0

� a

1 � a
a0

0 0

c0 a 0 0

0
BBBBBBBB@

1
CCCCCCCCA

xþ 1

2
ða0zþ b0z3Þ þ 1

2
w

y

a
1

2
ðx� e1Þða0 þ 3b0z2Þ

1

2
ðx� e2Þ

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

þ

A11 0 0 0

0 A22 0 0

0 0 A33 0

0 0 0 A44

0
BBBBB@

1
CCCCCA

xþ 1

2
ða0zþ b0z3Þ þ 1

2
w

y

a
1

2
ðx� e1Þða0 þ 3b0z2Þ

1

2
ðx� e2Þ

0
BBBBBBBBBBB@

1
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;

ðA2Þ

References

1. Kavehei, O., Iqbal, A., Kim, Y.S., et al.: The fourth element:

characteristics, modelling and electromagnetic theory of the

memristor. Proc. Royal Soc. A: Math. Phys. Eng. Sci. 466,
2175–2202 (2010)
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A B S T R A C T

Nervous system has distinct anisotropy and some intrinsic biophysical properties enable neurons present
various firing modes in neural activities. In presence of realistic electromagnetic fields, non-uniform radiation
activates these neurons with energy diversity. By using a feasible model, energy function is obtained to predict
the growth of synaptic connections of these neurons. Distribution of average value of the Hamilton energy
function vs. intensity of noisy disturbance can predict the occurrence of coherence resonance, which the neural
activities show high regularity by applying noisy disturbance with moderate intensity. From physical viewpoint,
the average energy value has similar role average power for the neuron. Non-uniform spatial disturbance is
applied and energy is injected into the neural network, statistical synchronization factor is calculated to predict
the network synchronization stability and wave propagation. The intensity for field coupling is adaptively
controlled by energy diversity between adjacent neurons. Local energy balance will terminate further growth of
the coupling intensity; otherwise, heterogeneity is formed in the network due to energy diversity. Furthermore,
memristive channel current is introduced into the neuron model for perceiving the effect of electromagnetic
induction and radiation, and a memristive neuron is obtained. The circuit implement of memristive circuit
depends on the connection to a magnetic flux-controlled memristor into the mentioned neural circuit in an
additive branch circuit. The connection and activation of this memristive neural network are controlled under
external spatial electromagnetic radiation by capturing enough field energy. Continuous energy collection
and exchange generate energy diversity and synaptic connection is created to regulate the synchronous firing
patterns and energy balance.

. Introduction membranes can be similar to an ideal capacitor, and the propagation

of ions along the channels embedded into the cell membrane is the
Neural activities require continuous energy supply and mode transi-
ion in neurons means switch in energy levels. Biological neurons have
ertain diversity in the excitability and they can present different firing
atterns under external excitations. The collective electrical behaviors
f nervous system can be expressed by using neural networks applying
ith different biophysical settings. Gradient stimuli can inject different
nergy flow into the neurons, and wave propagation is activated to keep
ocal energy balance between adjacent neurons. The synaptic intensity
s controlled by the energy diversity between adjacent neurons, and
hey can reach high synchronization level by increasing the coupling
ntensity adaptively. Biological neurons have distinct biophysical char-
cteristics and their electrical activities can be reproduced by some
quivalent neural circuits, which can be further developed to obtain
eliable neuron models (Druckmann et al., 2011; Kepecs & Wang, 2000;
engler, Jug, & Steger, 2013; Lim et al., 2015; Pakdaman, Tanabe,

Shimokawa, 2001). The physical property of inner and outer cell

∗ Corresponding author.
E-mail address: wangcn05@163.com (C. Wang).

same as channel current across an induction coil. The intracellular ions
can generate electric field and any pumping of these ions and channel
current can induce magnetic field. Therefore, energy between mag-
netic field and electric field is converted bidirectionally and nonlinear
relation enables its nonlinear oscillation in the membrane potentials.
In practical way, a generic simple RLC (nonlinear resistor, inductor,
and capacitor) circuit can be built and adjusted to reproduce similar
firing patterns as biological neurons. The circuit equations and field
energy can be described by equivalent theoretical models (Aberra,
Peterchev, & Grill, 2018; Gerstner & Naud, 2009; Herz et al., 2006;
Kafraj, Parastesh, & Jafari, 2020; Van Geit, De Schutter, & Achard,
2008) and Hamilton energy functions (Njitacke et al., 2022, 2021;
Wang et al., 2017; Yang et al., 2021; Zhang et al., 2023), respectively.

In fact, biological neurons have developed different biophysical
functions for perceiving a variety of external signals. For example,
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visual neurons (Butts, 2019; Gabbiani et al., 2002; Wang et al., 2018)
can encode external lights into electric signals and its equivalent circuit
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term and magnetic flux variable are introduced to describe the effect
of electromagnetic induction on a neuron, and the memristive neuron
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ealization accounts for photoelectric conversion via phototube or pho-
ocell (Hussain et al., 2021; Xie et al., 2021). Auditory neurons (Cao,
u, & Ma, 2022; Cao, Gu, & Wang, 2022; Demanez & Demanez,
003) can discern voice by converting sounds and mechanical vibra-
ion into electric signals and its effective acoustoelectric conversion
esembles activation of piezoelectric elements (Guo et al., 2021; Wang
t al., 2021) connecting to a neural circuit. Realistic neurons and
rtificial neurons can be capable for perceiving more physical signals
ncluding electromagnetic field and keeping silence to some signals via
ave filleting. In particular, electromagnetic induction and radiation

EMIR) in neurons should be estimated and clarified in theoretical
ay. That is, combination of suitable electric components including
emristor (Babacan, Kaçar, & Gürkan, 2016; Lin et al., 2020; Tan &
ang, 2020; Yi et al., 2018) and Josephson junction (Dana, Sengupta,
Hu, 2006; Foka et al., 2021) can build some functional circuits and

hen they are mapped into equivalent biophysical neurons (Clark et al.,
022; Gjorgjieva, Drion, & Marder, 2016; Mondal et al., 2019; Yu,
ejnowski, & Cauwenberghs, 2011) to discuss the physical effects on
eural activities in possible way. In general way, bifurcation analysis
nd nonlinear resonance can be analyzed within these mathematical
r biophysical neurons, and these oscillator-like neurons can also be
onnected in different networks for developing spatial patterns, and
ultiple firing modes are induced under noise (Bao et al., 2022; Wo-

ewoda et al., 2021; Yuan et al., 2022). When the local kinetics is
escribed the same neuron, the competition between identical neurons
nd controllability in coupling channels (synaptic connections) are
rucial for taming the pattern formation. When the clustered neurons
rom different community networks are connected and controlled, the
ooperation between neurons from different functional regions (Yao &
ang, 2021, 2022) can be investigated.
Noisy disturbances on the neurons can be described by imposing

uitable excitations including noise on the membrane potential or
agnetic flux variables. The activation of biological neurons needs

nough metabolizable energy, from physical viewpoint, the capacitive
nd inductive energy are very important for supporting continuous
eural activities during the diffusion and propagation of intracellular
nd extracellular ions. When a biophysical neuron is mimicked by an
quivalent neural circuit, the energy function for the neuron can be
apped from the field energy for the neural circuit. Similar coherence

esonance can be found, and the average energy can discern the occur-
ence of coherence resonance in the neuron under noise. By applying
uitable stimulus, logistic and chaotic resonance can be induced in
ost of the neuron models (Yao et al., 2021; Yu et al., 2023). The

ppearance of spiral wave, Turing patterns in the neural networks and
xcitable media shows adaptive self-organization of cells (Chen et al.,
018, 2019; Ding et al., 2023; Hu et al., 2023). The formation of
patial patterns are controlled by the distribution of energy levels of
eurons, adaptive local energy balance via synaptic coupling or field
oupling is helpful to develop special patterns when energy flow is
ropagated in the neural network. From physical viewpoint, energy
evel in each neuron controls the network patterns by adjusting the
oupling intensity adaptively. Any external energy injection can change
he energy level to keep energy balance with adjacent neurons.

Electromagnetic radiation and external stimuli can inject energy
nto the nervous system and the neural activities are regulated under
olarization and magnetization (Lu, Yi, & Liu, 2022). Therefore, control
f energy flow is effective to control the firing patterns in neurons and
etworks (Zhang et al., 2021), for example, changes of energy level in
eurons account for adaptive parameter shift and energy diversity sup-
orts desynchronization between neurons (Hou, Zhou, Ren, et al., 2023;
u, Guo, & Ma, 2023; Xie, Xu, & Ma, 2023; Yang, Xu, & Ma, 2023).

nspired by the specific physical property of memristors, memristive
75
s suitable for detecting electromagnetic radiation and energy function
s defined to explain the self-adaption of field coupling under energy
low. In this paper, we will consider the cooperation and competition
n a neural network exposed to non-uniform electromagnetic radiation;
ynaptic coupling is activated between neurons without considering
lectromagnetic induction the coupling intensity is increased before
eaching local energy balance between neurons. Furthermore, a mem-
istive neuron is suggested and used to explore the pattern formation
nd synchronization by activating field coupling in an adaptive way,
he energy function is also calculated and the energy diversity between
djacent neurons controls the adaptive growth of coupling intensity.

. Model and scheme

The main biophysical property in a biological neuron can be repro-
uced in a simple neural circuit by incorporating appropriate electric
omponents. A capacitor can describe the capacitance property of cell
ntima and outer membrane, an inductor can represent the inductance
roperty of ion channel, and a constant voltage into a branch circuit
onnected with inductor denotes the property of reverse potential. In
articular, nonlinear resistor bridges nonlinear relation between the
agnetic field and electric field energy. As a result, spiking, bursting

nd even chaotic firing patterns can be generated in most of the
onlinear circuits. Furthermore, the components such as memristor,
hermistor, piezoelectric ceramics, phototube and Josephson junction
re connected to optimize the physical function of the neural circuits
nd the distinct self-adaption can be explained and understood. In the
ecent work, a similar Hindmarsh–Rose (HR) neuron model is suggested
nd its potential physical property is clarified (Xie, Yao, Ren, et al.,
023). The simple neuron composing two variables is described by

𝑑𝑥
𝑑𝜏 = 𝑥̇ = −𝑤 − 𝑎𝑥3 + 𝑏𝑥2 + 𝐼𝑒𝑥𝑡 ;
𝑑𝑤
𝑑𝜏 = 𝑤̇ = −𝑐 + 𝑑𝑥2 + 𝑟𝑠(𝑥 − 𝜆) − 𝑟𝑤 ;

(1)

here the variables (𝑥,𝑤) represent the membrane potential and chan-
el current, respectively. 𝐼𝑒𝑥𝑡 denotes equivalent transmembrane cur-
ent, 𝜆 estimates the resting potential for ion channel, and (𝑎, 𝑏, 𝑐, 𝑟, 𝑠)
re normalized parameters. For a two-variable neuron, periodic form
or 𝐼𝑒𝑥𝑡 = 𝐴 cos(𝜔𝜏) can be applied to induce mode transition and
resent chaotic patterns by taming the amplitude or angular frequency.
t shows some difference from the previous HR family because a
oltage-controlled electric component (VCEC) is used to control the
hannel current. The current across the nonlinear resistor (NR), VCEC
nd constant voltage in the neural circuit is defined as follows

𝑉𝑀 = − 𝑑
𝑟𝑠𝑉0

𝑉 2;

𝐸 = 𝑐
𝑟𝑠𝑉0 + 𝜆𝑉0 ;

𝑖𝑁𝑅 = − 1
𝜌 (

𝑏𝑉 2

𝑉0
− 𝑎𝑉 3

𝑉 2
0
) ;

(2)

here 𝜌 and 𝑉0 are intrinsic parameters in 𝑁𝑅 passing with channel
urrent 𝑖𝑁𝑅, 𝑉 and 𝑉𝑀 represent output voltage for the capacitor
nd VCEC, respectively. When these ions are diffused in neuron or
umped across the cell membrane for a biological neuron, the energy
n the neuron is exchanged and distribution of electromagnetic field is
egulated. Therefore, the energy level accounts for the mode selection
n neural activities. By applying the Helmholtz theorem (Kobe, 1986),
he energy function 𝐻 satisfies the following criterion

∇𝐻𝑇𝐹𝑐 (𝑋) = 0 ;
𝑑𝐻
𝑑𝜏 = ∇𝐻𝑇𝐹𝑑 (𝑋);
𝑑𝑋
𝑑𝜏 = 𝐹𝑐 (𝑋) + 𝐹𝑑 (𝑋), 𝑋 ⊂ 𝑅𝑁 ;

(3)
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The neuron model in Eq. (1) can be presented in a vector form
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where the coupling intensity 𝑘𝑖 is controlled by the energy diversity
between adjacent neurons and it increases to constant value under
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𝑥̇
𝑤̇

= −𝑤 − 𝑎𝑥 + 𝑏𝑥 + 𝐼𝑒𝑥𝑡
−𝑐 + 𝑑𝑥2 − 𝑟𝑤 + 𝑟𝑠(𝑥 − 𝜆)

= 𝐹𝑐 + 𝐹𝑑

=
(

−𝑤 − 𝑑𝑥2

𝑟𝑠𝑥 + 2𝑑𝑥𝑤

)

+
(

−𝑎𝑥3 + (𝑏 + 𝑑)𝑥2 + 𝐼𝑒𝑥𝑡
𝑑𝑥2 − 𝑟𝑠𝜆 − 𝑐 − 𝑟𝑤 − 2𝑑𝑥𝑤

)

=
(

0 − 1
1 0

)(

2𝑑𝑥𝑤 + 𝑟𝑠𝑥
𝑤 + 𝑑𝑥2

)

+
⎛

⎜

⎜

⎝

−𝑎𝑥3+(𝑏+𝑑)𝑥2+𝐼𝑒𝑥𝑡
𝑑𝑥2+𝑟𝑠𝑥 0

0 𝑑𝑥2−𝑟𝑠𝜆−𝑐−𝑟𝑤−2𝑑𝑥𝑤
𝑤

⎞

⎟

⎟

⎠

(

2𝑑𝑥𝑤 + 𝑟𝑠𝑥
𝑤 + 𝑑𝑥2

)

;

(4)

The Hamilton energy 𝐻 is obtained under the criterion in Eq. (3)

(−𝑤 − 𝑑𝑥2) 𝜕𝐻𝜕𝑥 + (𝑤 + 𝑑𝑥2) 𝜕𝐻𝜕𝑤 = 0 ;

𝐻 = 𝐻𝐶 +𝐻𝐿 +𝐻𝑀 = 1
2 𝑟𝑠𝑥

2 + 1
2𝑤

2 + 𝑑𝑥2𝑤;
(5)

HR neuron discards channel property and the function Hamilton
nergy has many forms. Indeed, the Hamilton energy becomes sole
hen it is converted from the physical field energy in the equivalent
eural circuit. In the previous works (Bao et al., 2018; Cai et al.,
022, 2021; Heidarpur, Ahmadi, & Kandalaft, 2017; Ochs & Jenderny,
021), different schemes are suggested to reproduce the dynamical
roperties in the HR model by setting a variety of neural circuits,
emristor is also coupled to improve the physical property of these

quivalent neural circuits and memristive effect is estimated (Etémé
t al., 2021; Li & Zhou, 2021; Usha & Subha, 2019; Vijay, Thamilmaran,
Ahamed, 2022). Considering the physical property VCEC, energy is

onsumed and exchanged in this specific component. Any changes in
he parameters (𝑟, 𝑠, 𝑑) will control the energy flow in this neuron, and
he firing activities will be changed synchronously (Xie, Yao, Ren, et al.,
023). Simple mathematical neuron just encodes finite information and
ppropriate firing mode can be selected in presence of external stimuli
nd parameter shift. Under noisy disturbance, coherence resonance and
ven stochastic resonance can be induced in Eq. (1). Showing in the
ecent works (Hou, Ma, & Yang, 2023; Wang, Sun, & Ren, 2023; Xie,
ao, & Ma, 2022; Xie, Zhou, & Ma, 2023; Zhou, Zhang, & Ma, 2022),
ach neuron contains certain inner electromagnetic energy approached
y equivalent Hamilton energy, and energy diversity will force the
ynaptic connections to clustered neurons until reach energy balance.
herefore, more neurons are guided to connect adjacent neurons for
ast energy exchange and energy balance by increasing the coupling
ntensity adaptively. In particular, parameter shifts can be induced and
eterogeneity is created to keep local energy balance in the neural
etworks (Xie, Yao, & Ma, 2023; Yang, Wang, & Ma, 2023). It is
orthy of exploring the self-organization in the neural network under

wo different cases. Most of the neurons show certain diversity in
he biophysical properties and these functional regions are regulated
o cooperate for processing signals in the brain. In addition, electro-
agnetic radiation and spatial stimuli can be non-uniform. Therefore,

ach neuron in the network will suffer from different stimuli defined
y using a spatial function. External noisy disturbance often results
rom the uncertain changes in field and energy injection will induce
quivalent current in the channel and disturbance on the membrane
otential.
Case 1 Collective activities and energy balance in neural net-
ork without electromagnetic induction.

For simplicity, we consider a chain network and adjacent neurons
re forced to couple two adjacent neurons under energy diversity and
he spatial stimulus 𝐼𝑒𝑥𝑡 = 𝐴 cos(𝜔𝜏+𝑖𝛼) is applied on the 𝑖𝑡ℎ neuron, the
onstant 𝛼 is relative to the media property of the neuron. The dynamics
s described by

𝑑𝑥𝑖
𝑑𝜏 = −𝑤𝑖 − 𝑎𝑥3𝑖 + 𝑏𝑥2𝑖 + 𝐴 cos(𝜔𝜏 + 𝑖𝛼) + 𝑘𝑖(𝑥𝑖+1 − 2𝑥𝑖 + 𝑥𝑖−1) + 𝜂(𝜏) ;
𝑑𝑤𝑖
𝑑𝜏 = −𝑐 + 𝑑𝑥2𝑖 + 𝑟𝑠(𝑥𝑖 − 𝜆) − 𝑟𝑤𝑖 ;
𝑑𝑘𝑖
𝑑𝜏 = 𝜎 ⋅ 𝑘𝑖𝜗(𝛥𝐻𝑖 − 𝜀), 𝜗(𝑝) = 1, 𝑝 ≥ 0, 𝜗(𝑝) = 0, 𝑝 < 0 ;

(6)
76
ocal energy balance. The statistical property of the membrane noise
ith intensity 𝐷 on the 𝑖th neuron is approached by ⟨𝜂(𝜏)𝜂(𝜏′)⟩ =
𝐷𝛿(𝜏 − 𝜏′), the gain 𝜎 restricts the growth ratio for 𝑘𝑖. The constant
is relative to the media property, 𝛼 = 0.5𝜋, 𝜋 will make spatial

timuli present periodic type, and neurons show difference in the firing
odes and excitability. For identical oscillators, further increasing the

oupling intensity can enable realization of complete synchronization
nd homogeneous state in the network. However, gradient stimuli will
nject energy with diversity and neurons become different under shape
eformation, and some neurons just reach local energy balance rather
han stabilizing synchronization. For statistical estimation, synchro-
ization factor (SF) is defined to predict the synchronization degree,

𝐹 =
⟨𝐹 2

⟩ − ⟨𝐹 ⟩

2

1
𝑁

∑𝑁
𝑖=1 (⟨𝑥

2
𝑖 ⟩ − ⟨𝑥𝑖⟩2)

; 𝐹 = 1
𝑁

𝑁
∑

𝑖=1
𝑥𝑖 ; (7)

The symbol ⟨∗⟩ estimates the average value of any variable within a
ransient period (running time in numerical approach), and lower value
or SF means pattern formation in the network composed of 𝑁 nodes.

higher value for SF confirms occurrence of perfect synchronization
n the network. The energy diversity between adjacent neurons to the
𝑡ℎ neuron is given in

𝛥𝐻𝑖 = |

|

𝐻𝑖+1 −𝐻𝑖
|

|

+ |

|

𝐻𝑖−1 −𝐻𝑖
|

|

= |

|

|

1
2 𝑟𝑠𝑥

2
𝑖+1 +

1
2𝑤

2
𝑖+1 + 𝑑𝑥2𝑖+1𝑤𝑖+1 −

1
2 𝑟𝑠𝑥

2
𝑖 −

1
2𝑤

2
𝑖 − 𝑑𝑥2𝑖𝑤𝑖

|

|

|

+ |

|

|

1
2 𝑟𝑠𝑥

2
𝑖−1 +

1
2𝑤

2
𝑖−1 + 𝑑𝑥2𝑖−1𝑤𝑖−1 −

1
2 𝑟𝑠𝑥

2
𝑖 −

1
2𝑤

2
𝑖 − 𝑑𝑥2𝑖𝑤𝑖

|

|

|

;

(8)

It indicates that the adjacent neurons reach local energy balance
nd the intensity of synaptic coupling will get a saturation value when
few neurons are synchronized completely. On the other hand, stable

omplete synchronization in the network means all the neurons reach
nergy balance. Therefore, global energy balance is helpful for keeping
omplete synchronization while local energy balance can support the
roperty diversity and formation of regular patterns generated by local
efects or heterogeneity in the network. Therefore, electric synapses
re created and the synaptic intensity for each pair of neurons is
egulated by the energy diversity when the neural network is suffered
rom spatial excitations. In fact, the parameters (𝐴, 𝛼) in the spatial
timuli can be adjusted to detect the collective responses in the neural
etwork. Furthermore, noisy disturbance with different intensities can
e imposed to predict whether regular patterns can be developed by
alculating the distribution for SF.
Case 2 Collective activities and energy balance in memristive

etwork with electromagnetic induction
As reported in Ge, Wang, and Jia (2021), Lin, Wang, Deng, et al.

2021), Ma (2023), Takembo et al. (2019), Wan et al. (2022), mem-
istive term can be introduced into some neuron models for describing
he effect of electromagnetic induction and radiation, and these mem-
istive neurons can be controlled by field coupling via exchange of
agnetic flux between neurons. In an experimental way, magnetic flux-

ontrolled memristor (MFCM) can be connected to the neural circuit
y adding a new branch circuit in parallel with the capacitor. A similar
eural circuit coupled by MFCM (Ding et al., 2023) can be designed in
ig. 1.

Considering a generic form for the MFCM containing magnetic flux
, the channel current and its field energy can be described by

𝑖𝑀𝐹𝐶𝑀 = 𝑀(𝜑)𝑉𝑀 = (𝛾 + 3𝛽𝜑2)𝑉 ;

𝑊𝑀𝐹𝐶𝑀 = 1
2𝜑𝑖𝑀𝐹𝐶𝑀 = 1

2 (𝛾𝜑 + 3𝛽𝜑3)𝑉 ;
(9)

The relation for physical variables in this memristive circuit in Xie,
ao, Ren, et al. (2023) is given in

𝐶 𝑑𝑉
𝑑𝑡 = 𝑖𝑒𝑥𝑡 − 𝑖𝐿 − 𝑖𝑁𝑅 − 𝑖𝑀𝐹𝐶𝑀 ;

𝐿 𝑑𝑖𝐿
𝑑𝑡 = 𝑉 − 𝐸 − 𝑅𝑖𝐿 − 𝑉𝑀 ;

𝑑𝜑
𝑑𝑡 = 𝑉 ;

(10)
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where 𝐷𝑖 measures the intensity for field coupling between two adja-
cent neurons to the 𝑖𝑡ℎ neuron. That is, field coupling between adjacent
n
w
u

t
b
c
a

3

s
w
o
d
F
4

o
m
p
e

f
o
p
c
t
s
c
t
a
c

t
a
f
t
𝛼
e
s
n

c
s
a
o
(
o
c
b

s
n
w
g
b
t
s
d
d

ig. 1. Schematic diagram for memristive neural circuit. Setting neural circuit com-
osed of a MFCM and voltage-controlled electric component (M) with voltage 𝑉𝑀 .
𝑅 is a nonlinear resistor and constant voltage 𝐸 defines a resting potential for the

on channel. The physical relation for the electric components is presented in Eq. (2),
espectively.

By using similar scale transformation for the variables in the last
wo equations

𝑉 = 𝑥𝑉0, 𝑖𝐿 = 𝑤𝑉0
𝜌 , 𝜏 = 𝑡

𝜌𝐶 , 𝑖𝑒𝑥𝑡 =
𝐼𝑒𝑥𝑡𝑉0

𝜌 , 𝑟 = 𝜌𝑅𝐶
𝐿 ,

𝑠 = 𝑅
𝜌 , 𝜑

′ = 𝜑
𝜌𝐶𝑉0

; 𝛾 ′ = 𝛾𝜌, 𝛽′ = 𝛽𝜌3𝐶2𝑉 2
0 ;

(11)

A new memristive HR neuron is obtained by

𝑑𝑥
𝑑𝜏 = −𝑤 − 𝑎𝑥3 + 𝑏𝑥2 − (𝛾 ′ + 3𝛽′𝜑′2)𝑥 + 𝐼𝑒𝑥𝑡;
𝑑𝑤
𝑑𝜏 = 𝑑𝑥2 − 𝑐 + 𝑟𝑠(𝑥 − 𝜆) − 𝑟𝑤 ;
𝑑𝜑′

𝑑𝜏 = 𝑥

(12)

here external forcing current 𝐼𝑒𝑥𝑡 can select similar periodic form for
he neuron in Eq. (1). Its equivalent Hamilton energy in this memristive
hannel is mapped from Eq. (9) and it is rewritten by

𝑀𝐹𝐶𝑀 =
𝑊𝑀𝐹𝐶𝑀

𝐶𝑉 2
0

= 1
2
(𝛾 + 3𝛽𝜑2)𝜑𝑉

𝐶𝑉 2
0

= 1
2
(𝛾 ′𝜑′𝑥 + 3𝛽′𝜑′3𝑥); (13)

The membrane potential can switch to some negative values and
he Hamilton energy for the memristive synapse can be activated to
elect negative values, which means energy can be emitted and shunted
orm the memristive synapse. Therefore, the Hamilton energy for the
emristive neuron in Eq. (12) is approached by

= 𝐻𝐶+𝐻𝐿+𝐻𝑀+𝐻𝑀𝐹𝐶𝑀 = 1
2
𝑟𝑠𝑥2+1

2
𝑤2+𝑑𝑥2𝑤+1

2
(𝛾 ′𝜑′𝑥+3𝛽′𝜑′3𝑥);

(14)

The involvement of magnetic flux and induction current in the mem-
istive channel can well address the effect of electromagnetic induction.
s a result, magnetic field superposition becomes inevitable among the
lustered neurons accompanying with energy flow between adjacent
eurons. In presence of external spatial energy injection accompanied
ith spatial current 𝐼𝑒𝑥𝑡 = 𝐴 cos(𝜔𝜏 + 𝑖𝛼), synaptic connections are

reated to propagate energy for reaching fast energy balance in the
emristive network. The growth of intensity for field coupling and

ollective dynamics in the neural network composed of memristive
eurons can be calculated by

𝑑𝑥𝑖
𝑑𝜏 = −𝑤𝑖 − 𝑎𝑥3𝑖 + 𝑏𝑥2𝑖 + 𝐴 cos(𝜔𝜏 + 𝑖𝛼) − (𝛾 ′ + 3𝛽′𝜑′

𝑖
2)𝑥𝑖 ;

𝑑𝑤𝑖
𝑑𝜏 = 𝑑𝑥2𝑖 − 𝑐 + 𝑟𝑠(𝑥𝑖 − 𝜆) − 𝑟𝑤𝑖 ;
𝑑𝜑′

𝑖
𝑑𝜏 = 𝑥𝑖 +𝐷𝑖(𝜑′

𝑖+1 − 2𝜑′
𝑖 + 𝜑′

𝑖−1);
𝑑𝐷𝑖
𝑑𝜏 = 𝜎 ⋅𝐷𝑖𝜗(𝛥𝐻𝑖 − 𝜀);

(15)
77
eurons in the chain network is controlled by the energy diversity,
hich can be controlled by the spatial stimuli, and it is updated by
sing Eq. (14)

𝛥𝐻𝑖 = |

|

𝐻𝑖+1 −𝐻𝑖
|

|

+ |

|

𝐻𝑖−1 −𝐻𝑖
|

|

(16)

Any diversity in initials generates energy difference, and then synap-
ic connection is created to shunt energy for reaching possible energy
alance. In case of complete synchronization, energy diversity is de-
reased zero while phase lock will support continuous energy changes
nd some neurons can reach local energy balance in the network.

. Numerical results and discussion

A suitable neuron can present various firing activities when external
timulus is changed in the amplitude or frequency carefully. In practical
ay, bifurcation analysis can predict the mode transition and changes
f the neural activities. Then external forcing current is adjusted to
etect the mode transition by calculating the ISI (interspike interval) in
ig. 2. Setting parameters as 𝑟 = 0.119, 𝑠 = 0.05, 𝜆 = −1.6, 𝑎 = 0.41, 𝑏 =
.01, 𝑐 = 2.4, 𝑑 = 0.79, and the initials (0.02, 0.03) for Eq. (1).

From Fig. 2, it is demonstrated that the firing mode is dependent
n the amplitude and frequency of external stimulus closely. Further-
ore, the membrane potential for neuron presenting in different firing
atterns are plotted in Fig. 3 by selecting the same amplitude value in
xternal forcing current 𝐼𝑒𝑥𝑡 in Fig. 2.

When forcing intensity is fixed, continuously taming the forcing
requency can switch mode changes of the oscillatory states. On the
ther hand, continuous enhancement of the forcing intensity can sup-
ress bursting and chaotic patterns for developing periodic oscillation
ompletely. Therefore, the new two-variable neuron model reproduces
he main firing modes as those biological or biophysical neurons. A
ingle neuron can process finite information and adjacent coupling
an be combined into external stimuli. It is worthy of investigating
he cooperation and competition between more neurons in a network,
nd the effect of adaptive regulation in synaptic coupling should be
larified.

To explore the collective behaviors of neurons in a chain network,
he distribution of membrane potential and corresponding energy levels
re calculated when the local kinetics is presented with four different
iring modes in Fig. 4, for simplicity, 𝑁 = 200 neurons are placed in
his network with non-flux boundary condition. Constant parameter

= 0.01 is fixed in 𝐼𝑒𝑥𝑡 = 𝐴 cos(𝜔𝜏 + 𝑖 ∗ 𝛼) to discern the spatial
xcitation, and 𝜎 = 0.003 is used to control adaptive growth of the
ynaptic connection intensity during wave propagation in the neural
etwork.

Due to diversity in spatial forcing on the network, changeable
oupling intensity seldom controls the network to reach complete
ynchronization and spatial patterns are developed even all the nodes
re activated from the same initials. The SF for the network often
btains lower value and it indicates the synchronization degree is low
non-perfect). In fact, distributed stimuli enable diversity of excitability
f these neurons, and complete synchronization is blocked even the
oupling is further increased. In Fig. 5, the changes of energy level
etween adjacent neurons are tracked by adjusting synaptic intensity.

The coupling intensity for each neuron keeps continuous growth
ynchronously because of uncertain energy diversity between adjacent
euron in the network. Spatial disturbance on the network can induce
ave propagation and energy flow is propagated to enhance further
rowth of the coupling intensity, and then local energy balance can
e reached in the network before reaching homogeneous states in
he network. During the wave propagation, the coupling intensity for
ome neurons keeps further increase because of local energy balance is
isturbed. From Fig. 5, the oscillatory type of each neuron is changed
ue to adjacent coupling and spatial excitation with diversity, so the
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ig. 2. Effects of different external stimuli on neuronal firing patterns by changing 𝐴, 𝜔. For (a1, a2) 𝜔 = 0.12; (b1, b2) 𝐴 = 14. xpeak defines the peak value for the membrane
otential.
ig. 3. Four kinds of firing modes in neural activities in single neuron by selecting different frequencies 𝜔 at 𝐴 = 14. For (a) spiking 𝜔 = 0.0001; (b) bursting 𝜔 = 0.012; (c)
eriodic firing 𝜔 = 0.036; (d) chaotic firing 𝜔 = 0.12.

iring patterns for the 100th neurons are tracked to show the transition heterogeneity is developed. Therefore, wave propagation is activated in
5

f energy level and selection of firing patterns in the chain network local area and then is blocked by some neurons under synchronization.
S
i

c
n
l
s
s
i

ith adaptive synaptic intensity in Fig. 6.
In presenting periodic patterns, the neurons show transition of

nergy level within wide range, and energy range is decreased in
he bursting and chaotic neurons of the chain network. The local
inetics is also controlled by the amplitude of external forcing, and then
he forcing intensity is adjusted to control the wave propagation and
attern formation in the network in Fig. 7.

From Fig. 7, most of the region of the network can keep energy
alance while some local areas hold distinct energy difference and then
78
imilar investigation is carried out, and the distribution of synaptic
ntensity is plotted in Fig. 8.

These neurons keep synchronous growth of coupling intensity be-
ause of continuous spatial excitation and energy diversity in the
etwork. As shown in Figs. 5, and 8, the coupling intensity still keeps
ow value within 1000 time units, and it is below the threshold for
tabilizing complete synchronization in the network. Readers and re-
earchers may suggest using higher initial value or gain for the coupling
ntensity, indeed, these neurons show sparse connection because they
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ig. 4. Formation of spatial pattern and evolution of Hamilton energy in the chain network under spatial stimulus 𝐼𝑒𝑥𝑡 = 14 cos(𝜔𝜏 + 𝑖 ∗ 𝛼). For (a1, a2) 𝜔 = 0.0001; (b1, b2) 𝜔 =
.012; (c1, c2) 𝜔 = 0.036; (d1, d2) 𝜔 = 0.12. The same initials for variables (0.02, 0.03) and gain 𝑘 = 10−5 are fixed, and 𝛼 = 0.01.

ave slight diversity in initial energy by setting the same initial val- spatial diversity is increased and approach of synchronization becomes
6

es. By applying distributed stimuli, spatial energy flow is injected to more difficult for neurons with high parameter mismatch (excitability
d

m
t
0
0
r

i
s

ifferent neurons and energy diversity can be increased to enhance
ossible growth of coupling intensity for realizing fast local energy
alance. Within a finite time, then the growth of coupling intensity
s terminated. Therefore, complete synchronization is blocked because
ome adjacent neurons just keep intermittent energy balance. For a
lear illustration, the distribution of SF is calculated by modifying the
mplitude and angular frequency in Fig. 9, respectively.

From Fig. 9, the synchronization factor is kept low value when
he angular frequency is increased within 0.0001 to 3.0. By setting

= 0.12, the SF is further decreased because the diversity from
79
iversity).
In fact, electromagnetic induction has important impact on the

ode selection of neural activities, the nonlinear resonance in memris-
ive neuron shown in Eq. (12) is discussed and initials are fixed at (0.02,
.03, 0.01). 𝑎 = 0.52, 𝑏 = 4.02, 𝛾 ′ = 0.1, 𝛽′ = 0.02, 𝑐 = 2.2, 𝑑 = 0.83, 𝑟 =
.206, 𝑠 = 4, 𝜆 = −1.6. Similar bifurcation analysis is provided, and
elation of firing mode to the external stimuli is calculated in Fig. 10.

The memristive neuron still presents a variety of firing patterns and
ts mode transition in electrical activities are controlled by external
timulus in the amplitude or frequency completely. When memristive
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ig. 5. Evolution of coupling intensity k in the chain network composed of 𝑁 = 200 neurons. For (a) 𝜔 = 0.0001; (b) 𝜔 = 0.012; (c) 𝜔 = 0.036; (d) 𝜔 = 0.12; (e) growth of k
or the 100th neuron. Spatial stimuli with intensity 𝐴 = 14, and 𝛼 = 0.01.
ig. 6. Transition of firing patterns and energy level for the 100th neuron. For (a1, a2) 𝜔 = 0.0001; (b1, b2) 𝜔 = 0.012; (c1, c2) 𝜔 = 0.036; (d1, d2) 𝜔 = 0.12. Setting 𝐴 = 14, 𝛼 = 0.01.

erm is involved to discern the effect of electromagnetic induction, this electric component is controlled by voltage (membrane potential).
7

dditive memristive current also keep against the external stimulus The magnetic field used to hold higher energy proportion than the
e
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uring the regulation of excitability. Therefore, the transition of neural
ctivities becomes complex and the neuron prefer to keep chaotic
tates. In Fig. 11, the firing patterns in the memristive neurons are plot-
ed to show the competition between memristive current and external
timulus.

The firing patterns including spiking, bursting and chaotic types are
ome different from the generic neuron because of the involvement
f memristive current into the neuron. Similar firing patterns can be
nduced by adjusting the amplitude when the angular frequency of
xternal stimulus is fixed. With further increasing the amplitude and
requency of external exciting, the memristive neuron is guided to
resent chaotic patterns. It is important to clarify the dependence of
iring modes on the energy proportion in the neuron, and the ratio
or each kind of energy (𝐻𝐶,𝐻𝐿,𝐻𝑀,𝐻𝑀𝐹𝐶𝑀) in Eq. (14) to total
nergy 𝐻 is calculated in Fig. 12 within a transient period about 2000
ime units.

It is found that capacitive energy 𝐻𝐶 holds a tiny proportion in
he energy level. In Fact, 𝐻𝑀 also stores electric field energy because
80
lectric field, and thus continuous oscillation enables mode transition in
he electric activities. Due to the modulation from memristive current,
hich accounts for the EMI and EMR (electromagnetic induction and

adiation), the energy flow mainly keeps in the magnetic field and thus
euron can maintain distinct firing mode. The energy proportion of
he memristive channel can explain the selection of firing modes in
eural activities. The neuron will present chaotic state when energy in
he memristive channel keeps high proportion. On the other hand, the
euron keeps bursting when energy proportion in memristive channel
s low. In fact, the memristive channel shunts the energy under elec-
romagnetic induction, and then the firing modes of the memristive
euron are controlled during energy exchange between different capac-
tive and inductive channels. Similarly, the pattern formation and wave
ropagation in the chain network composed of memristive neurons
an be calculated and plotted when the local kinetics is described
y different neurons, respectively. The same parameter 𝛼 = 0.01 is
ixed in spatial excitation 𝐼𝑒𝑥𝑡 = 𝐴 cos(𝜔𝜏 + 𝑖 ∗ 𝛼), and the coupling
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ig. 7. Development of spatial pattern and Hamilton energy are plotted by changing 𝐼𝑒𝑥𝑡 = 𝐴 cos(0.12𝜏 + 𝑖 ∗ 𝛼). For (a1, a2) 𝐴 = 2.2; (b1, b2) 𝐴 = 11.3; (c1, c2) 𝐴 = 14. The same
nitials (0.02, 0.03) and gain 𝑘 = 10−5 are fixed, 𝛼 = 0.01, snapshots are plotted in color scale.

ntensity is adaptively increased with a gain 𝜎 = 0.003 in the neural stochastic resonance under noisy stimulus. It is also worthy of confirm-
8

etwork during wave propagation. In presence of spatial excitation and ing emergence of stochastic resonance in an isolated memristive neuron
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isturbance, all neurons are injected energy with diversity and these
on-identical neurons are connected with growing coupling intensity
efore reaching complete synchronization and energy balance. For
implicity, the distribution of SF is plotted in Fig. 13.

It shows distinct difference from Fig. 9 when memristive current
s introduced into the neuron. It is found that memristive network
as higher SF values than the neural network in Eq. (6) because the
emristive current can suppress the spatial diversity, as a result, these
emristive neurons will be coupled with growing intensity for keeping
igh synchronization degree and local energy balance.

Energy flow is shunted in the network and neurons are coupled to
how bursting patterns when spatial excitation induces energy diver-
ity into the neural network. Therefore, adjacent neurons change the
nergy level and the transient period for reaching local energy bal-
nce becomes longer. It also means synchronous patterns are blocked
nd it has application to prevent the seizure by suppressing bursting
ynchronization.

Neurons can be excited to present stochastic resonance and coher-
nce resonance in presence of noisy excitation. As a result, energy
s injected to change the energy level of the neuron for presenting
iring modes. Continuous energy injection from periodic stimulus and
oisy disturbance can develop high regularity in the neural activities
hen noise intensity is carefully adjusted. In a word, a biophysical
euron model should meet the characteristic of coherence resonance or
81
hown in Eq. (12) when additive noisy disturbance is imposed on the
embrane potential and magnetic flux, respectively. For simplicity,
aussian white noise is changed the intensity 𝐷 and the corresponding
oefficient variability (CV) of ISI series is estimated.

𝑉 =

√

(⟨𝑇 2
⟩ − ⟨𝑇 ⟩2)
⟨𝑇 ⟩

; (17)

here 𝑇 measures the ISI from membrane potentials, and lower CV
alue predicates occurrence of coherence resonance and higher regu-
arity in the neural activities. In Fig. 14, distribution for CV vs. noise
ntensity is approached in presence of noisy disturbance from electric
ield and magnetic field, respectively.

In presence of noisy electric field, an additive noise is imposed to
ffect the membrane potential directly. When external magnetic field
s fluctuated in stochastic way, additive noise has direct impact on
he channel current. From Fig. 14, lowest value for CV is consistent
ith highest average energy value for Hamilton energy, and it means

hat the neuron keeps high average energy level to present periodic
iring patterns under coherence resonance. On the other hand, the noise
hreshold for inducing coherence resonance has different thresholds
hen noise is imposed on the membrane patch and ion channel,

espectively. Stochastic disturbance resulting from noisy electric field
n membrane patch requires a lower noise threshold than noisy distur-
ance resulting from uncertain magnetic field on ion channels to induce
oherence resonance.



Neural Networks 171 (2024) 1–13Y. Guo et al.

F
S

r
r
j
e
p
e
t
m
f
m
o
a

a

ig. 8. Evolution of coupling intensity k in the chain network composed of 𝑁 = 200 neurons. For (a) 𝐴 = 2.2; (b) 𝐴 = 11.3; (c) 𝐴 = 14.0. (d) growth of 𝑘 for the 100th neuron.
patial stimuli with angular frequency 𝜔 = 0.12, 𝛼 = 0.01.
Fig. 9. Distribution of synchronization factors (SFs) in the network driven by periodic signals. For (a) 𝜔 = 0.12; (b) 𝐴 = 14. Spatial stimulus 𝐼𝑒𝑥𝑡 = 𝐴 cos(𝜔𝜏 + 𝑖 ∗ 𝛼), 𝛼 = 0.01.

In absence of external periodic stimulus, the time-varying mem- neurons. In particular, the energy level and its dependence on firing
9

istive current regulate the neural activities and similar coherence mode should be clarified. EMI and EMR provide effective energy ex-
c
p
m
t
d
t
i
s
t
e
t
a
e
u

esonance is induced when the intensity of membrane noise is ad-
usted. It means stochastic excitation from external electric field can
nhance regular firing when EMI is considered. On the other hand,
eriodic forcing keeps against the memristive current by changing the
xcitability. Two kinds of stochastic disturbance, which adds noisy
erm on the first and third formula respectively, modify the effect of
emristive current and then the energy proportion between electric

ield and magnetic field is adjusted to trigger different firing modes. The
emristive neuron keeps distinct periodic states for lower CV values;

therwise, chaotic patterns are induced to prevent the synchronization
pproach.

In a summary, clear definition and clarification of physical char-
cteristics in neural circuits are crucial to build reliable biophysical
82
hange in physical field and memristive current well addresses the
hysical effect on neural activities. Noisy disturbance can affect the
embrane potential directly or indirectly. For clustered neurons, con-

inuous energy shunting and spatial energy injection support gradient
istribution of energy, and then flexible synapses are guided to grow
he intensity with time. In fact, local energy balance enables these non-
dentical neurons coexist with multiple firing patterns and bursting
ynchronization is blocked to prevent the emergence of seizure in
he nervous system. The involvement of memristor into neural circuit
nables its ability for discerning the effect of electromagnetic induc-
ion, and field coupling accounts for the exchange of magnetic flux
nd energy flow. As a result, the coupling intensity is controlled by
nergy diversity, and adaptive regulation of biological neurons can be
nderstood from energy aspect.
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ig. 10. Selection of firing modes in neural activities in an isolated memristive neuron driven by periodic stimulus. For (a1, a2) 𝜔 = 1.3; (b1, b2) 𝐴 = 10. Parameters select
= 0.52, 𝑏 = 4.02, 𝛾 ′ = 0.1, 𝛽′ = 0.02, 𝑐 = 2.2, 𝑑 = 0.83, 𝑟 = 0.206, 𝑠 = 4, 𝜆 = −1.6.
ig. 11. Different firing modes in neural activities of memristive neuron under different frequencies 𝜔. For (a) bursting 𝜔 = 0.02; (b) spiking 𝜔 = 0.2; (c) periodic firing 𝜔 = 0.4;
d) chaotic firing 𝜔 = 1.3. Setting 𝑎 = 0.52, 𝑏 = 4.02, 𝛾 ′ = 0.1, 𝛽′ = 0.02, 𝑐 = 2.2, 𝑑 = 0.83, 𝑟 = 0.206, 𝑠 = 4, 𝜆 = −1.6, 𝐴 = 10, and initials (0.02, 0.03, 0.01).

. Conclusions the neuron prefers to keep highest energy level (average value) and
10

periodic firing patterns. Considering the intrinsic diversity in biophys-
i
b
t
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In this work, a MFCM is connected to a simple neural circuit for
escribing the effect of electromagnetic induction on neural activities.
he memristive neuron can present similar stochastic resonance, which
igh regularity in the electric activities of neuron can be detected.
he Hamilton energy function is defined and mapped from physical
ield energy. The curve for average energy ⟨𝐻⟩ vs. noise intensity can
e effective to predict the emergence of coherence resonance, which
83
cal neurons, spatial disturbances are imposed to control the collective
ehaviors of the neural network. In presence of EMIR, the memris-
ive currents also activate the neurons as spatial disturbance, and
lectric activities become more complex and regularity is destroyed.
he coupling intensity for adjacent neurons is adaptively increased

n exponential way before reaching local energy balance. When en-
rgy diversity keeps alive, heterogeneity is created and local energy
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ig. 12. Energy proportion of four kinds field energy to total energy of a memristive neuron. For (a) bursting 𝐴 = 10, 𝜔 = 0.02; (b) periodic firing 𝐴 = 10, 𝜔 = 0.4; (c)spiking
= 10, 𝜔 = 0.2; (d) chaotic firing 𝐴 = 10, 𝜔 = 1.3.
Fig. 13. Distribution of synchronization factors (SFs) in the network driven by periodic signals. For (a) 𝜔 = 1.3; (b) 𝐴 = 10. Spatial stimulus 𝐼𝑒𝑥𝑡 = 𝐴 cos(𝜔𝜏 + 𝑖 ∗ 𝛼), 𝛼 = 0.01.
ig. 14. Distribution of synchronization factors and average Hamilton energy in the memristive neuron. (a1, b1) 𝐶𝑉 distribution and (a2, b2) average Hamilton energy ⟨𝐻⟩ on
oise intensity. For (a1, a2) noisy electric field and 𝐼𝑒𝑥𝑡 = 10 cos 1.3𝜏; (b1, b2) noisy magnetic field and 𝐼𝑒𝑥𝑡 = 10 cos 1.3𝜏. Setting parameters 𝑎 = 0.52, 𝑏 = 4.02, 𝑐 = 2.2, 𝑑 = 0.83, 𝑟 =
.206, 𝑠 = 4, 𝜆 = −1.6, 𝛾 ′ = 0.1, 𝛽′ = 0.02, and initials (0.02, 0.03, 0.01).
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Abstract
Consensus and synchronous firing in neural activities are relative to the physical properties of synaptic connections. For

coupled neural circuits, the physical properties of coupling channels control the synchronization stability, and transient

period for keeping energy diversity. Linear variable coupling results from voltage coupling via linear resistor by consuming

certain Joule heat, and electric synapse coupling between neurons derives from gap junction connection under special

electrophysiological condition. In this work, a voltage-controlled electric component with quadratic relation in the i–

v (current–voltage) is used to connect two neural circuits composed of two variables. The energy function obtained by

using Helmholtz theorem is consistent with the Hamilton energy function converted from the field energy in the neural

circuit. Chaotic signals are encoded to approach a mixed signal within certain frequency band, and then its amplitude is

adjusted to excite the neuron for detecting possible occurrence of nonlinear resonance. External stimuli are changed to

trigger different firing modes, and nonlinear coupling activates changeable coupling intensity. It is confirmed that nonlinear

coupling behaves functional regulation as hybrid synapse, and the synchronization transition between neurons can be

controlled for reaching possible energy balance. The nonlinear coupling is helpful to keep energy diversity and prevent

synchronous bursting because positive and negative feedback is switched with time. As a result, complete synchronization

is suppressed and phase lock is controlled between neurons with energy diversity.

Keywords Hamilton energy � Nonlinear coupling � Energy balance � Synchronization � Neuron

Introduction

For a biological neuron, inner electric field energy and

magnetic field energy is exchanged during the propagation

of intracellular and extracellular ions, and membrane

potential is adjusted under external stimuli. For a couple or

more neurons, diversity in electromagnetic field energy

forces the creation and growth of synaptic connections and

thus they can reach fast energy balance in the neural net-

work (Torrealdea et al. 2006; Zhou et al. 2022a; Xie et al.

2022, 2023; Wang et al. 2022). For example, Zhou et al.

(2022a) claimed that adaptive growth of electric synapse

results from energy diversity between neurons. The electric

synapse (Curti and O’Brien 2016; Bennett 1997; Xie et al.

2021a; Bennett and Zukin 2004; Zandi-Mehran et al. 2020)

activates its coupling regulation under special condition

and it becomes transient because continuous consumption

of Joule heat can induce temperature effect on neural

activities. Bidirectional coupling via electric synapses

often provides a fast energy balance by applying variables

error on the nonlinear oscillators in the form of negative

feedback. From a dynamical viewpoint, the electric

synapse coupling just induces linear variable coupling of

membrane potentials (Bennett 2000; Zhou et al. 2021a;

Velazquez and Carlen 2000; Gerasimova et al. 2015). On

the other hand, the chemical synapse coupling (Balenzuela

and Garcı́a-Ojalvo 2005; Shafiei et al. 2020; Smith and

Pereda 2003; Kundu et al. 2019; Hu and Cao 2016) keeps

continuous regulation on the collective electric activities in
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neurons and it is approached by equivalent memristive

synapse connecting two neurons (Wu et al. 2022a). Smith

and Pereda (2003) confirmed that chemical synapse has

impact on the activation of nearby electric synapse. From

physical viewpoint, the release of neurotransmitter and

activation of Calcium accounts for the functional regula-

tion from chemical synapse, and field coupling is triggered

to connect neurons for reaching energy balance between

neurons. Therefore, synchronous firing patterns can be

controlled under chemical synapse coupling, which is

accompanied with field coupling via electromagnetic field

(Yao and Wang 2022, 2021; Yao et al. 2021; Zhou et al.

2022b; Xu et al. 2019). For example, Yao and Wang

(2022, 2021), Yao et al. (2021) suggested that hybrid

synapse coupling can be approached by activating capaci-

tive and inductive field coupling, which is realized by

connecting capacitor, inductor and even memristor in

parallel or in series. In fact, the field coupling can be

considered as nonlinear coupling via hybrid synapse (Sun

et al. 2013; Yu et al. 2017; Calim et al. 2020; Uzuntarla

2019; Xu et al. 2021) and it has certain advantage than the

simple electric synapse coupling by consuming large Joule

heat during the energy propagation along the coupling

channels. Considering the physical approach and circuit

implement, these hybrid synapses can be considered a kind

of field coupling. In a practical way, the circuit realization

and implement of hybrid synapse can be designed by using

combination of capacitor, inductor, resistor and memristor

and even nonlinear resistor, and nonlinear coupling is

activated to connect the equivalent neural circuits. In

presence of resistance of artificial synapse, the nonlinear

electric component in the coupling channels can consume a

little Joule heat and it also emits energy flow because it can

be considered as an active component. Therefore, the

channel current becomes nonlinear, and nonlinear coupling

(Gieseler et al. 2014; Wang et al. 2010; Petereit and

Pikovsky 2017; Wei et al. 2019; Chithra and Raja 2017) is

switched to regulate the synchronous behaviors between

chaotic oscillators. As reported in Wei et al. (2019), the

coupling intensity is regulated in adaptive way and the

stability of synchronization in the network is controllable.

Reliable neural circuits coupled by specific electric

components can reproduce certain biophysical function of

biological neurons in nervous system. For example, a

phototube is activated to excite a simple RLC circuit (re-

sistor–inductor–capacitor), this neural circuit is sensitive to

light and can be considered as an artificial light-sensitive

neuron as visual neuron (Xie et al. 2021a, b). The

involvement of thermistor into nonlinear circuit can per-

ceive external temperature because the channel current

across the thermistor is dependent on the temperature and

this shunted current can regulate the charge and discharge

of capacitor in this circuit (Xu et al. 2020; Xu and Ma

2021). Furthermore, activation of memristive channel can

enhance the biophysical function of neurons (Wu et al.

2022b, 2020) and electromagnetic field energy can be

defined theoretically. In particular, electric field variable

(Wu et al. 2019) is supplied into the Hindmarsh–Rose

neuron model (González-Miranda 2007; Ochs and Jen-

derny 2021; Cai et al. 2021) and external electric field is

applied to control the mode selection in electric activities.

In Ref. (Cai et al. 2021), an equivalent neural circuit is

proposed to mimic the dynamical property of electric

activities produced in the HR neuron. A special current can

well explain the enhanced firing along with seizure induced

by inhibitory interneuron (Wang et al. 2023), and it is

helpful to avoid seizure. The memristive neurons show

distinct controllability because the external magnetic field

can be captured by regulating the memristive current and

the firing modes are controlled effectively (Zhang et al.

2018; Bao et al. 2021; Chen et al. 2021; Pu et al. 2021;

Rajagopal et al. 2019). For example, Zhang et al. (2018)

suggested a scheme to design memristive neuron with

lower energy consumption. Rajagopal et al. (2019) pre-

sented a new memristive neuron with fractional order and

the effect of electromagnetic induction is estimated. In

addition, Josephson junction (JJ) can perceive external

magnetic field, and its involvement into neural circuit can

be used to control the neural behaviors and similar

stochastic resonance can be induced under noisy distur-

bance in the magnetic field (Zhang et al. 2020a, b; Dana

et al. 2006; Njitacke et al. 2022a). Considering the distinct

physical properties of JJ and memristors, more additive

branch circuits are connected to the neural circuits to

enhance the ability for perceiving physical signals, and

then these biophysical neurons become more controllable

because external physical stimuli can be converted into

equivalent channel currents, which regulate the membrane

potential and firing modes synchronously. For more neu-

rons, these specific components can be used as functional

synapse to connect neural circuits, and the coupling

channels are controllable because of nonlinear relation for

the voltage and current.

Continuous energy supply and exchange are crucial for

neurons in presenting kinds of firing patterns, and

stable energy balance is helpful to keep synchronous

electric activities (Moujahid et al. 2011; Torrealdea et al.

2009). For generic neuron model and nonlinear oscillators,

Zhou et al. (2021b) explained how to approach the sole

Hamilton energy function and used as appropriate Lya-

punov function. For more guidance about neurodynamics

from physical viewpoint, readers can refer to the recent

reviews (Ma et al. 2019; Ma 2023). In this paper, a kind of

nonlinear coupling is used to couple two feasible neurons,

the Hamilton energy is derived and physical property of the

neural circuit is explained. Two neurons are coupled via
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nonlinear coupling via a hybrid synapse, and the synchro-

nization stability is discussed.

Model and scheme

For generic neuron models composed of quadratic term for

membrane potentials, the combination of simple and ideal

capacitor, inductor, and shunted current across nonlinear

resistor with nonlinear relation between channel current

and output voltage is effective to build a controllable

neural circuit. To facilitate the enhancement of biophysical

function of neural circuit, specific electric components are

embedded into the branch circuits of RLC circuit (Resistor–

inductor–capacitor) (Kyprianidis et al. 2012), see the recent

review (Ma 2022, 2023). When higher order terms are

included into the neuron model, it needs the involvement

of similar voltage-controlled component and memristor,

and energy is also shunted in these electric components.

For simplicity, an improved RLC circuit is suggested in

Fig. 1.

The external stimulus iext is generated from a voltage

source and it is shunted into three branch circuits. The

circuit equations for Fig. 1 are obtained to bridge the

voltage V and channel current iL as follows

C
dV

dt
¼ iext � iL � iNR;

L
diL
dt

¼ V � E � RiL � VM;

8
><

>:
ð1Þ

The functional component M can be considered as voltage-

controlled, and its voltage VM is defined by

VM ¼ � d

rsV0

V2; E ¼ c

rs
V0 þ kV0; ð2Þ

where the constant E is used to describe the reverse

potential in the ion channel current. The normalized

parameters (c, d, r, s, k) are the same parameters in the

Hindmarsh–Rose (HR) neuron model (Hindmarsh and

Rose 1982, 1984). Inspired by the i–v relation with quad-

ratic term for nonlinear component in Ref. (Kyprianidis

et al. 2012; Rajasekar and Lakshmanan 1988), the relation

of current and voltage across the NR is defined by

iNR ¼ � 1

q
bV2

V0

� aV3

V2
0

� �

; ð3Þ

where q and V0 are the resistance in the linear region and

cut-off voltage in the i–v curve for NR. a and b are same as

the parameters in the HR model (Hindmarsh and Rose

1982, 1984). V0 in Eqs. (2) and (3) is the same. The elec-

tromagnetic field energy in the neural circuit, and average

energy cost per time unit in the electric component M can

be estimated by

W ¼ WC þWL �WM ¼ 1

2
CV2 þ 1

2
Li2L þ

d

rsV0

V2iL qC;

WM ¼ iMVMqC ¼ � d

rsV0

V2iL qC;

8
>><

>>:

ð4Þ

That is, the field energy in the neuron is kept in

capacitive and inductive forms. In this simple neuron with

one capacitive variable and one inductive variable, the

involvement of voltage-controlled component M into the

ion channel occupies partial electric field energy in

capacitive form. Capacitive energy is pumped and shunted

into the voltage-controlled channel, so WM has opposite

direction of energy flow from WC. Furthermore, these

physical variables and parameters in Eqs. (1–4) are mapped

into dimensionless variables by using the following scale

transformation

x ¼ V

V0

; w ¼ iLq
V0

; s ¼ t

qC
; Iext ¼

q
V0

iext;

r ¼ qRC
L

; s ¼ q
R
;

8
>><

>>:

ð5Þ

As a result, an equivalent neuron model is obtained by

_x ¼ �w� ax3 þ bx2 þ Iext;

_w ¼ �cþ dx2 þ rsðx� kÞ � rw;

(

ð6Þ

From dynamical viewpoint, the external current Iext can

be adjusted to trigger mode transition in the electric

activities, and external field is also helpful to change the

effect of reverse potential k for regulating the firing modes.

According to the definition for dimensionless variables and

Fig. 1 Schematic diagram for a RLC circuit. VM denotes the voltage

for the electric component M with quadratic operation on the voltage

V for the capacitor, NR is a nonlinear resistor and its current is

described in Eq. (3). C, L, defines capacitance for capacitor, and

inductance for inductor, respectively
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parameters, these normalized parameters (a, b, c, d, r, s) are

associated with the properties of ion channel, and k
accounts for the resting potential of one ion channel for the

neuron. In addition, the equivalent Hamilton energy H can

be mapped from the field energy W by using the same scale

transformation on Eq. (4), and it is defined by

W ¼ 1

2
CV2

0x
2 þ 1

2

L

q2C
w2 þ d

rs
x2wCV2

0

¼ CV2
0

rs

1

2
rsx2 þ 1

2
w2 þ dx2w

� �

¼ CV2
0

rs
H;

H ¼ 1

2
rsx2 þ 1

2
w2 þ dx2w;

ð7Þ

Guided by the Helmholtz theorem (Kobe 1986), the

Hamilton energy for the neuron asks for the criterion

rHTFc ¼ 0 ;rHTFd ¼
dH

ds
;

dX

ds
¼ FðXÞ ¼ FcðXÞ þ FdðXÞ;X � RN

8
><

>:
ð8Þ

Surely, the neuron in Eq. (6) has much similarity to the

previous two-variable HR model proposed by Hindmarsh

and Rose (1982). Considering the characteristic of inner

field of neuron, the equivalent vector for Eq. (6) is updated

by

The energy function H for Eq. (9) follows the criterion as

follows

ð�w� dx2Þ oH
ox

þ ðrsxþ 2dxwÞ oH
ow

¼ 0; ð10Þ

As a result, an appropriate solution for the Hamilton energy

is obtained by

H ¼ 1

2
rsx2 þ 1

2
w2 þ dx2w ¼ HC þ HL � HM; ð11Þ

This energy form in Eq. (11) is consistent with the

energy function in Eq. (7), which is mapped from physical

field energy after scale transformation. The changes of the

Hamilton energy with time is confirmed by

dH

ds
¼ rHTFd ¼ x4ðd2 � 2adw� arsÞ þ x3½ðbþ dÞð2dwþ rsÞ

� 2d2wÞ � dx2ðrskþ cþ rw� wÞ � w2ðr þ 2dxÞ
� wðrskþ cÞ þ ðrsxþ 2dxwÞIext;

ð12Þ

Changes in the parameters (r, s, d) have direct impact on

the energy flow, which can also be controlled by external

stimulus. According to Eq. (11), the Hamilton energy of

the neuron is relative to the firing mode, membrane

potential and the normalized parameters (r, s, d, w)

directly. As defined in Eq. (11), the first term HC and the

second term HL define electric field energy and magnetic

field energy, and any changes in the excitability will

modify the ratio between the two kinds of field energy.

HL ¼
1

2
w2; HC ¼ 1

2
rsx2; P ¼ HC

HL
¼ rsx2

w2
; ð13Þ

Periodic stimulus, chaotic series and even noise can be

applied to regulate the neural activities and energy flow is

shunted between magnetic field and electric field. It is

interesting to discuss the mode transition when the energy

proportion P is selected with different values. For two

neurons, the synchronization stability is dependent on the

biophysical properties of the coupling channel. Here, we

consider the synchronization control for the two neurons

connected by a nonlinear resistor, which the channel cur-

rent has the form in Eq. (3). The coupled neural circuits are

described by

_x

_w

 !

¼
� w� ax3 þ bx2 þ Iext

� cþ dx2 � rwþ rsðx� kÞ

 !

¼ ½Jðx;wÞ þ Rðx;wÞ�rH ¼ Fc þ Fd

¼
� w� dx2

rsxþ 2dxw

 !

þ
� ax3 þ ðbþ dÞx2 þ Iext

dx2 � rsk� c� rw� 2dxw

 !

¼
0 �1

1 0

� � 2dxwþ rsx

wþ dx2

 !

þ

�ax3 þ ðbþ dÞx2 þ Iext
2dxwþ rsx

0

0
dx2 � rsk� c� rw� 2dxw

wþ dx2

0

B
B
@

1

C
C
A

2dxwþ rsx

wþ dx2

 !

;

ð9Þ
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C
dV

dt
¼ iext � iL � iNR � icoupling;

L
diL
dt

¼ V � E � RiL � VM;

C
dV 0

dt
¼ iext � i0L � i0NR þ icoupling;

L
di0L
dt

¼ V 0 � E � Ri0L � V 0
M;

icoupling ¼ � 1

q
bðV � V 0Þ2

V0

� aðV � V 0Þ3

V2
0

" #

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

ð14Þ

By using the similar scale transformation, the dynamics for

two coupled neurons can be given in the form

_x ¼ �w� ax3 þ bx2 þ Iext þ bðx� x0Þ2 � aðx� x0Þ3;
_w ¼ �cþ dx2 þ rsðx� kÞ � rw;

_x0 ¼ �w0 � ax03 þ bx02 þ Iext � bðx� x0Þ2 þ aðx� x0Þ3;
_w0 ¼ �cþ dx02 þ rsðx0 � kÞ � rw0;

8
>>>><

>>>>:

ð15Þ

The last two terms in the first and third formulas in

Eq. (15) denote the equivalent dimensionless current

across the coupling channel. The error function for states

and Hamilton energy is defined respectively,

hðex; ewÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx� x0Þ2 þ ðw� w0Þ2
q

;

DH ¼ H1 � H2j j ¼ 1

2
rsx2 þ 1

2
w2 þ dx2w� 1

2
rsx02 � 1

2
w02 � dx02w0

�
�
�
�

�
�
�
�

8
>><

>>:

;

ð16Þ

In addition, phase series can be obtained by applying

Hilbert transformation on the sampled time series for

membrane potentials of two neurons, and then phase syn-

chronization and phase lock between two neurons can be

further verified when external stimuli are controlled to

trigger different firing modes in the neurons. It is important

to discuss the dynamical property of the coupling channels.

In presence of linear coupling via ideal resistor with

resistance Rk, the coupling intensity for two different cases

(linear and nonlinear coupling) can be expressed by

icoupling ¼ kðx0 � xÞ; k ¼ q
Rk

; linear coupling via Rk;

i0coupling ¼ bðx� x0Þ2 � aðx� x0Þ3; nonlinear coupling via NR;

k0 ¼ bðx� x0Þ � aðx� x0Þ2; nonlinear coupling via NR;

8
>>><

>>>:

ð17Þ

That is, nonlinear coupling introduces time-varying cou-

pling intensity k0 and it terminates to zero adaptively under

complete synchronization or balance between membrane

potentials. As described in Eq. (6), the external stimulus Iext
can be derived from periodic signal source, and the deter-

ministic model can be excited to present different firing

modes. Indeed, realistic signal source may be more complex

and the neuronwill be excited bymixed signals, which can be

filtered from a chaotic system. For simplicity, signals from

Pikovskii-Rabinovich (PR) oscillator (Pikovskii and Rabi-

novich 1978) are encoded to stimulate the neuron, and it is

defined by

dx0

ds
¼ y0 � dz0;

dy0

ds
¼ �x0 þ 2cy0 þ az0 þ b;

dz0

ds
¼ lðx0 þ z0 � z0 3Þ;

Iext ¼ E0 sinðx0Þ;

8
>>>>>>>>><

>>>>>>>>>:

ð18Þ

where x0, y0, z0 are dimensionless variables mapped from

the output voltage and current in the nonlinear circuit, and

it presents chaotic state at a = 0.165, b = 0, c = 0.201,

d = 0.66, l = 1/0.047. E0 is a positive constant and con-

sidered as gain for control of the amplitude of the filtered

chaotic signals, and similar chaotic signal from Lorenz,

Rössler or other chaotic systems can be encoded for Iext,

which is effective to activate mode transition and nonlinear

resonance in the electric activities. That is, the sampled

time series for variable x0 are chaotic and further encoding

in sine function as Iext = E0sin(x
0) will introduce irregular

stimulus on the neuron. The coefficient variability (CV) is

estimated to judge the coherence degree as follows

CV ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T2h i � Th i2
q

Th i ; ð19Þ

where T denotes the interspike interval in the sampled time

series for membrane potential, and the symbol �h i repre-

sents an average of the variable within certain transient

period. Lower value for CV means higher coherence res-

onance in the neuron.

Results and discussion

The fourth order Runge–Kutta algorithm is used to

approach numerical solution with time step h = 0.01. To

present different firing patterns, the amplitude and angular

frequency in the external stimulus us = Acosxs are adjus-

ted to control the neuron in Eq. (6) with initial value (0.02,

0.01).The parameters are selected as a = 0.52, b = 4.23,

c = 2.6, d = 0.92, r = 0.119, s = 0.05,k = - 1.6. For

coupling synchronization, the initial values for two neurons

are fixed at (0.02, 0.01, 0.03, 0.02). In Fig. 2, bifurcation

analysis is supplied to confirm the appearance of different

firing modes.

By adjusting the external stimulus, this neuron is suit-

able to produce a variety of firing patterns including

chaotic, bursting and spiking, and it means this neuron has
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the main dynamical characteristic as those biological

neurons. Extensive numerical results confirmed that noisy

disturbance accompanying periodic stimuli can generate

stochastic resonance by changing the noise intensity

carefully. For better showing, the electric activities are

plotted and corresponding energy function is calculated to

discern mode dependence on the firing modes in Fig. 2.

Fig. 2 Bifurcation of ISI for

membrane potential x vs.

parameters A, x. For
a x = 0.12; b A = 8.0

Fig. 3 Firing patterns of membrane, Hamilton energy H in Eq. (11), energy ratio P between HC and HL in Eq. (13), at A = 8. For a1–a3 spiking

patterns x = 0.0001; b1–b3 bursting patterns x = 0.02; c1–c3 periodic patterns x = 0.05; d chaotic patterns x = 0.08

Fig. 4 a Bifurcation of peaks

for membrane potential x vs. E0

in Iext = E0sin(x
0); b average

energy dependence on E0;

c Largest Lyapunov exponent

vs. E0; d CV distribution versus

E0
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From Fig. 3, the energy in a single neuron is changed

with the transition of firing modes, and further increasing

the angular frequency of external stimulus can induce

chaotic states. In presence of spiking patterns, the neuron

used to keep higher energy level, while chaotic activities

supports a lower average value in the Hamilton energy.

Except the spiking condition, transient switch in the energy

ratio is detected, and it means a fast energy release and

exchange between magnetic field and electric field.

Realistic stimuli on neurons are not distinct periodic

type, it is worthy of investigating the nonlinear response

when mixed signals is applied. For simplicity, chaotic

signals from PR in Eq. (18) are encoded to excite the

neuron by applying different amplitudes for Iext = E0-

sin(x0), the Largest Lyapunov exponent, average

energy\H[ , peak values from membrane potential and

distribution for CV in Eq. (19) are calculated in Fig. 4.

From Fig. 4, the encoded chaotic signals E0sin(x
0) can

inject stimuli as mixed signals and the excitability of the

neuron can be regulated by the gain E0 effectively, so mode

transition can be controlled completely. Indeed, E0sin(x
0)

can be considered as combination of periodic and

stochastic disturbance, and appropriate setting for the gain

E0 can induce coherence resonance-like behavior in the

neural activities. Further increasing the value for the gain

E0 prefers to impose chaotic stimulus and the neuron is

excited to present chaotic firing patterns. The curve for CV

distribution in Fig. 4d has no lowest value and it is in some

difference from the previous curve for CV versus noise

intensity, which moderate noise intensity supports

coherence resonance accompanying with lowest CV value.

It is interesting to clarify the energy characteristic of the

neuron excited by this stimulus, and the results are illus-

trated in Fig. 5.

In fact, Iext = E0sin(x
0) can excite the neuron as quasi-

periodic signals and the neuron prefers to trigger chaotic

states and it keeps lower Hamilton energy because of fast

discharge. During the firing of neural activities, electric

field energy will keep a lower value than the magnetic field

energy except some transient period. It indicates that the

channel current in the neuron is fluctuated quickly and

membrane potential is regulated to release energy quickly

as well.

Synaptic connection can propagate energy effectively by

regulating the synaptic current, and the time-varying cou-

pling is dependent on the energy diversity. Linear electric

synapse coupling requires special electrophysiological

condition and consumption of Joule heat becomes inevi-

table. Indeed, biological neurons prefer to trigger field

coupling and nonlinear coupling by activating hybrid

synapse. In Fig. 6, the synchronous response between two

neurons under the same periodic stimulus is calculated.

In presence of nonlinear coupling via hybrid synapse

defined in Eq. (17), two identical neurons have difficult to

reach complete synchronization. However, they can reach

phase lock when the external stimulus is adjusted, and it

indicates that the two neurons can guided to present some

suitable firing modes in the neural activities. Furthermore,

the energy diversity between two coupled neurons is cal-

culated in Fig. 7.

Fig. 5 Evolution of Hamilton energy H and changes in the ratio P between HC and HL is plotted in presence of mixed signals Iext = E0sin(x
0). For

a1, a2 E0 = 1.0; b1, b2 E0 = 6.0; c1, c2 E0 = 20.0
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Two identical neurons have the same distinct period and

synchronization between periodic neurons becomes easy.

When neurons reach complete synchronization, energy

diversity is reduced to zero and energy balance is stabi-

lized. This nonlinear coupling just activates subthreshold

coupling because the gain in the coupling term is relative

to some intrinsic parameters in the neuron. Therefore, they

can reach transient synchronization rather than

stable complete synchronization, and energy diversity will

be changeable with time. In addition, the changes of cou-

pling term and synaptic intensity in Eq. (17) is estimated

when neurons are excited to present different modes.

From Fig. 8, in presence of four different firing modes,

the synaptic current becomes time-varying, and it means

that two neurons keep certain diversity of membrane

potential. Therefore, complete synchronization is blocked,

and it is helpful to prevent bursting synchronization and the

occurrence of seizure in the nervous system. Considering

the difference in excitability in biological neurons, two

neurons connected via hybrid synapse are excited by

encoded chaotic signals with different intensities, and the

results are plotted in Fig. 9.

When the mixed signals are encoded with lower gain

and intensity, phase synchronization between two neurons

becomes available and it means this hybrid synapse is

effective to trigger synchronous firing patterns. With fur-

ther increase of the gain in the mixed signals, neurons

prefer to present chaotic patterns and complete synchro-

nization becomes difficult and phase lock is also broken

with time. The energy diversity between neurons driven by

encoded chaotic signals is also obtained to predict whether

energy balance can be realized in Fig. 10.

It is found that the two neurons show time-varying

energy diversity with time, and thus energy propagation

along the hybrid synapse is continued, it is helpful to

find coexisting different firing patterns in the nervous

systems. Furthermore, the coupling intensity for nonlinear

coupling is also estimated in Fig. 11 to predict whether the

two neurons keep its nonlinear coupling all the time.

From Fig. 11a, it means the synaptic current is termi-

nated because two neurons have the same membrane

potentials and nonlinear coupling is switched off within a

transient period. Therefore, two neurons keep their own

firing modes and they can reach partial synchronization.

From Fig. 11b, c, the synaptic current fluctuates with time

Fig. 6 Evolution of error

function h in Eq. (16) and phase

error D/ for two coupled

neurons in presence of periodic

stimulus. For a1, a2 A = 8.0,

x = 0.0001; b1, b2 A = 8.0,

x = 0.02; c1, c2 A = 8.0,

x = 0.05; d1, d2 A = 8.0,

x = 0.08. Phase series /1 and

/2 are obtained by applying

Hilbert transformation on the

sampled time series for the

variables (x, x0), and D/
= /1–/2
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Fig. 7 Evolution of energy error

for two coupled neurons driven

by periodic signals. For

a spiking neurons, A = 8.0,

x = 0.0001; b bursting neurons,

A = 8.0, x = 0.02; c periodic

neurons, A = 8.0, x = 0.05;

d chaotic neurons, A = 8.0,

x = 0.08

Fig. 8 Changes in synaptic

intensity k0 along the hybrid

synapse for two coupled

neurons in Eq. (18). For

a A = 8.0, x = 0.0001;

b A = 8.0,x = 0.02;

c A = 8.0,x = 0.05; d A = 8.0,

x = 0.08
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and it means the hybrid synapse keeps working for con-

tinuous energy propagation and exchange because of dis-

tinct diversity in the two neurons. In particular, appearance

of negative value for the coupling intensity k0 indicates this
nonlinear coupling activates positive feedback on each

neuron, therefore, energy diversity and firing modes are

regulated with time.

In summary, realistic biological neurons often receive

mixed signals from externals stimulus and neurons in the

neural networks will capture more signals from other

neurons. Furthermore, these multi-channels injections are

detected to compose an encoded signal within certain fre-

quency band. When two or more neurons are excited,

hybrid synapses rather than sole and ideal synapses are

activated to propagate energy between neurons, transition

from synchronization and desynchronization is switched

when the coupling intensity along the nonlinear channel is

changed between negative and positive values. As a result,

Fig. 9 Evolution of error

function for two coupled

neurons presented in different

firing modes and phase error

diagram by mixed signals

Iext = E0sin(x
0). For a1, a2

E0 = 1.0; b1, b2 E0 = 6.0; c1,
c2 E0 = 20.0

Fig. 10 Evolution of energy

error for two coupled neurons

driven by mixed signals

Iext = E0sin(x
0). For a E0 = 1.0;

b E0 = 6.0; c E0 = 20.0
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two neurons can present different firing patterns and modes

in the neural activities. Hybrid synapse plays an important

role to keep energy diversity and these neurons are blocked

to reach synchronous firing patterns, which can prevent the

occurrence of seizure. In fact, hybrid synapse accounts for

nonlinear coupling and it is suitable to approach close

biophysical property and physical effect of realistic

synapses for biological neurons. In a practical way, com-

bination of functional electric components including

memristor, nonlinear resistor, thermistor, phototube,

piezoelectric component and Josephson junction can

enhance the sensitivity and controllability of synaptic

connection and coupling channels, the main advantage of

these functional synapse is its intensity can be regulated

adaptively and external stimuli can control the coupling

channel directly. The energy definition within this work is

defined and confirmed from physical viewpoint (Njitacke

et al. 2022b), it is different from the previous energy

description in Wang and Zhu (2016), Zhu et al. (2019),

Wang et al. (2021) for neurons. As mentioned in our recent

works, continuous energy injection and absorption will

induce shape deformation, some neurons will show

parameter shift to keep pace with other neurons for

showing synchronous firing or desynchronization, as a

result, self-adaption of biological neurons are released.

Nonlinear coupling provides possible intermittent positive

and negative regulation on two neurons, and this

scheme can be further used to induce and control chimera

in neural networks Yang et al. (2022), Kanagaraj et al.

(2023), Feng et al. (2023) by developing coexistence of

synchronization and non-synchronization.

Conclusions

Based on the Helmholtz theorem, an energy function for a

two-variable neuron is defined from physical viewpoint

and it is also confirmed by applying scale transformation

on the field energy in the neural circuit composed of a

voltage-controlled component. Filtered chaotic signals are

used to excite the neuron for mimicking realistic stimulus.

It indicates that biological neurons can be excited to pre-

sent regular patterns under mixed signal matching with

realistic signals within certain frequency band, and average

energy and CV distributions are calculated to discern mode

transition in electrical activities. Furthermore, two neural

circuits are coupled by the same nonlinear resistor, and

synchronization stability and phase lock are controlled by

the nonlinear coupling. Under some firing modes, the

coupling intensity is decreased to zero and nonlinear cou-

pling is terminated with the same membrane potentials. In

other cases, continuous nonlinear coupling contributes to

phase lock or phase synchronization, and possible bursting

synchronization is prevented. That is, nonlinear coupling

provides effective energy exchange and supports coexis-

tence of multiple firing modes in neurons under energy

diversity. To activate the self-adaption of biological neu-

rons, shape deformation accompanying with parameter

shift becomes inevitable and then the hybrid synapse is

controlled to adjust the coupling intensity for reaching next

energy balance between neurons.
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A B S T R A C T   

Artificial neurons can be designed and excited to produce similar smart responses as biological neurons driven by 
electromagnetic excitations. The interaction between cell membrane and ion channels accounts for the mode 
transition in membrane potentials and the changes of inner field energy during continuous diffusion and 
propagation of ions in the neuron. The external stimuli just speed up the mode selection by changing the gradient 
distribution of electromagnetic field of the cell. The propagated electric pulses are affected by the Calcium wave 
and concentration, and muscle is controlled to behave suitable body gaits. In this review, a neural circuit-coupled 
electromechanical device is suggested to clarify how neural signals drive the artificial arms. The pre-placed 
neural circuit can be regarded as a wave filter, and the encoded signals are guided to excite one electrome
chanical arm, and then a pair of arms connected with a spring is controlled to simulate the motion of two arms. 
The circuit and motion equations for the artificial arms are presented with exact definition of energy function. 
Scale transformation is applied to obtain an equivalent dimensionless dynamical model and the dimensionless 
Hamilton energy. Finally, an adaptive control law is presented to control the neural circuit and the load circuit in 
the electromechanical device. This work provides possible guidance for designing artificial arms or legs under 
electric stimuli, readers can find clues for further investigation under complete dynamical analysis.   

1. Introduction 

Nervous system can perceive a variety of external stimuli, and then 
suitable firing modes in electrical activities are induced to propagate the 
encoded signals among neurons. When more biological neurons are 
excited, the Calcium concentrations of cells are increased and tamed to 
control the body muscle [1,2], and then appropriate gaits are stabilized. 
In presence of external stimuli, most of the neurons in the same func
tional regions are waken for developing possible synaptic connection 
under energy flow, and even neurons from other functional regions are 
affected to build multi-layer network. As a result, the body keeps suit
able and safe gaits to give smart response to the multiple-channels 
excitation. The time series for membrane potential of a biological 
neuron are often available due to the application of patch clamp tech
nology, while the channel currents are often fit with different functions 
composed of the membrane potential with suitable parameters. In fact, 
model setting and model improvement of biological neurons should 
consider the main physical property during the occurrence of neural 

activities. At least, one capacitive variable is useful for the membrane 
potential and its inner electric field, another inductive variable becomes 
crucial to measure the channel current and its effect of magnetic field. 
Considering the distribution and interaction between different kinds of 
ion channels, some additive nonlinear terms are required to describe the 
effect of ion channels during the energy conversion between magnetic 
field and electric field when neurons are excited. From physical aspect, 
both capacitor and charge-controlled memristor (CCM) [3–5] have 
capacitive variables when the output voltage or charges flow are 
detectable. On the other hand, inductor and magnetic-flux controlled 
memristor (MFCM) [6–8] present inductive variables when the induced 
current or magnetic flux can be measured in reliable way. 

Indeed, a generic neuron model [9,10] requires two variables 
including the membrane potential and recovery variable for channel 
current. As a result, a simple neural circuit composed of a capacitor, an 
inductor and a nonlinear resistor can be tamed to present similar firing 
patterns as mathematical neurons or biological neurons by developing 
similar spiking, bursting or chaotic states. To approach the effect of 
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complex ion channels, more branch circuits are created in the generic 
RLC (resistor-inductor-capacitor) for introducing different kinds of 
channel current terms. Therefore, these neuron models present more 
than three variables, and some of them can describe the effect of elec
tromagnetic induction [11–13], temperature, electric and magnetic 
field, and even photoelectric conversion in the neurons. The effect of 
electromagnetic induction in the neuron and neural circuits is often 
described by introducing memristive current and magnetic flux variable 
in the models [14,15]. During circuit implement, memristor, Josephson 
junction, piezoelectric ceramic, thermistor, photocell and voltage- 
controlled devices can be incorporated into the branch circuits of a 
neural circuit, and then the controlled circuit can be effective to discern 
or detect external physical signals [16–18]. For example, phototube is 
connected to a neural circuit for building a light-sensitive neuron [19], 
and Josephson junction is used to detect external magnetic field when it 
is incorporated into a neural circuit [20]. After scale transformation, 
these neural circuits can be converted into dimensionless neuron models 
with different current terms, and they are called as functional bio
physical neurons. In fact, the Hopfield neural network is considered as 
an effective network model for generic signal processing, and the 
involvement of memristive function into it [21–23] can measure the 
effect of electromagnetic induction and radiation. Furthermore, similar 
memristive regulation is applied to the Chialvo neuron [24,25] and 
Hindmarsh-Rose neuron models [26–28], the complete dynamical 
analysis, energy definition and synchronization control provide helpful 
comments on understanding the relation between modes selection and 
energy levels. Besides the common analysis, circuit implement and 
fractional order approach of the neuron model pave new ways for 
neurodynamics [29,30]. 

From mathematical viewpoint, two variables are necessary for 
building an oscillator-like neuron model, one variable for the membrane 
potential and another variable for the channel current. To present 
chaotic firing patterns, suitable external stimulus including noise or 
periodic forcing becomes indispensable. As a result, the physical prop
erty of the cell membrane is missed because all external stimuli are 
regarded as equivalent transmembrane current terms. Some recent 
works [31–33] claimed that reliable neuron models should involve two 
capacitive variables, one for the outer membrane and another for the 
inner membrane when the cell membrane has two sides supporting 
different distribution of electromagnetic field. Surely, map neuron 
models [34–37] are also effective to reproduce the main dynamical 
property and physical effect when the map neuron is clarified with exact 
energy function. That is, it is crucial to clarify the energy characteristic 
and self-adaptive property before suggesting and confirming any new 
neuron models. Most of the oscillator-like neuron model can obtain their 
energy function by using the Helmholtz theorem, while the energy 
function definition of map neurons becomes a challenge. The author of 
this work suggested a scheme to define energy function for many maps, 
and it also provides a clue to check the reliability of maps from energy 
aspect [38–40]. When the energy function is obtained in exact form, an 
adaptive law can be suggested to control the intrinsic parameter growth 
and adaptive regulation of synaptic intensity when the energy level is 
beyond a threshold [41,42]. For two or more neurons, the synaptic 
connections keep adaptive growth in the synapse intensity when the 
energy diversity is beyond a threshold, therefore, the neurons can keep 
energy balance and phase synchronization or desynchronization 
[43–46]. Furthermore, continuous energy accumulation can develop 
heterogeneity [47,48] while energy release can create defects in the 
neural network when the synaptic bridges are controlled by energy di
versity in a local area of the network. 

By now, dynamical analysis in many neuron models has been 
investigated extensively. Based on these neuron models, collective be
haviors and self-organization under noise have been discussed by con
necting different neural networks. As is known, the arms and legs can 
behave different gaits when the nervous system is guided with suitable 
commands. To discard the complex freedoms of arm and leg, a moving 

beam driven by electromechanical force [49–51] can mimic the 
dynamical characteristic of moving arm or leg. In generic way, the load 
circuit composed of coils with N turns is banded to one end of a beam, 
which is placed into a magnetic field, the Ampere force generated in the 
load circuit will drive the beam to move when external forcing current is 
injected into the coils of the load circuit. On the other hand, the coils of 
the load circuit will generate a dynamic electromotive force (DEF) to 
change the channel current, and then induced electromotive force (IEF) 
is generated during the moving of the beam. As a result, both DEF and 
IEF will apply feedback to the terminal of neural circuit, which its output 
voltage is used to excite the load circuit. That is, the neural circuit in
teracts with the load circuit adhere to the moving beam by changing the 
current across the coupling channel when DEF and IEF are generated. 
The neural circuits can be described by oscillator neuron models, and it 
is important to convert the physical variables including displacement 
and velocity into dimensionless variables for dynamical analysis. For 
example, Wadden et al. [52] proposed a neuro-mechanical model and 
the motion of single leg is controlled. Mbeunga et al. [53] analyzed the 
nonlinear response in an array of electromechanical systems driven by 
an electrical line of Fitzhugh-Nagumo neurons. Ngongiah et al. [54] 
explored the motion of myriapods by using an array of mechanical arms 
coupled to an array of FitzHugh–Nagumo neuron circuits. Furthermore, 
Ngongiah et al. [55] designed a bioinspired electromechanical system, 
which that FitzHugh–Nagumo neuron circuits are combined to drive 
synchronically an array of mechanical legs, and driving-response of the 
array of legs are discussed. Kouami et al. [56] investigated an array of 
nanoelectromechanical beams driven by an electrical line of Josephson 
junctions equivalent models, and the motion of the beams is dependent 
on the junction current. Wang et al. [57] designed a four-bar linkage 
bionic knee joint structure with a variable axis and a double closed-loop 
servo position control strategy based on computed torque control is used 
to improve anthropomorphic characteristics and the dynamic perfor
mance of the bionic mechanical leg powered by servo pneumatic muscle 
(SPM). In Ref. [58], analytical and numerical investigations of Joseph
son junction neuron circuits actuating a mechanical arm and the array 
are provided. 

In this paper, the interaction between neural circuit and electrome
chanical devices is discussed, and this study is helpful to design artificial 
arm and leg, and it also provides an example for the application of neural 
circuits. The circuit equations for the neural circuit are approached, the 
dependence of displacement of the moving beam on the electrome
chanical force is defined, and then scale transformation is used to obtain 
a dimensionless model for describing the relation between neural ac
tivities and mechanical motion. Section 2 contains five subsections, 
Section 2.1 presents generic description for a generic neural circuit and 
its energy function. Section 2.2 explained the working mechanism of an 
artificial arm/leg under electromagnetic force. Section 2.3 presented 
discussion about cooperation between two artificial arms. Section 2.4 
supplied complete discussion about how memristor-based neural circuit 
drive an artificial arm developed from an electromechanical device. 
Section 2.5 suggested an adaptive law for control the neural circuit and 
the moving arm. Section 3 gave the conclusion and suggestions for this 
field. 

2. Model and scheme 

For most of the neurons, periodic stimulus seldom triggers the same 
firing patterns only when the external forcing current is endowed with 
high intensity. Sometimes, chaotic stimuli on the neuron just develop 
spiking or bursting patterns rather than chaotic behaviors in membrane 
potential because the biological and biophysical neurons encode the 
external signal in nonlinear way. That is, artificial and biological neu
rons can be considered as effective wave filter and signal generator 
because the outputs often are different from the exciting signals. 

J. Ma and Y. Guo                                                                                                                                                                                                                              

101



Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 183 (2024) 114925

3

2.1. Signal encoding and wave filtering in a neural circuit 

As shown in Fig. 1, external physical signal is across a resistor Rs, 
which induces a voltage drop, is interacted with the output terminal of 
the RC circuit and the filtered signal iout often has a different frequency 
band from the injected signal is. 

When the nonlinear electric component NM is not activated by cut
ting off the switch S, the forcing current is across the linear resistor Rs 
imposed a voltage excitation on the capacitor C and also shunted a 
current to excite the inductor L. As a result, the charged capacitor 
generates a channel current and the induction coil in the LC circuit 
creates an induced electromotive force (IEF), the interaction between 
the inductor and capacitor will impose a feedback to the injected forcing 
current is, and the output signals iout shows some diversity from the 
original input signal is. In an experimental way, activation of the 
nonlinear electric device NM, for example, NM can be a nonlinear 
resistor or a memristor, the LC circuit is excited to present continuous 
oscillation even without applying external forcing current is because the 
nonlinear electric element can be regarded as exciting source. The 
emitted current ie from the output terminal will interact with the 
injected current ie, and combination of two channels currents will con
trol the amplitude and frequency of final output signals iout. From 
physical viewpoint, the outputs ie from the LC circuit can suppress finite 
frequency band of the injected signal and then wave filtering is realized. 
According to the Kirchhoff's theorem, the relation between physical 
variables in Fig. 1 can be obtained by 
⎧
⎪⎪⎨

⎪⎪⎩

C
dV
dt

= ie − iL − iNM ;

L
diL
dt

= V; iout = is + ie.
(1) 

The channel current along the electric component NM often shows 
nonlinear relation between the voltage and current as follows 
⎧
⎪⎪⎨

⎪⎪⎩

iNM = −
1
ρ

(

V −
1
3
V3

V2
0

)

, nonlinear resistor;

iNM =
(
α+ 3βϕ2)V,MFCM.

(2) 

That is, when the switch S in Fig. 1 is closed, the nonlinear current or 
memristive current in Eq. (2) is effective to support continuous oscilla
tion in the neural circuit and then the firing patterns are controlled. 
Furthermore, the output signal iout becomes dependent on the load cir
cuit when it is connected to drive another neural circuit or 

electromechanical device. 

2.2. Electromechanical arm and leg driven by neural circuit 

The current carrying coil is subjected to Ampere force in a magnetic 
field, and it is powerful to drive a electromechanical beam (EEB) when 
the coil is enwound to the end of the beam (for simplicity, iout. = iEM), as 
shown in Fig. 2. 

According to Fig. 2, the spring generates a damping force, which 
controls the stability of the moving beam. A motional electromotive 
force is evoked when the coils adhere to the moving beam continues to 
cut the magnetic field lines, while no induced electromotive force occurs 
when the channel current iEM is kept as a constant. On the other hand, 
the coils of the load circuit connecting to the moving beam are linked to 
a voltage source will build a close loop, and the time-varying iEM will 
produce an induced electromotive force as well. The external magnetic 
field with intensity B generates an ampere force FA on the coils with N 
turns. As a result, the U shaped rod connected to the moving beam will 
be driven by the Ampere's force FA (=2NBl0iEM) in an external stable 
magnetic field. The coils adhere to the U shaped rod with N rounds, and 
the displacement changes of the moving beam with total quality m0 can 
be estimated by 
⎧
⎪⎪⎨

⎪⎪⎩

dx
dt

= y;

dy
dt

=
2N
m0

Bl0 iEM −
η
m0

y −
K
m0

x.
(3) 

The gains (η, K) in Eq. (3) the damping coefficient and elastic coef
ficient of spring, respectively. The displacement variable x has distinct 
physical unit, and moving equation can be converted into dimensionless 
form by applying suitable scale transformation. The motional electro
motive force along the coil in Fig. 2 is approached by εMB1 = 2NBl0dx / 
dt when the moving beam pass through the field, and the induced 
electromotive force εMB2 = LEMdiEM / dt is dependent on the changes of 
channel current iEM. Some physical parameters (V0, C, ρ) in the neural 
circuit can be used as reference values when the neural circuit in Fig. 1 is 
used to excite the load circuit of electromechanical arm in Fig. 2. 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

τ = t
ρC, x̂ =

x
l0
, ŷ =

ρC
l0

y, i′EM =
ρiEM
V0

;

a =
2ρC2NBV0

m0
, b =

ρCη
m0

, k1 =
ρ2C2K
m0

.

(4) 

In a dimensionless space, the moving beam is described by 

Fig. 1. Schematic diagram for neural circuit. L, C, NM represents an inductor, 
capacitor and nonlinear resistor including memristor, phototube and piezo
electric ceramic, respectively. 

Fig. 2. Schematic diagram for electromechanical arm/leg. The section length 
of the N rounds coil has a length l0, which measures the distance between two 
rods of the left end of the beam. B represents the external magnetic field, and x 
denotes the displacement of the moving beam along the horizontal plane. The 
spring has an elastic coefficient K and iEM denotes the channel current across the 
coils of the load circuit. 
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⎧
⎪⎪⎨

⎪⎪⎩

dx̂
dτ = ŷ;

dŷ
dτ = ai′EM − bŷ − k1 x̂.

(5) 

The dimensionless current i′EM comes from the output end of the 
neural circuit. In a practical way, it can be selected as different forms 
including spiking, bursting and even chaotic series. For dynamical 
analysis, the signal series for i′EM can be derived from the membrane 
potential of a neuron, which can be stimulated to stabilize suitable firing 
patterns. The field energy W1 in the neural circuit and the mechanical 
energy W2 for the moving beam are defined in Eq. (6a) and the equiv
alent dimensionless forms are updated in Eq. (6b). 
⎧
⎪⎪⎨

⎪⎪⎩

W1 =
1
2
CV2 +

1
2
Li2L +

1
2
LEMi2EM ;

W2 =
1
2
Kx2 +

1
2
m0y2.

(6a)  

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u =
V
V0

, v =
iLρ
V0

, μ1 =
ρ2C
L

;

μ2 =
ρ2C
LEM

, μ3 =
Kl20
CV2

0
, μ4 =

m0l20
ρ2C3V2

0
;

H1 =
W1

CV2
0
=

1
2
u2 +

1
2
v2

μ1
+

1
2
i′2EM
μ2

;

H2 =
W2

CV2
0
=

1
2
μ3 x̂

2 +
1
2
μ4 ŷ

2.

(6b) 

LEM defines the inductance coefficient for the coil of the load circuit 
in the mechanical arm. The neural circuit can present periodic and/or 
chaotic firing modes during the shift of energy levels, as a result, the load 
circuit is controlled in the channel current and the motion of the moving 
beam is regulated with synchronous changes of the mechanical energy. 
The beam begins to move when the electric field energy is converted to 
mechanical energy. For simplicity, the output signal iout from Fig. 1 is 
applied to excite the EEB in Fig. 2, the coils adhere to the moving beam 
can be considered as load circuit. As a result, the iout will equal to the 
channel current iEM and then the neural circuit will suffer from feedback 
from the load circuit embedded to the moving beam. A complete dia
gram in Fig. 3 for the neural circuit coupled with electromechanical arm 
can be approached by combing Figs. 1 and 2 as follows. 

Therefore, the correlation between variables for the coupled circuit 
and moving beam can be measured by 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
dV
dt

= is − iL − iNM − iEM ;

L
diL
dt

= V;

LEM
diEM

dt
= V − 2NBl0y;

dx
dt

= y;

dy
dt

=
2N
m0

Bl0 iEM −
η
m0

y −
K
m0

x.

(7) 

The coefficients (L, LEM, C) describes the inductance coefficient for 
the coils in the neural circuit and load circuit, capacitance of the 
capacitor of the neural circuit, respectively. When the channel current 
across the NM is given in the form as the first formula in Eq. (2), the 
interaction between the neural circuit and the moving beam can be 
explored in the dynamical model in a new group of dynamical equations. 
Apply similar the scale transformation presented in Eq. (4), and other 
variables and parameters in dimensionless forms are redefined as 
follows. 

i′s =
ρ
V0
is, λ1 =

ρ2C
L

, λ2 =
ρ2C
LEM

, λ3 =
2NBl20
LEMV0

. (8) 

Inserting the variable and parameters into Eq. (7), it obtains a group 
of nonlinear equations as follows 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

du
dτ = i′s − v+ u −

1
3
u3 − i′EM ;

dv
dτ = λ1u;

di′EM
dτ = λ2u − λ3 ŷ;

dx̂
dτ = ŷ;

dŷ
dτ = ai′EM − bŷ − k1 x̂.

(9) 

By taming the external forcing current is and its equivalent dimen
sionless form i′s, the neuron will switch two different firing modes and 
then the channel current in the load circuit is changed to control the 
moving the beam under Ampere's force. Therefore, combination of 
Figs. 1 and 2 can be discussed in Eq. (9) by exploring the response 
relation between input current and displacement of the moving beam. It 
is interesting to discuss similar case when two beams are connected with 
another spring, and it is helpful to discern the cooperation between two 
arms when the muscle is excited by electrical signals. 

2.3. Double electromechanical arms and legs 

Two identical electromechanical arms in Fig. 2 are coupled with a 
spring, and a pair of beams is driven by electromagnetic force for 
behaving the cooperation of two artificial arms in Fig. 4. 

From Fig. 4, any dislocation of the two moving beams will apply 
restoring force on each beam. For simplicity, the load circuits of the 
double EEB can be excited by using the same forcing current iEM. The 
displacements for the two moving beams are marked as x1 and x2, the 
distance between two moving beams is fixed as L0. Therefore, the spring 
connects two moving beams and applies a feedback force as k(x1 − x2) 
along the direction of the moving beams. Therefore, the displacements 
for the two moving beams are approached by 

Fig. 3. Schematic diagram for neural circuit interacting with the load circuit of 
the electromechanical arm. The current across the inductor L, nonlinear 
element NM and capacitor C is described by iL, iNM, iC, respectively. 
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1

dt
= y1;

dy1

dt
=

2N
m0

Bl0 iEM −
η
m0

y1 −
K
m0

x1 −
k
m0

(x1 − x2);

dx2

dt
= y2;

dy2

dt
=

2N
m0

Bl0 iEM −
η
m0

y2 −
K
m0

x2 −
k
m0

(x2 − x1).

(10) 

In fact, any changes of the channel current (iEM) relative to the 
outputs from the neural circuit can induce displacement diversity be
tween two moving beams, and the connecting spring will stretch to 
impose feedback force to the beam for reaching possible synchronous 
motion. When the same exciting current (channel current) iEM is applied 
to the two moving beams, the motional and induced electromotive force 
in the load circuit will be half of the output voltage from the neural 
circuit. By applying similar scale transformation for a single beam, the 
dynamics of the double moving beams can be described by 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

du
dτ = i′s − v+ u −

1
3
u3 − i′EM ;

dv
dτ = λ1u;

di′EM
dτ =

1
2
λ2u −

1
2
λ3 ŷ;

dx̂1

dτ = ŷ1;

dŷ1

dτ = ai′EM − bŷ1 − k1 x̂1 − k′(x̂1 − x̂2);

dx̂2

dτ = ŷ2;

dŷ2

dτ = ai′EM − bŷ2 − k1 x̂2 − k′(x̂2 − x̂1).

(11) 

The dimensionless coefficient defines as k′ = kρ2C2/m0. By taming 
the external forcing current, the neural circuit is regulated in the firing 
patterns, and its coupling to the load circuit will drive the moving beam 
in different states. By tracking the trajectories of the coupled beams, 
phase synchronization and complete synchronization between the two 
moving beams can be discussed. Similar to the definition in Eqs. (6a) and 
(6b), the energy function for the coupled two electromechanical beams 
can be obtained. When the external forcing current i′s is adjusted, which 
the signal source can be voice applied on a piezoelectric ceramic or 
illumination imposed on a photocell, the encoded electric signal is 
encoded to excite the load circuit for driving the coupled beams. As a 

result, this device can simulate the linear motion of arms. Considering a 
noisy disturbance relative to external electromagnetic field, noise term 
can be applied to the formula for the membrane potential in the neuron- 
coupled beam system, and the motion of the beam can be affected. When 
the nonlinear component NM in Figs. 1 and 3 is selected with memristor, 
an additive constant voltage V0 in the branch circuit is required to set 
reference voltage for further scale transformation. 

2.4. Electromechanical arm and leg driven by memristive circuit 

The involvement of MFCM can describe the inner electromagnetic 
induction during the propagation of ions along the branch circuit and 
channels. The injected and perceived signals are encoded via the 
memristive channel, and energy exchanges are continued between 
electric field and magnetic field accompanying with changes of the 
capacitive and inductive variables. In Fig. 5, a simple memristor-based 
neural circuit is designed, and its outputs are used to excite the load 
circuit via the coupling capacitor CM. 

The constant voltage V0 can be considered as resting potential of the 
ion channel, Vs is relative to signal source for mimicking the acoustic 
electric conversion via a piezoelectric ceramic and photoelectric con
version via a phototube. The component CM connected with a constant 
resistor is used to keep balance the output voltage from the neural circuit 
and the electromotance generated from the load circuit. The physical 
variables for Fig. 5 can be confirmed in the following equations 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
dV
dt

= is − iL − iNM − iEM ;

L
diL
dt

= V; iNM =
(
α+ 3βϕ2)(V − V0);

LEM
diEM

dt
= V − Vm − iEM⋅Rm − 2NBl0y;

CM
dVm

dt
= iEM ;

dϕ
dt

= V − V0;
dx
dt

= y;

dy
dt

=
2N
m0

Bl0 iEM −
η
m0

y −
K
m0

x.

(12) 

Magnetic field energy is shunted into the inductive and memristive 
channels when channel current is passed along the memristive channel. 
Indeed, the memristor can be considered as an equivalent inductor and 
then its field energy WM = 0.5φiNM can be converted into dimensionless 
form HM by applying suitable scale transformation on the variables and 
parameters in the field energy function WM. 

Fig. 4. Schematic diagram for double electromechanical arms. EEB1 and EEB2 
denote two moving beams and they are connected with an ideal spring with 
elastic coefficient k. 

Fig. 5. Schematic diagram for electromechanical arm/leg driven by mem
ristive circuit. 
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u =
V
V0

, v =
iLRm

V0
,φ =

ϕ
RmCV0

, τ = t
RmC

, i'EM =
RmiEM
V0

;

i's =
isRm

V0
,V '

m =
Vm

V0
,α' = αRm, β' = βR3

mC
2V2

0 , δ1 =
R2
mC
L

;

δ2 =
R2
mC
LEM

, δ3 =
2NRmBl20
LEMV0

, δ4 =
C
Cm

, δ5 =
2RmNBV0C2

m0
;

δ6 =
RmCη
m0

, δ7 =
Rm

2C2K
m0

, x̂ =
x
l0
, ŷ =

RmC
l0

y.

(13) 

The energy function for these electric components in the neural 
circuit and load circuit are described by 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W1 =
1
2
CV2 +

1
2
Li2L +

1
2
LEMi2EM +

1
2
CmV2

m +
1
2
ϕiNM ;

H1 =
W1

CV2
0
,

=
1
2
u2 +

1
2
v2

μ1
+

1
2
i'2EM
μ2

+
1
2
V '2

m

δ4
+

1
2
(
α'φ+ 3β'φ3)(u − 1);

μ1 =
ρ2C
L

, μ2 =
ρ2C
LEM

, δ4 =
C
Cm

,α' = αRm.

(14) 

The moving beam has the same mechanical energy shown in the 
second formulas in Eqs. (6a) and (6b). Furthermore, the dynamics of the 
memristive neural circuit coupled with the load circuit and the moving 
beam is described by 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

du
dτ = i′s − v −

(
α′ + 3β′φ2)(u − 1) − i′EM ;

dv
dt

= δ1u;

di′EM
dt

= δ2
(
u − V′

m − i′EM
)
− δ3 ŷ;

dV′
m

dt
= δ4i′EM ;

dφ
dτ = u − 1;

dx̂
dτ = ŷ;

dŷ
dτ = δ5i′EM − δ6 ŷ − δ7 x̂.

(15) 

In presence of external electromagnetic radiation, noisy or periodic 
forms can be applied to the right side for the formula in the fifth formula 
in Eq. (15), and energy injection enables shift of the inner energy level of 
the neural circuit and the load circuit. As a result, the firing modes and 
the coupling channel current iEM (and its dimensionless form i′EM) are 
changed to guide the motion of the beam/arm under electromagnetic 
force. 

2.5. Adaptive control of neural circuit and moving beam under energy 
flow 

According to Eqs. (14) and (6b), most of the energy terms have 
quadratic power of variables except the energy term for memristive 
component. When all the parameters are known and all the variables are 
available, the energy function can be discerned with exact value all the 
time. In some recent works, a generic adaptive growth law for intrinsic 
parameters of the neurons is suggested to control mode transition and 
the intensity of synaptic coupling between neurons [59,60]. The 
continuous growth of intrinsic parameters can be controlled by Heavi
side function when the energy level or energy proportion is beyond 
certain threshold. For example, the parameter δ4 = C/Cm accounts for 
the ratio for two capacitive elements, and any shape deformation of 
these components will induce parameter shift during energy injection 
and release. Therefore, a group of adaptive law can be suggested to 

control the growth or decrease of the parameters until it reaches a 
saturation value. 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dδ4

dτ = σ⋅δ4Θ(H1 − κ1),Θ(P) = 1,P ≥ 0,Θ(P) = 0,P < 0;

dδ4

dτ = σ⋅δ4Θ
(
HL

H1
− κ2

)

;

dδ4

dτ = σ⋅δ4Θ
(
HC

H1
− κ3

)

.

(16) 

Positive value for the gain σ supports continuous growth while 
negative value for σ just induces decrease of the parameter. H1 denotes 
the total dimensionless energy (Hamilton energy) for the neuron and it 
can be mapped from the field energy for the neural circuit. HC and HL 
represent the dimensionless capacitive and inductive energy for the 
neuron, respectively. κ1, κ2 and κ3 are selected thresholds. Other bifur
cation parameters can be applied with the similar control law in Eq. (16) 
no matter the models are presented in oscillator-like form or maps. 

In fact, most of the variables for channel current are not detectable in 
synchronous way except the time series for voltages. As mentioned 
above, the field energy in these ideal capacitive components accounts 
for energy terms quadratic form, therefore, voltage function can be used 
to replace the energy terms in the growth law in Eq. (16), and it can be 
updated with a reliable form as follows. 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dδ4

dτ = σ⋅δ4Θ
(
V′2

m

u2 − κ1

)

,Θ(P) = 1,P ≥ 0,Θ(P) = 0,P < 0;

dδ4

dτ = σ⋅δ4Θ
(
V′2

m − κ2
)
;

dδ4

dτ = σ⋅δ4Θ
(
u2 − κ3

)
.

(17) 

In circuit implement, the variables in Eq. (17) can be replaced with 
the corresponding physical variables, and additive branch circuit can be 
designed to control the neural circuit and moving beam in adaptive way. 
From mathematical aspect, researchers can write hundreds of models 
and the parameters can be adjusted to produce similar spiking and 
bursting patterns as biological neurons. Furthermore, these neuron 
models can be simulated on many equivalent nonlinear circuits. How
ever, the most important thing is to clarify its intrinsic working mech
anism and release its self-adaptive property, in particular, the energy 
function should be provide with exact physical explanation. From my 
understanding, the intrinsic energy flow controls all the target and 
desired states when suitable adaptive control law is discovered and 
confirmed. In this way, more neural circuits and combined arrays can be 
built to control the complex motion of artificial arms/legs and electro
mechanical devices freely. Finally, the author honestly expects this 
minireview can provide possible guidance for readers in this field, and 
these suggestions can be helpful to explore the application of artificial 
neural circuits. Complete dynamical analysis on the suggested models 
can be finished by readers. 

3. Conclusions 

In this review, a generic neural circuit is proposed and its energy 
function is defined. The working principle of a simple electromechanical 
beam is explained and the moving beam under electromagnetic force 
(Ampere force) can mimic the motion of artificial arms. Appropriate 
scale transformation is provided to obtain dimensionless energy for the 
neural circuit-coupled electromechanical beam, and the dynamical 
equations are expressed in exact form. Furthermore, two electrome
chanical beams are connected with a spring, and the outputs from the 
neural circuit are used to excite the load circuit adhere to the moving 
beams, and this device can simulate the gaits cooperation between two 
artificial arms. Finally, an adaptive control law under energy flow is 
suggested to control the neural circuit, and thus the moving beam can be 
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guided to target gaits freely. This review provides possible clues to 
design reliable neural circuits, and the interaction between neural cir
cuits and artificial arms developed from mechanical devices is explained 
from physical and dynamical aspect. The suggestions and clarification in 
this review provides clues for application of computational neuroscience 
and intelligent control of dynamical systems. 

Data statement 

No new data are created in this work. 

CRediT authorship contribution statement 

Jun Ma: Writing – review & editing, Writing – original draft, Visu
alization, Project administration, Funding acquisition, Formal analysis. 
Yitong Guo: Visualization, Validation, Investigation, Formal analysis. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data will be made available on request. 

Acknowledgement 

This project is supported by the National Natural Science Foundation 
of China under the Grant No. 12072139. The authors thank Dr. Ying Xie 
for her help for plotting Figs. 1 and 5. 

References 

[1] Wisløff U, Loennechen JP, Falck G, et al. Increased contractility and calcium 
sensitivity in cardiac myocytes isolated from endurance trained rats. Cardiovasc 
Res 2001;50:495–508. 

[2] Valentim MA, Brahmbhatt AN, Tupling AR. Skeletal and cardiac muscle calcium 
transport regulation in health and disease. Biosci Rep 2022;42:BSR20211997. 
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Most of nonlinear oscillators composed of capacitive and inductive variables can obtain the Hamilton energy by using the
Helmholtz theorem when the models are rewritten in equivalent vector forms. The energy functions for biophysical neurons can
be obtained by applying scale transformation on the physical field energy in their equivalent neural circuits. Realistic dynamical
systems often have exact energy functions, while some mathematical models just suggest generic Lyapunov functions, and the
energy function is effective to predict mode transition. In this paper, a memristive oscillator is approached by two kinds of
memristor-based nonlinear circuits, and the energy functions are defined to predict the dependence of oscillatory modes on
energy level. In absence of capacitive variable for capacitor, the physical time t and charge q are converted into dimensionless
variables by using combination of resistance and inductance (L, R), e.g., τ=t×R/L. Discrete energy function for each memristive
map is proposed by applying the similar weights as energy function for the memristive oscillator. For example, energy function
for the map is obtained by replacing the variables and parameters of the memristive oscillator with corresponding variables and
parameters for the memristive map. The memristive map prefers to keep lower average energy than the memristive oscillator, and
chaos is generated in a discrete system with two variables. The scheme is helpful for energy definition in maps, and it provides
possible guidance for verifying the reliability of maps by considering the energy characteristic.

Hamilton energy, memristor, Helmholtz theorem, scale transformation, memristive circuit
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1 Introduction

Nonlinear circuits are often used as signal sources and fur-
ther filtering of the output signals can match with some
realistic signals within specific frequency band. High order
nonlinear terms account for complexity and specific function
in electric components, which are crucial for supporting
chaotic states and field energy savage. By taming some in-
trinsic parameters, chaos and hyperchaos are induced in the
nonlinear circuits [1–4], which are often described by
equivalent nonlinear oscillators, and these chaotic systems
have potential application in image encryption [5–8]. The

bionics throws light on the achievements of artificial in-
telligence [9,10] and functional enhancements of artificial
neurons and setting on biophysical neurons [11–15]. For
further clues about model approach of neural activities from
physical aspect, readers can explore suggestions in the recent
review and the references therein [16].
The reliability of nonlinear circuits depends on the con-

trollability. It means that most of the intrinsic parameters can
be controllable in wide range. External stimuli accompany-
ing with energy injection can be encoded to guide the outputs
to reach target levels. The cell membrane and synapse of a
biological neuron have distinct flexibility, as a result, gra-
dient energy and external stimuli including forcing current,
depolarized field will change the energy level and firing
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modes in neural activities in adaptive way. Therefore, the
synaptic intensity is regulated under the energy flow [17,18].
For example, an adaptive law [17,18] is suggested to control
the growth of synaptic intensity in two kinds of memristive
neurons, which are developed from neural circuits connect-
ing with memristive channels. Furthermore, two or more
neurons can be connected by synapses with a growth of the
synaptic intensity until reaching energy balance, while het-
erogeneity [19,20] can be created in the neural network due
to continuous energy collection from the adjacent neurons.
Most of the nonlinear circuits can present periodic or

chaotic states. A few nonlinear circuits can be tamed to
present similar firing patterns derived from biological neu-
rons. Some neural circuits are designed and their di-
mensionless forms are used as neuron models [21–25]. It is
crucial to consider the physical property of biological neu-
rons before building an equivalent simple neural circuit.
Static distribution of intracellular ions induces electric field
in the cell membrane, stochastic diffusion and propagation of
ions across the cell membrane induce magnetic field due to
current effect. Continuous exchange of energy flow will
change the distribution of intracellular and extracellular ions,
and thus the relation between membrane potential and
channel current becomes nonlinear dependence. Therefore,
capacitor, inductor, nonlinear resistor and constant voltage
source are four necessary elements for building a simple
neural network. The capacitor accounts for the capacitive
property of cell membrane, an inductor mimics the magnetic
field effect because of propagation and diffusion of ions,
constant voltage results from the resting potential in an ion
channel. In a neural circuit, a constant voltage source is often
connected to the inductor in series, and the nonlinear resistor
is used as additive channel to shunt energy flow. When
piezoelectric ceramics, phototube and thermistor are in-
corporated into the neural circuit, the neurons become sen-
sitive to external voice, illumination and temperature [26–
30]. In particular, the involvement of memristive current and
magnetic flux variable into the neuron models can estimate
the electromagnetic induction and radiation [31–35]. Based
on these memristive neurons, the collective neural activities
can be controlled under field coupling even synaptic cou-
pling is suppressed greatly.
Oscillator-like models can be derived from circuit equa-

tions by applying scale transformation on the physical vari-
ables and parameters in the neural circuits. The energy
function composed of capacitive, inductive and memristive
terms can be mapped from the field energy for the electric
components with distinct field effect including capacitor,
inductor and memristor. The energy function can also be
derived and verified by using the Helmholtz theorem when
the formulas for the neuron model are updated with vector
forms. The emergence of chaos in an autonomous oscillator
requires involvement of three variables at least in absence of

noisy disturbance and time delay. However, a map can pro-
duce chaotic series even one variable is regulated. To pro-
duce chaotic behaviour in the neural activities, three-variable
neurons and two-variable models driven by external periodic
current in the form of nonlinear oscillators have been in-
vestigated extensively. However, discrete systems and maps
(discrete neurons) [36–38] are effective to mimic the main
firing modes in some biological neurons, and the involve-
ment of memristive term is helpful to estimate the electro-
magnetic induction as well [39,40]. Memsitor shows great
application in neural circuits and synapse implement for
neuromorphic computing see recent review works [41–44].
Most of the memristive oscillators can be approached by
setting equivalent memristor-based circuits and the energy
characteristic is clear. However, many works about discrete
memristor and memristive maps are discussed from mathe-
matical definition and field programmable gate array
(FPGA) simulation [39,45–49], and how to describe the
energy characteristic keeps open. Therefore, it is a challenge
to define and estimate the energy function for map neurons,
and the energy level dependence on firing modes keeps open.
In this paper, a memristive oscillator is expressed by two

different kinds of nonlinear circuits coupled by magnetic
flux-controlled memristor (MFCM) and charge-controlled
memristor (CCM), respectively. CCM and a voltage-con-
trolled element are used to couple the inductor when capa-
citor is not available. After scale transformation, two kinds of
memristor-based circuits are described by similar memristive
oscillators and energy functions are defined. Applying linear
transformation on the variables and intrinsic parameters,
each memristive oscillator is replaced by a memristive map
under covariation. For example, dy/dt=A×y(1−y) to
xn+1=B×xn(1−xn). Then the energy function for the memris-
tive oscillator is referred to define a discrete energy function
for the map with the same weights. Bifurcation analysis is
carried out, and the average energy is calculated to predict
coherence resonance in the memristive maps.

2 Model and scheme

Reliable algorithm is crucial to obtain numerical solutions
for nonlinear equations, e.g., the fourth order Runge-Kutta
algorithm is effective to find solve numerical results for
nonlinear oscillators described by differential equations,
which are often discretized in exact forms. In particular, the
involvement of noisy excitations and disturbances makes a
stochastic dynamical system, and the approach of numerical
results depends on reliable algorithms [50,51]. On the other
hand, map modelling of complex systems can avoid and
reduce the difficulty during numerical approach. In ref. [52],
energy function for memristive devices is defined and esti-
mation of energy for some maps is discussed. It is assumed
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that the same weights can be applied for the energy function
of a map by exploring the Hamilton energy function for an
equivalent nonlinear oscillator, which has distinct covaria-
tion with the map. In ref. [53]. linear transformation is ap-
plied to bridge connection to two nonlinear oscillators and
their equivalent maps. The capacitive energy 0.5C×V2 for a
capacitor and inductive energy 0.5L×i2 for an inductor can be
mapped into equivalent forms as 0.5A×x2 and 0.5B×y2, where
V, i are physical variables, x, y are corresponding di-
mensionless variables, and A, B are normalized gains for the
energy terms. Both MFCM [54–56] and CCM [57–59] can
save and contain field energy when they are incorporated
into a linear or nonlinear circuit. The energy property in an
MFCM and CCM can be described by suitable energy
function in an equivalent inductor and capacitor, respec-
tively. In fact, the energy description for memristive devices
often presents a high order term. That is, scale transformation
bridges connection between the circuit equations and the
nonlinear oscillator, field energy and Hamilton energy
completely [60].
For a nonlinear oscillator with a few variables, the dy-

namics can be investigated in its equivalent nonlinear circuit.
It is a challenge to verify the numerical results during se-
lecting and combining these potential electric components.
For example, the variables (x, y, z, …) for a nonlinear os-
cillator can be described by the output voltage for a capa-
citor, induction current along an induction coil, and a
constant term often means involvement of constant voltage
source in the branch circuit. Is it possible to build more
equivalent nonlinear circuits for mimicking the dynamics for
the same nonlinear oscillator? From physical viewpoint,
continuous oscillation in a nonlinear circuit requires the in-
volvement of capacitive and inductive components syn-
chronously. In ref. [53], the author suggested a memristive
oscillator with two variables, and scale transformation is
applied to obtain an equivalent map for further energy esti-
mation.

2.1 Linear transformations between memristive oscil-
lator and memristive map

The memristive oscillator is given in the form as follows:
y ry y y

a by

d
d = (1 ) ( + 3 ) ,

d
d = + ,

(1)
2

where r, a, b, α′, β′ are dimensionless parameters, and y, φ′
are dimensionless variables. Indeed, the eq. (1) is autono-
mous and it seldom presents chaotic series without external
stimulus or noisy disturbance. The Hamilton energy for the
memristive oscillator is described by

H y y= 1
2 + 1

2( + 3 ) . (2)2 3

When the variable y is mapped from a voltage variable, the
two energy terms are relative to capacitive and memristive
field, respectively. By applying the following linear trans-
formation in eq. (3), the memristive oscillator in eq. (1) is
replaced by a memristive map with similar form in discrete
type in eq. (4).

r r
r

b

r
r x r

r y a k

= 1 + , = , =
(1 + )

, = ,

= (1 + ) , = 1 + , = ( 1) ,
(3)

n n n n

2

2

where the variables (yn, φn′) are sampled time series for the
variables (y, φ′) in eq. (1), Δτ is the time step for numerical
approach of eq. (1).

x x x x
k x

= (1 ) ( + 3 ) ,
= + .

(4)n n n n n

n n n

+1
2

+1

The memristive map in eq. (4) can be regulated in the
parameters for developing different firing patterns. The
memristive oscillator in eq. (1) can be verified by designing
two equivalent circuits by incorporating different memris-
tors. Case 1: Capacitor, nonlinear resistor and MFCM are
connected in the neural circuit. Case 2: Inductor, a voltage-
dependent element and CCM are connected in the neural
circuit.

2.2 Approach of memristive oscillator by using MFCM

To verify the reliability of eq. (1), a nonlinear circuit in
Figure 1 is plotted to match with the energy property in
eq. (2). It is helpful to predict the physical properties of
electric components involved in this circuit.
The channel current iNR across the nonlinear resistor and

memristive current iM are respectively described by [60]

i r V V
V

i q
t M V V

= ( );

= d
d = ( ) = ( + 3 ) ,

(5)
NR

2

0

M 1 1
2

Figure 1 Schematic diagram for a neural circuit coupled by MFCM. A
memristive circuit composed of one capacitor, nonlinear resistor (NR) and
one MFCM.
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where V estimates the output voltage for the capacitor with
capacitance C, is the magnetic flux variable across the
memristor with physical parameters (α, β). V0 is constant,
and the gains (r, b) are the same parameters in eq. (1). Under
the Kirchhoff’s theorem, the relations between physical
variables for Figure 1 are defined by

C V
t i i

t A bV

d
d = ,

d
d = + ,

(6)
NR M

where the normalized parameter b has no physical unit, and
the parameter A has physical unit. The physical variables and
parameters in eq. (6) are rewritten in a dimensionless form
[61]:

y V
V CV

t
C

C V a A C

= , = , = ,

= , = , = .
(7)0 0

1
3 2

0
2

1

Inserting the variables and parameters for eq. (7) into the
eq. (6), it has the same form as presented in eq. (1). That is,
eq. (6) can produce similar behaviors in the memristive os-
cillator in eq. (1). The capacitive and memristive energy W1

and the dimensionless form for eq. (6) are estimated by [61]

W CV L i CV i

H W
CV y y

= 1
2 + 1

2 = 1
2 + 1

2 ,

= = 1
2 + 1

2( + 3 ) .
(8)

1
2

M M
2 2

M

1
1

0
2

2 3

That is, the field energy in eq. (8) is consistent with the
energy description in eq. (2), and the Hamilton energy is
verified by using the Helmholtz theorem when the memris-
tive oscillator is rewritten in a vector form. Therefore,
combination of a capacitor and an MFCM accompanying
with a nonlinear resistor is effective to reproduce similar
dynamical behaviors in the nonlinear oscillator in eq. (1).
The potential mechanism is that continuous oscillation in
nonlinear system requires continuous exchange between
capacitive and inductive field.

2.3 Approach of memristive oscillator by using CCM

A CCM has similar physical property as capacitor by keep-
ing capacitive property in field and energy characteristic. It is
interesting to investigate whether combination of inductor
and CCM can develop similar dynamics in eq. (1), and the
circuit implement is plotted in Figure 2.
According to Figure 2, the dimensionless variables (y, φ′)

in eq. (1) can link to the channel current across the inductor
and charge for the CCM. The relation between variables in
Figure 2 is defined as follows:

L i
t V V

q
t Bq di

d
d = ,

d
d = + .

(9)
L

i

L

ML

The parameter B is relative to the physical property of the
CCM, and it is approached by B=σ/C0, which C0 measures
the capacitive ability in the CCM and σ is a constant con-
ductance. The physical characteristic for the CCM and
channel current for NR are defined by

V i i
V

V M q i q i

= ( ),

= ( ) = ( + 3 ) .
(10)i L

L

L L

2

0

M 2 2
2

L

By applying similar scale transformation for the variables
and parameters in eqs. (9) and (10), a group of new variables
and parameters are obtained by

z i
V q q

C V
t
C

C
L

C
L

C V
L c

= , = , = , = ,

= , = , = .
(11)

L

0 0 0 0

2
0

0
2

0
3

0
2

2

As a result, the eq. (9) is updated in a dimensionless form
as follows:

z z z q z

q cq dz

d
d = (1 ) ( + 3 ) ,

d
d = + .

(12)
2

It has the identical form shown in eq. (1) even the symbols
for variables and parameters show some differences.
Therefore, the two memristive systems in eqs. (1) and (12)
can present similar oscillatory characteristic by applying
suitable parameters. It is important to identify the energy for
the nonlinear circuit in Figure 2 and the field energy and its
dimensionless energy form are given in

W Li C V Li qV

H W
C V z q q z

= 1
2 +1

2 = 1
2 +1

2 ,

= = 1
2 + 1

2 ( + 3 ) .
(13)

L L2
2

M M
2 2

M

2
2

0 0
2

2 3

By using similar linear transformation, the dynamics in
eq. (12) can be presented in a map form.

w w w q w
q q µw

= (1 ) ( + 3 ) ,
= + .

(14)n n n n n

n n n

+1
2

+1

Figure 2 Schematic diagram for a neural circuit coupled by CCM. A
memristive circuit connected by one inductor, nonlinear resistor (NR) and
one CCM.
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From eq. (12) to eq. (14), it requires the following criterion
for redefining the parameters and variables.

d µ

q q w z c

= 1 + , = , =
(1 + )

, = ,

= (1 + ) , = 1 + , = 1,
(15)

n n n n

2

2

where the variables (z′n, qn′) are discretized from the vari-
ables (z′, q′) in eq. (12). Both eqs. (4) and (14) have the
similar form even these dimensionless variables are mapped
from different physical variables. However, their energy
functions in eqs. (8) and (13) are much different because the
physical field energy can be kept in different types. It means
that combination of different electronic components will
have different energy thresholds and ranges. Indeed, circuit
implement of the same nonlinear oscillator is dependent on
the combination of electric components greatly. A capacitive
component is crucial to keep electric field, and then dis-
charge will pump energy into inductive components for in-
ducing continuous oscillation. When a capacitor is not
available, a CCM is effective to save and propagate charges
in continuous way. As a result, changes of the channel cur-
rent passed in the inductor or induction coil generate an in-
duced electromotive force. Therefore, capacitive
components are indispensable elements to build nonlinear
circuits, and specific component dependent on charge flow
similar as the form of eq. (10) becomes indispensable.

2.4 Scale transformation for physical parameters and
units

In generic way, standard physical time unit is available when
both intrinsic parameters including capacitance and re-
sistance (C, R) or capacitive and inductance (C, L) are
known, and then the physical time is converted into di-
mensionless time variable as τ=t/RC, or τ=t/(LC)1/2. In fact,
when the intrinsic parameter C is not known, another time
factor can be used as reference value

d µ

q q w z c

= 1 + , = , =
(1 + )

, = ,

= (1 + ) , = 1 + , = 1.
(16)

n n n n

2

2

Therefore, replacing the variables in eq. (9) can develop
the memristive circuit in another form without clarifying
B=σ/C0. A group of new variables and parameters are de-
fined by

z i
V q LV q t

L
L V k BL

= , = , = ,

= 1 , = , = .
(17)

L

0

2

0

2

2
0
2

5 2 2

The memristive circuit in eq. (9) is updated with a new
form as follows:

z z z q z

q k q dz

d
d = (1 ) ( + 3 ) ,

d
d = + .

(18)
2

2

It presents similar form as shown in eq. (12). As a result,
similar dynamics can be reproduced by taming the para-
meters in eq. (18). As a result, similar discrete system for
eq. (18) can be obtained in the form as presented in eq. (14).
The energy function for eq. (18) is given in the form as
follows:

W Li C V Li qV

H W
V L

W
LV z q q z

= 1
2 +1

2 = 1
2 +1

2 ,

= ( / ) = = 1
2 + 1

2( + 3 ) .
(19)

L L3
2

M M
2 2

M

3
2

0
2 2

2
2

0
2

2 3

Indeed, scale transformation seldom changes the energy
function for the memristive circuit. Therefore, eq. (18) has
the same form of energy function defined in eq. (13) ac-
companying the gain p=1/γ. It is interesting to discuss the
energy approach for the memristive maps in possible way.
Eq. (8) presents exact calculation of energy for the mem-
ristive eq. (1). Considering relation between these para-
meters for the oscillator and map, a discrete energy function
for eq. (4) is estimated as follows:

H x x= 1
2 + 1

2( + 3 ) . (20)n n n n n
2 3

For the memristive map in eq. (14), the energy function is
suggested as follows:

H p w q q w= [1
2 + 1

2( + 3 ) ] . (21)n n n n n
2 3

The weight or gain for the energy function in eq. (14) can
be selected with p=1, and it has no distinct impact on the
exchange between capacitive and inductive energy terms.
The discrete energy function in eq. (21) is consistent with a
discrete form from eq. (19), and it indicates that the di-
mensionless energy function is independent of the scale
transformation because the energy function can be mapped
from the sole field energy function for the memristive circuit
completely.
Appearance and emergence of chaos in an autonomous

nonlinear oscillator requires three variables at least. In ab-
sence of external periodic forcing or noisy excitation, the
memristive oscillator in eqs. (1), (12), (18) just contains two
variables. Therefore, periodic oscillatory states can be de-
veloped rather than inducing any chaotic series. As is known,
chaos can be induced one-variable map and two-variable
map. Therefore, the memristive maps shown in eqs. (4) and
(14) can be tamed to present chaotic states by setting ap-
propriate values for the dimensionless parameters for sup-
porting a positive Lyapunov exponent. The potential
mechanism is that the discretization operation for the non-
linear oscillators introduces time factor for the variables into
the new developed maps, and the sampled time series in
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periodic type are encoded in the amplitude and interval
synchronously. Therefore, these mapped discrete systems
can present chaos or new periodic characteristic. In this case,
the memristive maps have distinct advantage than the
memristive oscillators for producing similar firing activities
as biological neurons.

2.5 Adaptive growth law controlled by energy level

Biological neurons often show controllable properties during
the polarization and magnetization, and even shape de-
formation is induced by specific mechanical stimuli. As a
result, some intrinsic parameters for ion channel, capacitive
and inductive properties are changed. Indeed, we can use a
similar control law as in refs. [17,18] for the memristive
parameters in eqs. (1), (12) and (18), and then the memristive
oscillators can experience different firing modes and the
average value for the energy function will show corre-
sponding jump between different energy levels. To keep the
same form for variables, the growth of intrinsic parameter is
controlled with exponential form smoothly. For maps, the
growth criterion is considered as saturation form restricted
by a Heaviside function. For simplicity, we consider the
adaptive growth of one memristive parameter for the mem-
ristive map as follows:

( )n
N H

P P P P

= + int ( ),

( ) = 1, 0, ( ) = 0, < 0,
(22)n0

0

where α0 is the initial value for memristive parameter, Δα is
the growth step, n denotes iterations, N0 measures the in-
terval for next growth, κ is the energy threshold and the
Heaviside function in eq. (22) controls its growth when the
energy level is beyond a threshold. On the other hand,
average energy value often predicts high regularity in the
neural activities. Adaptive reduction in some parameters is
also effective to control the mode transition. For example,

( )n
N H

P P P P

= int ( ),

( ) = 1, 0, ( ) = 0, < 0.
(23)n0

0

In the next section for numerical approach, the case de-
fined in eq. (22) will be discussed. Δα>0 means positive
growth of the memristive parameter from a small value,
Δα<0 can calculate the case for reduction of memristive
parameter from a high value.

3 Results and discussion

The memristive neuron can be presented in similar form in
eqs. (1), (12) and (18) and parameters can be adjusted to
trigger similar dynamical behaviors. The fourth order Runge-
Kutta algorithm can be applied to explore the dynamics by
finding the numerical solutions for the memristive oscillator
even different symbols are used for the variables and para-
meters. Bifurcation parameters are changed to present dif-
ferent firing patterns, and the corresponding energy function
is calculated as well. Our main aim is to investigate the
dynamics and energy characteristic of the memristive map,
and nonlinear response under the suggested adaptive law in
eq. (23). At first, we calculated the mode selection in eq. (4)
by changing one parameter carefully, and the distribution of
variable series is plotted in Figure 3.
From Figure 3, it is demonstrated that the memristive map

shows distinct transition between different firing modes by
changing one intrinsic parameter carefully. Complete firing
patterns including spiking, bursting and chaotic states are
induced by taming a single parameter in continuous way. To
discern the dynamics and energy characteristic of this
memristive oscillator, formation of attractors and energy
evolution are plotted for the neuron presenting different
neural activities in Figure 4.
The profile of the attractor is relative to the firing mode

and energy level. From chaotic state to periodic firing pat-
terns, chaotic attractor is suppressed and the average energy
value is increased. The similar case for memristive map in
eq. (14) is explored, and the bifurcation diagram is plotted in
Figure 5.
Complete firing modes are found in the memristive map in

eq. (14) by adjusting one normalized parameter carefully,

Figure 3 Bifurcation diagram of Xn vs. parameter λ (a) and parameter ε (b). (a) ε=0.15; (b) λ=4.2. Setting parameters α=0.4, β=0.02, k=0.5 and initials (0.2,
0.1).
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and the mode transition in Figure 5 is some different from the
distribution in eq. (3). Furthermore, the formation of attrac-
tor, changes of variable and energy function for the map are
calculated in Figure 6. Shift in the average energy and
changes of attractor profile predict mode transition in the
memristive map.
By changing a single parameter in eq. (14), chaotic at-

tractor is guided to show periodic type, and the average en-
ergy for the map also shows slight increase. Furthermore, it
is interesting to discuss the formation of attractors and mode
transition when the memristive map neuron in eq. (14) is
regulated by the adaptive law in eq. (22), and changes of
attractors are shown in Figure 7. Form simplicity, α0=0.1,
Δα=0.005, κ=0.5, N0=40 are used for the control law and
map attractors are presented.
The shape of attractors is changed with adaptive growth of

one memristive parameter in the map, chaotic and periodic
attractors can be formed as well. For better clarification, the

transition in the membrane potential, energy level and
growth of memristive parameter is shown in Figure 8.
Distinct changes are observed in the series for membrane

potential and energy function during the growth of mem-
ristive parameter with constant footstep. Similar to the
growth criterion in eq. (22), one memristive parameter can be
regulated with negative growth in eq. (23), which begins
from a higher value to a lower value. Similar mode transition
can be detected. By changing other parameters with the same
control low, similar mode transition and jump between en-
ergy levels can be found as well.
By setting higher value for the gain Δα or smaller interval

N0, the memristive parameter encounters rapid growth and
mode transition becomes more distinct. Furthermore, the
case for μ=1.58, 2.85 is calculated in Figures 9 and 10.
From Figure 8 to Figure 10, the average energy is in-

creased from 0.142 to 0.607, and the firing mode is also
switched from chaotic to periodic oscillation. For most of the

Figure 4 Developed attractors, evolution of variable xn and energy level. (a1, a2, a3) ε=0.15; (b1, b2, b3) ε=1.45; (c1, c2, c3) ε=1.95. The other parameters
are fixed at λ=4.2. (a3) <Hn′>=0.214; (b3) <Hn′>=0.435; (c3) <Hn′>=0.572. The enlarged images show the situation with iterations between 500 and 550.

Figure 5 Bifurcation of variable Wn vs. parameter η (a) and parameter μ (b). (a) μ=1.75; (b) η=3.9. Setting parameters α=0.1, β=0.01, and δ=0.3.
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neuron models, the distributions of peak value, interspike
intervals (ISI), discrete variable vs. bifurcation parameter
seldom show continuous changes, and the firing modes in
neural activities are modified when one parameter is changed
continuously. That is, one bifurcation parameter can select
different values to support the same firing activities such as
chaotic, periodic spiking and bursting, and quiescent state.
By extensive approach the average Hamilton energy of a
neuron with similar firing mode, four distinct energy levels

or footsteps can be detected when a neuron is excited to
present four different firing activities [51]. A chaotic pattern
often occupies a lower energy level, and periodic pattern
often occupies a higher energy level. Both spiking and
bursting can be considered as similar to quasi-periodic state,
because distinct periodicity often requires higher energy le-
vel for keeping periodic oscillation.
For complete showing the dynamics of neural activities in

a neuron model, oscillator like or map type, reproduction of

Figure 6 Developed attractors, evolution of variable wn and energy level. (a1, a2, a3) μ=0.22; (b1, b2, b3) μ=1.85; (c1, c2, c3) μ=2.58. Setting parameters
η=3.9, p=1. The average energy for (a3) <Hn′′>=0.233, (b3) <Hn′′>=0.379, (c3) <Hn′′>=0.544. Enlarged images show the situation with iterations between 500
and 550.

Figure 7 Developed attractors by changing parameter μ. (a) μ=0.22; (b) μ=1.85; (c) μ=2.58. Setting parameters α0=0.1, Δα=0.005, κ=0.5, N0=40, β=0.01,
η=3.9, and the initial values select (0.2, 0.1).
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complete firing modes is the main characteristic. In presence
of noisy excitation, nonlinear resonances can be induced by
taming the intensity of noisy disturbance. Besides the cal-
culation of SNR (signal to noise ratio) and CV (coefficient

variability) vs. noise intensity, the distribution of average
Hamilton energy <H> with different noise intensities pro-
vides a more effective way to predict the emergence of co-
herence resonance. Within a transient period or iterations N,

Figure 8 Evolution of variable wn,qn (a), Hamiltonian energy (b), and growth of memristive parameter α (c). Setting parameters α0=0.1, β=0.01, κ= 0.5,
η=3.9, p=1, μ=0.22. Average energy value finds 0.142.

Figure 9 Evolution of variable wn,qn (a), Hamiltonian energy (b), and growth of memristive parameter α (c). Setting parameters α0= 0.1, β=0.01, κ= 0.5,
η=3.9, p=1, μ=1.85. Average energy value finds 0.502.

Figure 10 Evolution of variable wn,qn (a), Hamiltonian energy (b), and growth of memristive parameter α (c). Setting parameters α0= 0.1, β=0.01, κ= 0.5,
η=3.9, p=1, μ=2.58. Average energy value finds 0.607.
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average energy <H> prefers to estimate the average power of
the neuron or nonlinear oscillator, and high energy level is
effective to keep distinct periodic state. Therefore, noise
excitation can be applied on the right side of the first formula
in eqs. (4) and (14). By taming the noise intensity, similar
coherence resonance can be induced and confirmed by es-
timating the distribution of CV values or <Hn> for eqs. (21)
and (22). The Hamilton energy function H can be used as
Lyapunov function, dH/dτ often means energy release and
the system becomes stable within finite transient period. The
discrete energy functionHn is effective to restrict the stability
in a map. When energy is released in stable way, Hn is de-
creased in each iteration, and then

H H
H H < 1 . (24)n n

n n

+1

1

In the last decades, more interesting works about compu-
tational neuroscience have been finished on neuron models
presented in nonlinear oscillators [62–65], some of which are
included with biophysical effects, and numerical approach of
membrane potentials for neurons and further statistical
analysis often involves reliability of numerical algorithm in
presence of noisy disturbance. Based on these oscillator-like
models, coupling channels and links are tamed to control the
collective behaviors in networks with linear, hybrid and
higher order interaction [66–70], respectively. Map approach
from equivalent nonlinear oscillator and nonlinear circuits,
and reliability verification of the proposed maps can find
clues from the scheme in this paper. In particular, energy
definition for maps becomes helpful to discern the depen-
dence of oscillatory modes on energy level provides new
insights to predict occurrence of nonlinear resonance and
further control under energy flow.

4 Conclusions

In this work, physical approach of an oscillator neuron with
memristive term is discussed, and the equivalent nonlinear
circuits are suggested to mimic the nonlinear terms and
neural activities in the memristive neuron. It suggests two
kinds of neural circuits by using different functional electric
components. That is, a memristive oscillator can be im-
plemented in some equivalent circuits composed of different
electric components. When capacitive component as capa-
citor is not available, a CCM can behave similar role for
supporting energy exchange between magnetic field and
electric field. In particular, linear transition of sampled
variables from the memristive oscillator and accompanying
with time scale (such as time step for the nonlinear oscillator)
can define a group of new variables, which are combined to
build function maps. It provides theoretical evidence and
guidance to design functional maps rather than giving

mathematical maps arbitrarily. The obtained functional maps
have good covariant feature with the original functional os-
cillators. For example, removing the subscript for the vari-
ables in the map will show the same form in the formula for
nonlinear oscillator. As a result, a suitable energy function
with the same weight for capacitive, inductive and memris-
tive terms can be obtained for the memristive map in theo-
retical way. We also suggest an adaptive law to control one
memristive parameter in the map under energy flow, mode
transition occurs accompanying with energy shift during the
mode transition. It explains the self-adaption property in map
neurons from energy aspect. For further application of digital
circuits and intelligent computation based on maps, readers
can refer to this work and then some feasible maps can be
designed from physical aspect. The suggested functional
maps can be used for exploring pattern stability and wave
propagation in the networks composed of maps [71–74]. The
scheme throws insights on the study the maps coupled with
discrete memristor [75–80]. The scheme is also helpful for
presenting reliable map neurons and further application of
setting map networks. Memristive terms accounts for the
emergence of multistability and coexistence of more attrac-
tors, and it also provides energy source for some controllable
neural circuits and biological neurons [81,82]. It is worthy of
investigating the collective behaviors and self-organization
of networks composed of reliable neurons, and thus re-
searchers can find bridges to discover the potential dyna-
mical mechanism for some neural disease [83,84].

This work was supported by the National Natural Science Foundation of
China (Grant No. 12072139).
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Abstract Neural electrical signals forced the muscle

tissue to behave effective body gait. When neural

activities are measured in a neural circuit, artificial

electromechanical arm and leg can be controlled to

mimic the movement and even vibration of limbs. In

this paper, a simple neural circuit is used to drive an

electromechanical arm (EMA) device by activating

Ampere’s force via the load circuit adhered to the

moving beam, and the load circuit is coupled with the

neural circuit for energy conversion. The circuit

equations, field energy and moving equation of the

beam are obtained for dynamical analysis. Further-

more, two EMAs are coupled via a spring for

mimicking the cooperation between two arms or legs

during synchronous movement, and then the same

electrical signal is used to control the moving states of

the coupled EMAs. This processing can describe the

synchronous movements of two arms along horizontal

linear motion under neural stimuli. Noisy disturbance

is applied to detect and predict occurrence of stochas-

tic resonance in the moving beams by calculating

signal to noise ratio, and the average Hamilton energy

vs. time is effective to predict the emergence of

nonlinear stochastic and coherence resonance by

approach the average power from physical aspect.

The results provide helpful guidance to design com-

plex electromechanical device for behaving complex

gaits. That is, neural signals can be used to excite the

electromechanical devices as muscles and then the

body gaits are controlled effectively.

Keywords Neural circuit � Artificial arm �
Electromechanical coupling � Hamilton energy �
Resonance

1 Introduction

Neural activities in nervous system depend on the

activation of neurons and interaction with astrocyte

[1–5], and the contraction of muscle tissue can be

controlled by Calcium current [6–10]. When the

propagation of electrical signal and information

exchange in the nervous system are broken, some

neural diseases [11–15] occur and behaving normal

and safe body gaits become difficult. Besides exper-

imental approach and detection, setting theoretical

models for measuring neural activities become helpful

for predicting mode transition in electrical activities
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[16–20] and these neuron models [21, 22] can be

connected in networks for exploring the collective

behaviors [23–26], self-organization and creation of

heterogeneity and defects [27–30].

The researchers can create and propose a variety of

mathematical neuron models only when their sampled

time series for one capacitive variable can present

similar spiking, bursting behaviors by adjusting one or

more bifurcation parameters, and the external excita-

tions including noisy disturbance. In fact, it is worthy

of clarifying the biophysical property and reliability of

these suggested neuron models even all the mathe-

matical neurons can be implemented in suitable analog

circuits via circuit platform or digital signal processing

devices. On the other hand, some researchers prefer to

build a variety of nonlinear circuits by incorporating

capacitor, inductor, memristor [31–35], Josephson

junction [36–38], thermistor [39–41], piezoelectric

ceramic [42–44] and phototube [45–47] into the

branch circuit, and these nonlinear circuits are tamed

to present similar firing patterns as observed in the

biological neuron, and the reliability of these models

can be confirmed in the recent review [22].

A single capacitive variable is helpful to measure

the electrical activities in cell membrane and the

material property will be left out even more linear term

and nonlinear terms are introduced to estimate the

regulation and interaction from ion channel currents.

During equivalent circuit approach, one capacitor in

parallel with other branch circuits composed of the

elements such as induction coil, constant voltage

source, resistor and other nonlinear elements. As a

result, sampled time series for the output voltage from

the capacitor will be detected to keep pace with the

experimental data from biological neurons. Indeed,

considering the martial property and layer size, two

sides of the cell membrane have different distribution

of electromagnetic field and the membrane potential.

Therefore, it is important to involve the membrane

property on the energy regulation and mode transition

in neurons by introducing two capacitive variables in

the neuronmodel [48–51], one for the outer membrane

and another variable for the inner membrane of the

biological neurons. During circuit approach for double

capacitive variables in a neural circuit, two capacitors

connected via a functional component are effective to

mimic the physical property of the double-layer cell

membrane [52, 53]. Clear definition of energy func-

tion for neurons is crucial to explore and discover the

potential mechanism for adaptive growth of intrinsic

parameters and mode transition in neural activities of

functional neurons [54–56].

From neural signal driving to muscle response

accompanying with suitable body gait, energy is

propagated and converted from electrical energy to

mechanical energy. In practical way, load circuit

adhered to the beam or jointed compound pendulum

can be excited by Ampere force when the electrome-

chanical arm or legs [57–60] are exposed to external

magnetic field. In the recent works [61–64], neural

circuit and its coupled array are activated to control the

movements of artificial arms and legs. For a brief

guidance, please see our recent review and comments

[65]. When human arms or legs are disabled, it is

worthy of designing reliable electromechanical device

to provide possible aids for keeping normal body gaits.

Neural signals control the muscles, and relaxation and

contraction of muscles are crucial to regulate the

skeletal movement including horizontal moving and

rotation via the joint. Complex body gaits require the

cooperation of two arms (or two legs), which are also

connected and coupled via body tissue and skeletons.

For simplicity, we just discussed the simple horizontal

movement of a single arm and synchronous move-

ments of two coupled arms by applying neural signals

on the load circuit of the electromechanical arm(s). In

this work, we proposed a simple neural circuit to drive

a couple of electromechanical arms, and the cooper-

ation between two arms/legs can be simulated and

explored in dynamical aspect. Noisy disturbance is

applied to detect stochastic resonance of the neural

circuit-coupled electromechanical device and syn-

chronization stability between two coupled arms.

Electric signals from the neural circuit is used to

couple the load circuit of the electromechanical arm

by generating Ampere’s force, and the moving beam

behaves similar gait as arm(s) following horizontal

reciprocating motion.

2 Model and scheme

Considering the energy characteristic in biological

neurons, capacitive variable derived from a capacitor

and inductive variable accounting for channel current

across an inductor are used to build neuron models

composed of high order nonlinear terms. The capac-

itive variable bridges connection to membrane
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potential of a neuron and it is approach by the output

voltage of capacitor in the branch circuit, inductive

variable links to the current due to ions propagation in

the cell. Involvement of nonlinear term results from

the estimation of complex energy exchange and

interaction between magnetic field and electric field

of the neuron during ions diffusion and exchange.

Therefore, a simple neural circuit presented in Fig. 1 is

used to explore the neural activities and energy level in

a neuron under external stimulus.

A cubic term for the voltage variable of capacitor is

defined to simulate the channel current across the

nonlinear resistor NM, and standard circuit equations

can be obtained to discern the relation between

physical variables (VC, iL) following the Kirchhoff

theorem. The voltage dependence on the current in

Fig. 1 are restricted by

iNM ¼ � 1

q
VC � 1

3

V3
C

V2
0

� �

C
dVC

dt
¼ iS � iL � iNM

L
diL
dt

¼ VC:

8>>>>><
>>>>>:

ð1Þ

The intrinsic parameters (V0, q) relative to the NR

can be detected in experiment way by measuring the i-

v curve. The physical variables are replaced with

dimensionless variables under the scale

transformation,

u ¼ VC

V0

; v ¼ iLq
V0

; s ¼ t

qC
; i0S ¼

qiS
V0

; k1 ¼
q2C
L

: ð2Þ

Inserting the new variables (u, v) and parameters in

Eq. (2) into Eq. (1), an equivalent neuron model is

obtained by

du

ds
¼ i0S � vþ u� 1

3
u3;

dv

ds
¼ k1u:

8><
>: ð3Þ

In generic way, the external stimulus i0s can be

imposed with different values for changing the

excitability of the neuron, and then distinct mode

transition from periodic to chaotic patterns can be

induced accompanying with emergence of spiking and

bursting states. Noisy disturbance on the membrane

potential u will induce coherence, stochastic reso-

nance, and chaotic resonance by taming the noise

intensity and external forcing current carefully.

2.1 Single electromechanical arm (leg) driven

by neural circuit

The neural circuit presented in Fig. 1 is used to couple

the load circuit adhered to the electromechanical arm

(EMA). According to Fig. 2, the output voltage from

the capacitor excites the load circuit and the Ampere

force drives the motion of the beam, and the move-

ment is also controlled by the spring and damping

force in this device. The clarification of working

principle of Fig. 2 can refer to our recent review [65].

When the external magnetic field is fixed, any

switch of the channel current iEM across the load

circuit will change the Ampere’s force, and then the

EMA will modify its moving states including the

velocity and direction. The coils adhere to the U

shaped rod/beam has N rounds, and the moving beam

measures its quality m0. The displacement x and

moving velocity y for the driven beam are controlled

by

dx

dt
¼ y;

dy

dt
¼ 2N

m0

Bl0iEM � g
m0

y� K

m0

x:

8><
>: ð4Þ

Where the parameter g represents damping gain, K

is the elastic coefficient for the spring, l0 is the coil size

(width for the U bracket). The dynamics in the EMA

and moving beam is described by
Fig. 1 Neural circuit driven by forcing current is. Inductor L,
nonlinear element NM and capacitor C correlate the variables iL,
iNM, iC, respectively. NM can be selected as nonlinear resistor,

memristor, Josephson junction or other functional electric

components
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C
dVC

dt
¼ iS � iL � iNM � iEM;

L
diL
dt

¼ VC;

LEM
diEM
dt

¼ VC � 2NBl0y;

dx

dt
¼ y;

dy

dt
¼ 2N

m0

Bl0iEM � g
m0

y� K

m0

x:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð5Þ

These physical variables are replaced with dimen-

sionless variables under scale transformation as

follows

u ¼VC

V0

; v ¼ iLq
V0

; s ¼ t

qC
; i0EM

¼ qiEM
V0

; i0S ¼
qiS
V0

; k1 ¼
q2C
L

; k2 ¼
q2C
LEM

;

k3 ¼
2NBl20q
LEMV0

; x̂ ¼ x

l0
; ŷ ¼ qC

l0
y;

a ¼ 2qC2NBV0

m0

; b ¼ qCg
m0

; k1 ¼
q2C2K

m0

:

ð6Þ

Inserting the defined variables and parameters in

Eq. (6) into Eq. (5), the dynamics is calculated by

du

ds
¼ i0S � vþ u� 1

3
u3 � i0EM;

dv

ds
¼ k1u;

di0EM
ds

¼ k2u� k3ŷ;

dx̂

ds
¼ ŷ;

dŷ

ds
¼ ai0EM � bŷ� k1x̂:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð7Þ

From dynamical viewpoint, external stimulus i0s,
which can be derived from physical signals including

acoustic wave, illumination and even electromagnetic

excitation, controls the excitability of the neuron. The

firing modes are controlled by the external excitation

and feedback regulation from the load circuit in the

EMA. Within physical level, external stimulus injects

energy into the neural circuit, and a part of energy is

converted into mechanical energy for supporting

continuous movement of the beam (artificial arm).

The field energy W1 in the left circuit and the

mechanical energy W2 for the moving beam are

defined by

W1 ¼
1

2
CV2

C þ 1

2
Li2L þ

1

2
LEMi

2
EM;

W2 ¼
1

2
Kx2 þ 1

2
m0y

2;

8><
>: ð8Þ

The total energy value for the coupled neural circuit

and EMA gives W=W1?W2. By applying scale

transformation on the physical energy in Eq. (8), the

dimensionless parameters and Hamilton energy are

given in for obtaining dimensionless energy in the

neuron H1, load circuit H2 and total energy H.

l1 ¼
q2C
L

; l2 ¼
q2C
LEM

; l3 ¼
Kl20
CV2

0

; l4 ¼
m0l

2
0

q2C3V2
0

;

H ¼ H1 þ H2;

H1 ¼
W1

CV2
0

¼ 1

2
u2 þ 1

2

v2

l1
þ 1

2

i
02
EM

l2
;

H2 ¼
W2

CV2
0

¼ 1

2
l3x̂

2 þ 1

2
l4ŷ

2:

8>>>>>>>><
>>>>>>>>:

ð9Þ

Fig. 2 Schematic diagram for neural circuit interacted with the

electromechanical arm (EMA). B locates the external magnetic

field, and the variable x denotes displacement of the moving

beam. The driving current iEM derived from the left neural

circuit generates Ampere’s force in the load circuit of the EMA

123

1608 Y. Guo et al.

123



The neural circuit can receive and perceive external

noisy excitation due to uncertain fluctuation of electric

field. In presence of stochastic force on the moving

beam, its displacement will be controlled by noisy

disturbance. Therefore, two kinds of noisy distur-

bances are applied to affect the dynamical response in

this activated EMA as follows

du

ds
¼ i0S � vþ u� 1

3
u3 � i0EM þ n1ðsÞ;

dv

ds
¼ k1u;

di0EM
ds

¼ k2u� k3ŷ;

dx̂

ds
¼ ŷþ n2ðsÞ;

dŷ

ds
¼ ai0EM � bŷ� k1x̂:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð10Þ

For simplicity, two kinds of noisy excitations

including n1(s) and n2(s) are considered as Gaussian

white noise, and the statistical characteristic with zero

average value for the noise at intensity D is measured

by

\nðsÞ[ ¼ 0;\nðsÞnðsÞ[ ¼ 2Ddðs� sÞ; ð11Þ

By changing the noise intensity carefully, stochas-

tic can be induced by measuring the signal-to-noise

ratio (SNR) or the average energy function\H[ or

\H1[ within a transient period. The symbol \*[
indicates an average calculation of variables or

function within the running time during numerical

approach. SNR is approached by detecting the peak

value in the power spectrum by applying Fast Fourier

Transform (FFT) on the variable series, and it defines

as follows [66]

SNR ¼ 10 log 10
S

B
¼ Ppeak

fpeak
Df

ð12Þ

where Ppeak is the maximal value in the power

spectrum at certain noise intensity, fpeak and Df
describe the corresponding frequency for and half

peak width for this peak value Ppeak, respectively. In

presence of stochastic resonance [67–70], the driven

system captures enough energy and then SNR and

\H[will keep highest value to support high regula-

tion, for example, the neural activities show periodic

oscillation. In the following numerical approach, the

sampled time series for variable u will be used to

calculate the distribution of SNR when noisy distur-

bance is imposed on the neural circuit by regulating

the membrane potential/voltage. On the other hand,

the sampled time series x̂ are used to estimate the SNR

when different noisy excitation is applied to control

the displacement directly.

2.2 Double electromechanical arms and legs

driven by neural circuit

A bird has a pair of wings and a health human has a

pair of arms and legs, therefore, perfect cooperation

between the arms, wings and legs are crucial to keep

safe body gaits. As presented in Fig. 2, a couple of

EMAs are driven by the same electrical signals from

the neural circuit.

When the left neural circuit in Fig. 3 is activated by

applying external forcing current is, the output current

iEM is regulated accompanying with different firing

patterns in the neural circuit. The same parameter

setting in the load circuits generate identical Ampere’s

force on the EMAs and then they prefer to keep

synchronous movement under bidirectional coupling

via the connection spring. The correlation between the

physical variables of Fig. 3 is expressed by

C
dVC

dt
¼ iS � iL � iNM � iEM;

L
diL
dt

¼ VC;

LEM
diEM
dt

¼ VC � 2NBl0ðy1 þ y2Þ;
dx1
dt

¼ y1;

dy1
dt

¼ 2N

m0

Bl0iEM � g
m0

y1 �
K

m0

x1 �
k

m0

ðx1 � x2Þ;
dx2
dt

¼ y2;

dy2
dt

¼ 2N

m0

Bl0iEM � g
m0

y2 �
K

m0

x2 �
k

m0

ðx2 � x1Þ:

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

ð13Þ

where (x1, x2) and (y1, y2) denote the displacements

and velocities for two moving arms/ beams. Complete

scale transformation is applied on the variables and

parameters in Eq. (13) and a new group of dimen-

sionless variables and parameters are updated by
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u ¼ VC

V0

; v ¼ iLq
V0

; s ¼ t

qC
;

i0EM ¼ qiEM
V0

; i0S ¼
qiS
V0

; k1 ¼
q2C
L

; k2 ¼
q2C
LEM

;

k3 ¼
2NBl20q
LEMV0

;

x̂1 ¼
x1
l0
; x̂2 ¼

x2
l0
; ŷ1 ¼

qC
l0

y1;

ŷ2 ¼
qC
l0

y2; a ¼ 2qC2NBV0

m0

; b ¼ qCg
m0

;

k1 ¼
q2C2K

m0

; k0 ¼ q2C2k

m0

:

ð14Þ

Similar to Eq. (6) for single EMA, the dynamics in

the two coupled EMAs are approached by inserting the

definitions in Eq. (14) into Eq. (13). When two EMA

are endowed with the same spring, their spring

coefficients keep the identical value k and the dynam-

ics is calculated in Eq. (15a). Considering the diversity

and difference between two EMAs, setting different

spring coefficients for the two moving beams, for

example, the spring coefficient for each EMA is

marked as k1 and k2, the cooperation between two

moving arms can be explored in the dynamical model

in Eq. (15b).

du

ds
¼ i0S � vþ u� 1

3
u3 � i0EM;

dv

ds
¼ k1u;

di0EM
ds

¼ k2u� k3ðŷ1 þ ŷ2Þ;
dx̂1
ds

¼ ŷ1;

dŷ1
ds

¼ ai0EM � bŷ1 � k1x̂1 � k0ðx̂1 � x̂2Þ;
dx̂2
ds

¼ ŷ2;

dŷ2
ds

¼ ai0EM � bŷ2 � k1x̂2 � k0ðx̂2 � x̂1Þ:

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

ð15aÞ

du

ds
¼ i0S � vþ u� 1

3
u3 � i0EM;

dv

ds
¼ k1u;

di0EM
ds

¼ k2u� k3ðŷ1 þ ŷ2Þ;
dx̂1
ds

¼ ŷ1;

dŷ1
ds

¼ ai0EM � bŷ1 � k1x̂1 � k0ðx̂1 � x̂2Þ;
dx̂2
ds

¼ ŷ2;

dŷ2
ds

¼ ai0EM � bŷ2 � k2x̂2 � k0ðx̂2 � x̂1Þ:

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

ð15bÞ

For two coupled EMAs, the field energy is given in

similar form presented in Eq. (16),

Fig. 3 Schematic diagram for neural circuit coupled with

double electromechanical arms. Two moving beams (arms) are

coupled via a spring with the spring coefficient k. The load

circuits of the two EMAs are driven by the same channel current

and they are exposed to the same magnetic field. Spring

connection between two EMAs is similar to the connection

between two arms by usingmuscle and skeleton, so that they can

keep synchronous cooperation
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W1 ¼
1

2
CV2

C þ 1

2
Li2L þ

1

2
LEMi

2
EM þ 1

2
LEMi

2
EM;

W2 ¼
1

2
K1x̂

2
1 þ

1

2
K2x̂

2
2 þ

1

2
m0ðŷ21 þ ŷ22Þ:

8><
>:

ð16Þ

For two identical EMAs, K1 = K2 = K, the energy

function (W = W1?W2) in Eq. (16) is simplified and

the two EMAs can be driven to present synchronous

movement. Furthermore, dimensionless energy for

two coupled EMAs are updated as follows

l1 ¼
q2C
L

;l2 ¼
q2C
LEM

; l3 ¼
K1l

2
0

CV2
0

;l03 ¼
K2l

2
0

CV2
0

l4 ¼
m0l

2
0

q2C3V2
0

;l5 ¼
kl20
CV2

0

;

H1 ¼
W1

CV2
0

¼ 1

2
u2 þ 1

2

v2

l1
þ i

02
EM

l2
;

H2 ¼
W2

CV2
0

¼ 1

2
l3x̂

2
1 þ

1

2
l03x̂

2
2 þ

1

2
l4ðŷ21 þ ŷ22Þ:

8>>>>>>><
>>>>>>>:

ð17Þ

When the two EMAs select the same spring

coefficient as K1 = K2 = K, the dimensionless

parameter l3 = l03 and energy function

H = H1 ? H2 in Eq. (17) is simplified because the

gain for the spring energy is the same. Applying noisy

forcing on the moving beam and membrane, the

dynamics is calculated by

du

ds
¼ i0S � vþ u� 1

3
u3 � i0EM þ n1ðsÞ;

dv

ds
¼ k1u;

di0EM
ds

¼ k2u� k3ðŷ1 þ ŷ2Þ;
dx̂1
ds

¼ ŷ1 þ n2ðsÞ;
dŷ1
ds

¼ ai0EM � bŷ1 � k1x̂1 � k0ðx̂1 � x̂2Þ;
dx̂2
ds

¼ ŷ2 þ n2ðsÞ;
dŷ2
ds

¼ ai0EM � bŷ2 � k2x̂2 � k0ðx̂2 � x̂1Þ:

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

ð18Þ

The same stochastic forcing is applied to affect the

movement of the two coupled beams. In presence of

parameter mismatch, the two coupled EMAs are

blocked by different damping forces even they are

forced by the same Ampere force, and then phase lock

is induced between two moving EMAs. From dynam-

ical aspect, the external current can be adjusted to

control the neural circuit showing different firing

patterns, and the channel current across the EMAs will

select different values for inducing suitable Ampere

force. Interaction between the Ampere force, damping

force and bidirectional coupling via spring connection

will control the synchronous movements of the

coupled EMAs completely.

3 Numerical results and discussion

The fourth order Runge-Kutta algorithm can be

applied to find numerical solutions for the variable

series from the oscillator-like dynamical models in

Eqs. (7), (9) and (18). In presence of stochastic

disturbance, Euler forward algorithm is effective to

describe the statistical analysis from the sampled time

series for the variables. In Fig. 4, the time series for

membrane potential are calculated for common bifur-

cation analysis and the mode dependence on the

external stimulus Acos(xs), which is imposed on the

membrane variable in Eq. (5).

From Fig. 4, the two-variable neuron can be

controlled to present different firing modes, and the

appearance of positive Lyapunov exponent indicates

that this neuron can be excited to generate chaos in the

electrical activities. For better illustration, the forma-

tion of attractors and membrane series are plotted in

Fig. 5.

That is, changes of the angular frequency of

external forcing can develop different attractors and

the firing patterns are controlled completely. When the

neural circuit is activated to excite the load circuit in

the electromechanical arm (EMA) presented in

Eq. (7), the beam is forced to change its displacement

in Fig. 6.

From Fig. 6, the EMA shows its displacement

between positive and negative values, it means that the

beam move forward and backward in continuous way.

Changeable channel current in the load circuit adhered

to the moving beam controls the motion of the beam or

EMA. It is interesting to clarify the energy character-

istic of neural circuit and moving beam defined in

Eq. (9), and the results are shown in Fig. 7.

In fact, external stimulus injects energy into the

neural circuit, and a part of field energy is shunted to

flow across the load circuit and then converted to

mechanical energy. On the other hand, the moving

beam generates electromotive force via the load circuit

and feedback is applied to regulate the driving in the

neural circuit accompanying with energy interaction.

The driving neural circuit shows periodic firing mode

and then the moving beam prefers to show similar
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periodic firing patterns. In Fig. 8, the motion of the

EMA is calculated.

The EMA keeps periodic motion even the neuron is

activated to present chaotic patterns, the potential

mechanism is that the load circuit imposed effective

feedback on the driving neural circuit. In Fig. 9, the

energy exchange and changes in the EMA and driving

circuit are plotted.

The neural activities in the driving neural circuit

show chaotic states while the load circuit keeps

periodic firing accompanying with periodic moving

in the beam. H1-H2 keeps positive value, and it

indicates that the neural can release enough energy to

excite the EMA. Furthermore, the energy proportion is

calculated in Fig. 10 when the driving neural circuit is

excited to present in periodic and chaotic modes,

respectively.

The mechanical energy term keeps lower propor-

tion in the total energy H. In presence of periodic

firing, the neural circuit keeps higher proportion for

Fig. 4 Distribution of peak values for membrane potential (a1,
b1, c1) and Lyapunov exponent (LE) (a2, b2, c2) by applying

periodic stimulus on the neural circuit. For (a1, a2) x = 0.8,

k1 = 0.3; b1, b2 A = 0.6, k1 = 0.3; c1, c2 A = 0.6, x = 0.8.

Setting initials (0.02, 0.01)

Fig. 5 Evolution of

membrane potential and

formation of attractors in the

neural circuit under different

forcing currents. For a1, a2
spiking x = 0.5; b1, b2
chaotic firing x = 0.8.

Setting A = 0.6 and

k1 = 0.3
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the capacitive terms and the energy in the load circuit

also keeps a higher proportion than the case that the

neuron is excited to show chaotic states. It is

interesting to discuss the case under noisy excitation.

When the moving beam is excited by noisy distur-

bance, which noisy excitation is imposed to excite the

fourth variable in Eq. (10). In presence of noisy

disturbance on the membrane potential, the noisy

driving is applied to excite the first variable in

Eq. (10). Based on the sampled time series for

membrane potentials, energy function is calculated

and the distribution of SNR values and average energy

\H[ is respectively plotted in Fig. 11. When noisy

excitation is applied to affect the membrane potential

u, the SNR is calculated by using the sampled time

series for variable u when noise intensity is changed

carefully. On the other hand, direct stochastic excita-

tion on the moving beam by adding noisy excitation on

the displacement will obtain the SNR values by using

the sampled time series for the displacement variable

x̂.

From Fig. 11, it is demonstrated that distinct peak is

detected in the curve for SNR and average energy

under moderate noise intensity. However, it requires

different threshold in the noise intensity for inducing

stochastic resonance when noise is imposed on

different positions in the neural circuit-coupled

EMA. Noisy disturbance on the first membrane

variable accounts for the stochastic excitation from

external electrical field, while noisy excitation on the

displacement variable results from external stochastic

force on the moving beam.

Above all, we discussed the driving and response in

the EMA with single arm and it is worthy of exploring

the synchronous motion for double arms in the EMA.

As presented in Fig. 3, the load circuits for the two

EMA are excited by an identical current. When the

two EMAs are endowed with identical parameters,

Fig. 6 Changes of displacement and velocity in the moving

beam. Setting parameters as a = 0.2, b = 0.3, k1 = 0.1,

k1 = 0.3, k2 = 0.4, k3 = 0.3, A = 0.6,x = 0.5, and the initials

(0.02, 0.01, 0.01, 0.2, 0.1).

Fig. 7 Energy evolution of the neural circuit and moving beam.

Setting parameters a = 0.2, b = 0.3, 1 = 0.1, k1 = 0.3,

k2 = 0.4, k3 = 0.3, A = 0.6, x = 0.5. For a energy function

for the driving neuron; b energy for load circuit; c energy

diversity between neural circuit and load circuit; d total energy

H for neuron and EMA

Fig. 8 Changes of displacement of EMA a and velocity

evolution b. Setting parameters a = 0.2, b = 0.3, k1 = 0.1, k1 =
0.3, k2 = 0.4, k3 = 0.3, A = 0.6, x = 0.8
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Fig. 9 Energy evolution of the neural circuit and moving beam.

Setting parameters a = 0.2, b = 0.3, k1 = 0.1, k1 = 0.3, k2 = 0.4, k3
= 0.3, l1 = 0.3, l2 = 0.4, l3 = 0.3, l4 = 0.5, A = 0.6, x = 0.8. For

a energy function for the driving neuron; b mechanical energy;

c energy diversity between neural circuit and load circuit; d total
energy H for neuron and EMA

Fig. 10 Energy proportion in the neuron coupled EMA.HC and

HL for capacitive and inductive terms in the neural circuit, HL2

for inductive energy in load circuit, H2 for the mechanical

energy in the moving beam. Setting parameters a = 0.2, b = 0.3,

k1 = 0.1, k1 = 0.3, k2 = 0.4, k3 = 0.3, l1 = 0.3, l2 = 0.4, l3 = 0.3, l4
= 0.5, A = 0.6. For a x = 0.5; b x = 0.8

Fig. 11 Dependence of

SNR and\H[on noise

intensityD. For a1, a2, noise
excites the variable u; b1, b2
noise excites the variable for

displacement. Setting

parameters a = 0.2, b = 0.3,

k1 = 0.1, k1 = 0.3, k2 = 0.4, k3
= 0.3, l1 = 0.3, l2 = 0.4, l3 =
0.3, l4 = 0.5, A = 0.6,x = 0.8
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they will behave synchronous motion all the time.

However, any parameter diversity in the two EMAs

will induce parameter mismatch in the parameters, and

complete synchronization becomes difficult for the

two coupled EMAs. For simplicity, we consider the

case that two EMA has some difference in the spring

coefficient, and then dimensionless parameters (k1, k2)

are selected with different values. Without applying

external noise, numerical series can be obtained from

Eq. (15b). The difference between displacement and

velocity for the two EMAs are plotted in Fig. 12.

When two EMAs are selected with different

parameters, complete synchronization is broken. As

a result, and the interaction between two EMAs is

regulated via the connection spring for possible energy

balance. In Fig. 13, the energy evolution in the driving

neuron and EMA is respectively calculated, and the

energy definition is given in Eq. (17).

The energy functions for the driving neuron (pre-

sented in periodic firing mode) and the moving beams/

EMAs become time-varying during the interaction

between the neural circuit and EMAs. From Fig. 13c,

the energy from the driving neuron H1 is larger than

the mechanical energy in the moving beam at H1[H2,

it indicates that the neural circuit shunted energy to the

EMA and then the moving beam is controlled

effectively. Furthermore, the error evolution for

displacement and velocity diversity is respectively

calculated in Fig. 14 when the neural circuit is excited

in chaotic mode.

The displacement error between two moving

EMAs/beams shows periodical oscillation and they

seldom keep synchronous motion even the connection

spring between two beams keeps active regulation.

Furthermore, energy changes are estimated in Fig. 15

when chaotic signals from the neuron are used to

excite the coupled EMAs.

Compared the results in Fig. 15 with the results in

Fig. 13, the driving neuron prefers to keep higher

average energy\H1[and the average energy diversity

is increased when the neural circuit is excited in chaos

than the case for periodic firing mode in the neural

circuit. The average value for mechanical energy

\H2[showed slight decrease than the case presented

in Fig. 13b. However, the average of total energy

function\H[presented slight increase under chaotic

excitation, and it is different from the case in Fig. 13

Similarly, the energy proportion is calculated in

Fig. 16 when the two coupled EMAs are excited by

periodic or chaotic signals from the neural circuit,

respectively.

The energy proportion in Fig. 16 is some different

from the distribution map in Fig. 10. Desynchroniza-

tion between the two coupled EMAs applied different

feedback regulation on the load coils and it channel

current is changed with time. The load circuits adhered

to the moving beam keep higher energy proportion

than the energy terms in the neural circuit. That is,

non-synchronous motions in the two coupled EMAs

cost high energy flow and more energy from the

driving neural circuit is pumped into the load circuits.

Similar stochastic resonance is explored by adding

noisy excitation on the neural circuit and the moving

beams, defined in Eq. (18), and the results are plotted

in Fig. 17.

When two EMAs are coupled, similar stochastic

resonance is induced and the average energy can

obtain peak values under moderate noise intensity. It

requires a different threshold of noise intensity

supporting the stochastic resonance presented in

Fig. 11. Figure 11 discussed the case for single EMA

driven by a neural circuit, and it is found that

stochastic resonance can be induced nomatter whether

noisy excitation is applied to control the neural circuit

or the moving beam directly. Fig. 17 explored the case

about stochastic resonance in two coupled EMAs with

parameter mismatch, and it is confirmed that noisy

excitation is effective to induce similar stochastic

resonance by taming the intensity of noise intensity.

Both Figs. 11 and 17 show that the maximal values for

SNR show some diversity when noisy disturbance is

applied to excite the membrane potential variable u

Fig. 12 Evolution of displacement error and velocity error for

two coupled EMAs. Setting parameters a = 0.2, b = 0.3, k1 = 0.1,

k2 = 0.2, k0 = 0.1, k1 = 0.3, k2 = 0.4, k3 = 0.3, A = 0.6,x = 0.5. For

a displacement error; b velocity difference between two coupled
EMAs
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and the displacement variable x̂, respectively. From

physical viewpoint, any noisy disturbance can inject

some energy into the mechanical or physical systems.

Noisy excitation on the displacement variable means

that direct energy injection into the moving beam and

mechanical energy is regulated under the external

Ampere’s force and damping force, as a result, regular

moving state can be induced. Noisy disturbance on the

membrane potential variable u just modified the firing

modes in the neural activities, and a part of energy

flow is shunted to the EMA for keep regular moving

states. SNR has similar roles as average power and

\H[, direct energy injection is more effective to keep

Fig. 13 Energy evolution of the neural circuit and moving

beam. Setting parameters a = 0.2, b = 0.3, k1 = 0.1, k2 = 0.2, k0 =
0.1, k1 = 0.3, k2 = 0.4, k3 = 0.3, l1 = 0.3, l2 = 0.4, l3 = 0.3, l4 =
0.5, l5 = 0.4, A = 0.6, x = 0.5. For a energy function for the

driving neuron; b mechanical energy for two coupled EMAs;

c energy diversity between neural circuit and load circuit; d total
energy H for neuron and two coupled EMAs

Fig. 14 Evolution of displacement error and velocity error for

two coupled EMAs. Setting parameters a = 0.2, b = 0.3, k1 = 0.1,

k2 = 0.2, k0 = 0.1, k1 = 0.3, k2 = 0.4, k3 = 0.3, A = 0.6,x = 0.8. For

a displacement error; b velocity difference between two coupled
EMAs

Fig. 15 Energy evolution of the neural circuit and moving

beams. Setting parameters a = 0.2, b = 0.3, k1 = 0.1, k2 = 0.2, k0 =
0.1, k1 = 0.3, k2 = 0.4, k3 = 0.3, l1 = 0.3, l2 = 0.4, l3 = 0.3, l4 =
0.5, l5 = 0.4, A = 0.6, x = 0.8. For a energy function for the

driving neuron; b mechanical energy for two coupled EMAs;

c energy diversity between neural circuit and load circuit; d total
energy H for neuron and two coupled EMAs
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regular states under noisy excitation. Surely, we can

use the time series for the same variable to calculate

the distribution of SNR no matter whether noisy

disturbance is applied to affect the displacement

variable or the membrane potential variable directly,

and appearance of stochastic resonance, coherence

resonance can be predicted and detected effectively.

For realistic systems, two arms/legs often have

parameter difference because of material property

diversity in the muscles. For example, the left arm and

right arm can lift different heavy objects and they also

can behave different body gaits. However, they can be

guided to present synchronous movement under the

electric signals from nervous system by control the

muscles [71–74]. For clear illumination, the phase

error is calculated in Fig. 18 by taming the noise

intensity carefully.

By taming the noise intensity, the two coupled

EMAs can show phase lock and phase synchronization

due to continuous excitation from noise and chaotic

signals from the neural circuit. Linear fitting for the

phase portrait in Fig. 18(a2, b2, c2, d2), phase lock

u1:u2 can be estimated at different levels (0.61, 0.82,

0.81, 0.99) and it is confirmed that involvement of

noisy excitation can change the phase lock between

two coupled EMAs. Indeed, similar cases can be

explored when two EMS are driven by two different

neural circuits, which can be connected with a resistor

Fig. 16 Energy proportion in the neuron coupled EMAs. HC

and HL for capacitive and inductive terms in the neural circuit,

HL2 for inductive energy in load circuit,H2 for the total energy in

the two moving beams. Setting parameters a = 0.2, b = 0.3, k1 =
0.1, k2 = 0.2, k0 = 0.1, k1 = 0.3, k2 = 0.4, k3 = 0.3, l1 = 0.3, l2 =
0.4, l3 = 0.3, l4 = 0.5, A = 0.6. For a x = 0.5; b x = 0.8

Fig. 17 Dependence of

SNR and\H[on noise

intensity D. For a1, a2),
noise excites the variable u;
b1, b2 noise excites the

displacement variables

(fourth and sixth variable in

Eq. (18)). Setting

parameters a = 0.2, b = 0.3,

k1 = 0.1, k2 = 0.2, k0 = 0.1, k1
= 0.3, k2 = 0.4, k3 = 0.3, l1 =
0.3, l2 = 0.4, l3 = 0.3, l4 =
0.5, A = 0.6, x = 0.8
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or a memristor. In this way, any breakdown in one

driving neural circuit still controls the coupled EMAs

effectively.

In a summary, neural circuit can be excited to force

the motion of single EMA and two coupled EMAs by

pumping field energy into the load circuit, and a part of

energy is converted to mechanical energy. On the

other hand, the moving beam/arms have distinct

feedback on the neural circuit via the channel current

across the load circuit. Involvement of noisy distur-

bance or excitation can regulate the moving state of

the EMA and phase lock between two coupled EMAs.

The results in this work provides possible guidance to

design a array of coupled neural circuits for driving

more coupled EMAs, and thus the EMAs can behave

more complex and flexible body gaits. For simplicity,

the external forcing currents imposed on the neural

circuits in Figs. 2 and 3 are selected with periodic

Fig. 18 Evolution of phase

errors between two moving

beams/coupled EMAs. For

a1, a2D = 0; b1, b2D = 2.5;

c1, c2 D = 4.8; d1, d2 D =

5.0. Setting parameters a =

0.2, b = 0.3, k1 = 0.1, k2 =
0.2, k0 = 0.1, k1 = 0.3, k2 =
0.4, k3 = 0.3, l1 = 0.3, l2 =
0.4, l3 = 0.3, l4 = 0.5, A =

0.6, x = 0.8
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forms. Indeed, the neural circuit can be excited by

realistic signals, which are filtered or converted from

acoustic wave, photoelectric signal and even chemical

signals by incorporating specific electric components

into the additive branch circuit of the neural circuit.

For example, a phototube can convert external

illumination into photocurrent for discerning the

changes of external optical field. A piezoelectric

ceramic can perceive external acoustic wave by

converting voice into acoustic and electrical signals.

A gas sensor can detect and convert external odor or

chemical signal into voltage-controlled signal. In

practical way, thermistor can also be connected to

the neural circuit and thus the output voltage becomes

dependent on temperature. That is, by incorporating

specific components into the neural circuit, the EMAs

will be controlled by the physical or chemical signals

effectively. In our study, the EMAs are connected in

series and their load circuits keep the same channel

current. In fact, two neural circuits can be coupled to

drive the two coupled EMAs and it prevents possible

breakdown in the control of the coupled EMAs, for

example, the motion of the EMAs can be controlled by

another neural circuit when any damage occurs in one

neural circuit. To behave complex gaits similar human

arms, more elements/beams can be jointed and an

array of neural circuits can be used to control the

beams directly and synchronously. This work just

discussed simple movement of arms under horizontal

direction, and the movement of EMAs depends on the

activation of Ampere’s force. In fact, jointed pendu-

lums are more effective to mimic the moving states

and body gaits when artificial muscles are excited by

neural signals, and arm movements can be reproduced

with similar mechanical characteristics [75–78]. For

example, gear driving, electronic motor winds flexible

ropes can be used to simulate the processing of muscle

relaxation and contraction, readers can explore these

topics under the mentioned suggestions. Our discus-

sion prefers to the dynamical property of electrome-

chanical arm(s), while jointed pendulums can exhibit

the main static mechanical property of artificial

mechanical arms. Readers can replace the neural

circuit in Fig. 1 by using different functional electronic

components, and electronic motor can be used to

generate continuous force so that external magnetic

field can be removed without using Ampere’s force.

4 Conclusions

In this paper, a simple neural circuit-coupled EMA

device is proposed for dynamical analysis in artificial

arms. Stochastic resonance is induced by applying

noisy excitation on the neural circuit and moving

beam, respectively. Noisy excitation on the displace-

ment of the moving beam and the driving neural circuit

has different working mechanism accompanying with

energy injection into the electromechanical coupling

system composed of artificial arm and neural circuit. It

is helpful to mimic the processing of muscle driven by

electrical signal and provides clues to deign artificial

armor leg to aid disabled animals. Themoving states of

the beam/arms along horizontal direction depend on

the interaction and competition between damping

force and Ampere’s force, and the electromechanical

arm prefer to keep periodic movements when neural

signals are propagated to excite the load circuit of the

EMAs. Furthermore, a couple of EMAswith parameter

mismatch are excited by the neural circuit, and safe

signal propagation from the neural circuit is effective

to synchronize two identical EMAs. Considering the

parameter diversity in two coupled EMAs, for exam-

ple, spring coefficients have slight differences, and the

two EMAs can be controlled to keep synchronization

stability or phase lock. External stochastic excitation

on the moving beams coupled by a simple spring can

enhance the occurrence of phase synchronization. It

provides insights to design coupled EMAs to behave

more complex body gaits and states.
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A B S T R A C T

In this work, two flexible ropes are winded to an electronic motor in opposite directions and the other terminal 
ends are pinned to two jointed points for mimicking the artificial muscles. Electrical signals from a neural circuit 
are used to control the rotation of electronic motor(s), and the pulling forces along the flexible ropes control the 
rotation angles of the jointed pendulums as legs. The leg gaits are investigated in dynamics by changing the 
channel current shunted from the neural circuit, and the electronic motor-controlled flexible ropes behave as 
artificial muscles. A single neural circuit and two coupled neural circuits are used to control the electrome
chanical legs by adjusting the forcing current. The neural circuit drives the electronic motor and then jointed 
pendulums are controlled. The circuit equations, rotation equations and energy description are presented. It 
provides possible guidance to design artificial muscles for aiding disabled legs and arms.

1. Introduction

When neural signals are propagated to the leg muscles, contraction 
and relaxation of gluteus maximus muscle (GMM), biceps femoris 
muscle (BFM), lateral thigh muscle (LTM) and tensor fascia lata muscle 
(TFLM) will control the rotation and movements of femur, tibia and 
fibula. As a result, different leg gaits are activated to keep body balance. 
Any damage or disability in these muscles will affect the leg gaits and 
keeping safe body gaits becomes difficult. From mechanical viewpoint, 
the femur, tibia and fibula are connected to generate similar dynamical 
behaviors as two jointed pendulums. When a flexible rope or string is 
winded to an electronic motor, clockwise and counterclockwise rotation 
of the electronic motor will relax or contract the length of the rope as 
muscle movement. Muscle contraction [1–5] is a fundamental charac
teristic of muscle tissue, referring to the mechanical response that occurs 
in muscle fibers after receiving stimulation. The maintenance of body 
posture, spatial movement, complex movements, and respiratory 
movements are all achieved through muscle contraction activities 
[6–10]. According to the theory of muscle filament sliding, the basic 
process of muscle contraction is: muscle cells generate action potentials, 
causing an increase in calcium concentration in the muscle plasma, 
which binds to troponin C. Troponin undergoes conformational changes, 
weakening the binding between troponin I and actin. Protomyosin un
dergoes conformational changes, exposing binding sites on actin 
[11–15]. The transverse bridge binds to actin, causing the transverse 

bridge to twist and drag the thin muscle filament towards the center of 
the thick muscle filament. Through the transverse bridge cycle formed 
by the binding, twisting, dissociation, and re binding and re twisting of 
the transverse bridge and actin, the fine filaments continuously slide and 
the muscle segments shorten. The energy source during muscle 
contraction is the energy released by ATP hydrolysis [16–20].

Heartbeat results from continuous relaxation and contraction of 
cardiac tissue accompanying with blood pumping [21–25], and elec
trical signals are propagated in the cardiac tissue by generating target 
waves [26–30]. However, breakup of these target waves will induce new 
spiral waves, which can block normal propagation of electrical signals in 
the cardiac tissue, and emergence of spiral waves in the cardiac tissue 
predicts emergence of arrhythmia and further breakup of spiral waves 
will induce rapid death of the heart due to fibrillation [31–35]. On the 
other hand, safe body gaits are crucial for working and it is dependent on 
the flexible muscles, which are controlled by different neural signals 
from the nervous systems. That is, continuous electrical stimuli can 
control the muscle contraction and relaxation, and then the bones are 
pulled and guided to keep suitable body gaits including legs and arms, 
and then movements are activated.

A simple nonlinear circuit can be controlled to present similar 
spiking and bursting patterns as those biological neurons, and these 
spiking or bursting circuits are considered as neural circuits. By applying 
scale transformation on the circuit equations, a dimensionless nonlinear 
oscillator can be approached as generic neuron model. By adding 
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specific terms into the neuron model, functional description is enhanced 
to propose more functional biophysical neuron models, see recent re
views and reference therein [36,37]. Besides these oscillator-like neuron 
models, map neurons [38–42] can produce similar firing patterns and 
for further dynamical analysis in the field of computational neurosci
ence. To check the reliability of these neuron models, exact and clear 
definition of energy functions become crucial for further understanding 
the controllability and self-adaptive properties of biophysical neurons 
[43–45].

The dynamics of human gaits shows complexity, and short contin
uous recordings of the human locomotory apparatus possess properties 
typical of deterministic chaotic systems [46]. Ashkenazy et al. [47] 
proposed a stochastic model for exploring the dynamics in human gaits. 
For dynamical analysis and control, more theoretical models have been 
proposed for identifying the mechanical characteristic of body gaits 
[48–52]. Stability and movement control are two main research topics 
about body gaits. It is a challenge to design auxiliary electromechanical 
devices to aid the movement of disabled arms and legs. Therefore, a 
variety of manipulators have been proposed to control muscle move
ments and joint motions [53–56]. Indeed, the activation of artificial 
arms/ legs and mechanical arms depends on the electromechanical de
vice greatly, which can provide powerful forces and torques to control 
the muscle movements. In practical way, hydraulic drive [57–59], 
artificial muscles [60–63], electromechanical drive [64–67] can be used 
to control the body gaits for keeping stability or appropriate movements. 
In fact, the electromechanical devices can be controlled by electric sig
nals from a neural circuit or coupled neural circuits, and the nervous 
signal regulation on body gaits can be explored in the 
electromechanical-coupled neural circuit, see recent works and refer
ences therein [68–70].

In this work, two jointed pendulums driven by a neural circuit and 
coupled neural circuits are proposed to mimic the movements of legs 
controlled by muscles. The contraction and relaxation of muscles are 
replaced by using flexible ropes winded to an electronic motor, and 
changes of the flexible ropes can generate different tensions to the 
jointed pendulums. The electronic motor is controlled by the output 
electrical signals from the neural circuit. It designs a kind of artificial 
muscle by building suitable electromechanical device including neural 
circuit, flexible ropes, and electronic motor and jointed pendulums. The 
suggested scheme is helpful to aid those disabled legs for keeping safe 
body gaits and further application of robot arms and legs.

In the second section, the movements of femur and fibula are 
described by two jointed beams, which are controlled by artificial 
muscles. Flexible ropes are used to mimic the muscle relation and the 
pulling force from muscle is controlled by an electronic motor, which is 
controlled by the electric signals from neural circuits. The movement of 
the electromechanical devices and changes in the neural circuit are 
described in detail. In the third section, numerical results are provided to 
show the mode transition in the neuron and neural circuits, rotation 
movement of the electromechanical device. In the last section, conclu
sion and suggestions are supplied for further investigation with this 
topic.

2. Model description and discussion

Muscle contraction is the phenomenon of muscle contraction 
response to external physical and chemical stimuli. It usually means the 
contraction of vertebrate skeletal muscles through the transmission of 
activity potentials. A single action potential produces a single contrac
tion, while repeated activity potentials will generate a rigid contraction. 
Muscle contractions that do not occur through activity potentials are 
mostly caused by non transmissible depolarization. If depolarization is 
limited to local muscles and is transient, it is called local contraction. 
Depolarization, if it is sustained throughout the muscle, is called 
constrictive contraction [71,72]. The sustained contractions observed in 
smooth muscles are generally referred to as spasms, but many ones are 

still accompanied by repeated activity potentials or sustained depolari
zation [73,74]. However, the sustained contractions observed in the 
adductor muscles of bivalves seldom show any changes in electrical 
potential, and this contraction is due to a gated structure. The three 
forms of muscle contraction are shortening contraction, elongating 
contraction, and isometric contraction [75–77]. Shortening contraction 
finds cardiac contraction, including two forms: isotonic and isokinetic 
contraction [78]. Isotonic contraction [79] accounts for the state of 
movement in which muscles no longer increase in tension when resisting 
constant resistance, such as lifting a barbell. Isokinetic contraction [80] 
refers to the constant speed that the muscles resist external resistance, 
producing maximum tension, and is a mutual adaptation of forces. For 
example, stretching and contracting are centrifugal contractions, which 
are caused by muscle tension being lower than external resistance, such 
as actions like placing heavy objects. Isometric contraction refers to 
movements where muscle tension is equal to external resistance and 
muscle length remains unchanged, such as plank support, inversion, and 
so on.

As shown in Fig. 1, the leg gaits are controlled by the muscles and 
then the femur is jointed with the tibia and fibula for behaving different 
gaits.

In fact, the mechanic characteristic of the femur, tibia and fibula can 
be described by the movements in a pair of jointed pendulums as shown 
in Fig. 2.

Supposing the length for two pendulums as OA=l1, AB=l2, the ve
locity relation is approached by 
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dθ1

dt
= ω1 =

vA

l1
,

dθ2

dt
= ω2 =

vBA

l2
=

vB1

l2
,

vBcosθ2 = vAsin(θ1 + θ2).

(1) 

Any rotations of the pendulum OA will drag the jointed beam AB and 
the object B. On the other hand, horizontal driving or excitation on the B 
object/point will force continuous rotation of the jointed pendulums AB 
and OA synchronously. To mimic the contraction and relaxation of leg 
muscles in Fig. 1, flexible ropes are wrapped around an electronic motor 
(EM) as shown in Fig. 3. The rotation direction and rotation frequency of 
the EM are dependent on the intrinsic current along the rotor coils with 
N turns, and the coils of the EM can be considered as load circuit, which 
shunts current from a neural circuit. This processing mimics the neural 
regularity on muscles movement. The artificial tissue keeps constant 
tension when the EM is controlled in static state, and clockwise rotation 
or anticlockwise rotation will regulate the length and tension (or pulling 
force) of the flexible ropes effectively, and this processing is similar to 
the relaxation and contraction of muscles.

As shown in Fig. 3, the two points (O, A) decrease its length when the 
electronic motor is activated with clockwise rotation, and it indicates 
that the muscle is contracted. On the other hand, counterclockwise 
rotation of the EM will increase the distance between the two points (O, 
A) and it means that the muscle is relaxed. The EM controlled flexible 
rope OA can behave similar contraction and relaxation property as 
muscles as LTM and BFM when the two ends of the ropes are pinned to 
femur and tibia, respectively. In practical realization, the device in Fig. 3
should be encapsulated and adhered to the legs. When the same device 
in Fig. 3 is adhered to the two jointed pendulums (OA, AB) in Fig. 2, the 
intrinsic tension will be activated to control the rotation and leg gait as 
shown in Fig. 1. Supposing the EM can generate a moment M, and the 
EM has a radius r0, and then the tension/force T along the artificial 
muscle is estimated by 
⎧
⎪⎪⎨

⎪⎪⎩

M
⇀
= P

⇀
M × B

⇀
= IMotorSê × B

⇀
, M =

⃒
⃒
⃒M

⇀⃒⃒
⃒ = |M|,

T =
M
2r0

=
NSBIMotor

2r0
sin
(

ê,B
⇀)

= KIMotorsin(ω0t + ϕ0) = kIMotor(t) .
(2) 
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Within the EM, it has N-turns coils and S denotes its size, B is the 
intensity of magnetic field surrounded the coils, and ̂e defines the normal 
direction of coil plane. The parameter ω0 is the angular frequency of the 
EM, and φ0 denotes the initial phase value of the motor. Imotor represents 
the channel current of the motor coils and it is shunted from a signal 
source or neural circuit. To keep a stable leg gait, it indicates that the EM 
must present a constant moment and the intrinsic tension T becomes a 
constant as well. Vertical to the length direction of the pendulums (OA, 
AB), the components of stress can force the two pendulums to rotate 
against the jointed points (O, A) by generating suitable moments. As a 
result, the jointed pendulums will change their angles (θ1, θ2) to keep 
appropriate leg gaits. 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

MOA∝T1l1 = k1T1l1, MAB∝T2l2 = k2T2l2,

l2sinθ2 = l1sinθ1,

J1
d2θ1

dt2 = k1T1l1 + k2T2l2 + Nl2cosθ2 − P1
l1
2

cosθ1 − P2
l2
2

cosθ2,

J2
d2θ2

dt2 =
1
3

P2

g
l22

d2θ2

dt2 = k2T2l2 + Nl2cosθ2 − P2
l2
2

cosθ2.

(3) 

The gravities for the two jointed pendulums (OA, AB) are marked as 
(P1, P2), N denotes the vertical supporting force on point B. When the 
intrinsic tension T1 (or T2) along the artificial muscles has an angle Ω1 
(or Ω2) against the pendulum OA (or AB), k1=sinΩ1, k2=sinΩ2. The 
moment (torque) of inertia for the jointed pendulum OAB is described by 

J1=(P1l12/3 + P2l22/3 + P2l12)/g = m1l12/3 + m2l22/3 + m2l12. When external 
load force is applied to the point B, the artificial muscle is regulated 
adaptively and thus the jointed pendulums will keep static gait. In 
presence of keeping stable body gait under torque balance, the angles 
(θ1, θ2) are stabilized at some constant values as follows 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

cosθ1 = 2k1
T1

P1
,

cosθ2 =
2k2T2

P2 − 2N
.

(4) 

On the other hand, time-varying contraction and relaxation of the leg 
muscles will change the intrinsic tensions and then the leg gaits will be 
regulated by changing the angles (θ1, θ2). As presented in Eq.(2), the 
tensions (T1, T2) can be selected with time-varying functions, which can 
present distinct periodic signals, chaotic signals and even spiking or 
bursting series as the membrane potentials from some neurons devel
oped from many neural circuits. Selecting time-varying tension (T1, T2) 
for Eq.(3), it indicates that the artificial muscles will contract or relax 
with time, and then different leg gaits can be presented accompanying 
with the changes of the angles (θ1, θ2). The third formula in Eq. (3) is 
much complex, and the two gait angles (θ1, θ2) are restricted by the 
second formula in Eq. (3). Therefore, Eq. (3) is rewritten in equivalent 
forms by updating the second and fourth formulas in Eq.(3) as follows 
⎧
⎪⎨

⎪⎩

l2sinθ2 = l1sinθ1,

d2θ2

dt2 =
3gk2T2 + 3Ngcosθ2

P2l2
−

3g
2l2

cosθ2.
(5) 

It indicates the end point B of the coupled pendulums can move in 
free way (left to right, up and down) when the vertical supporting N = 0. 
The complete diagram for the leg gait controlled by artificial muscles via 
the tension (T1, T2) can be presented in Fig. 4.

According to Fig. 4, any changes of the current across the EM1 and 
EM2 will modify the rotational torques and the flexible rope OA or AB 
will adjust its length and the intrinsic tension along the ropes. 
Furthermore, additive moments for the jointed pendulums combined of 
OA and AB are applied to change the gait stability. In this way, leg 
movement is realized. In fact, when the electrical signals activated the 

Fig. 1. Anatomy diagram of leg (left) and leg skeleton diagram (right). Gluteus maximus muscle (GMM), biceps femoris muscle (BFM), lateral thigh muscle (LTM), 
tensor fascia lata muscle (TFLM).

Fig. 2. Coupled pendulums for jointed femur and tibia (leg). O, A, B denotes jointed points, and the beam OA, AB rotates against the points O, A, B respectively. The 
terminal end B moves along horizontal direction. Rotation of OA and AB mimic the movement of femur, tibia and fibula, respectively.

Fig. 3. Artificial muscle is mimicked by enwinding flexible strings/ropes to an 
electronic motor (EM). T denotes the tension/pulling force along the strings. 
Clockwise or anticlockwise rotation in EM will change the length for OA, 
muscle contraction or relaxation is realized.
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EM1 and EM2 are generated from a stable signal source, the effect of 
load effect of N-turns coils in the electronic motor can be ignored. 
Surely, short beam can also be connected to the jointed point B to mimic 
the foot gait. Supposing the load circuit of the EM has an intrinsic 
resistor R0, and the two Ems are excited by the same channel current 
from a simple neural circuit shown in Fig. 5.

The output voltage from the capacitor controls the channel current 
across NR, and it is approached by 

iNR = −
1
ρ

(

V −
1
2

V2

V0
−

1
3

V3

V2
0

)

. (6) 

The intrinsic parameters (V0, ρ) are relative to the material property 
of NR and they can be approached from experimental way. For 
simplicity, the same output channel current is applied to driven two EMs 
and the circuit is plotted in Fig. 6.

The physical variables in Fig. 6 can be described by the circuit 
equations as follows 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
dV
dt

= is + iL +
1
ρ

(

V −
V2

2V0
−

V3

3V2
0

)

− iMT ,

L
diL
dt

= E − iLR − V,

LMT
diMT

dt
=

1
2

V − iMTR0.

(7) 

These physical variables and parameters can be rewritten in 
dimensionless forms as follows 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x =
V
V0

, y =
iLρ
V0

, z =
iMTρ
V0

, í s =
iSρ
V0

, τ =
t

ρC
,

a =
E
V0

, b =
ρ2C
L

, c =
R
ρ, d =

ρ2C
LMT

, β =
R0

ρ .

(8) 

Inserting the parameters and variables into Eq.(9), the coupled 
neuron and muscles are described by 

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dx
dτ = í s + y +

(

x −
x2

2
−

x3

3

)

− z,

dy
dτ = b(a − cy − x),

dz
dτ = d

(
1
2

x − βz
)

.

(9) 

From biophysical viewpoint, external forcing current i′s modifies the 
excitability by inserting energy into the neuron, and the firing patterns 
are changed during the changes of membrane potentials for the variable 
x. According to Eq.(2), the chancel current Imotor=iMT, and it is propor
tional to the dimensionless variable z by setting appropriate gain k for 
the tension T including T1 and T2, here, T1=T2=T. By taming the 
intrinsic parameters (a, b, c, d, β) and the external current i′s, the neuron 
can present different firing modes during the changes of membrane 
potentials. When the neuron generates constant voltage or membrane 
potential, the artificial muscles keeps constant tension values and the 
variable z becomes stable. On the other hand, Continuous changes of 
membrane potential will modify the channel current z and then the 
tension for artificial muscles becomes time-varying, it predicts that the 
artificial muscles keeps contraction and relaxation accompanying with 
switch in the leg gaits.

When the two EMs in Fig. 4 are controlled by two different channel 
currents, the jointed pendulums and artificial muscles will behave their 
gaits freely, and the circuit is plotted in Fig. 7.

As shown in Fig. 4, the load circuits for the two electronic motors in 
the artificial muscles are controlled by two coupled neural circuits, and 
the current across each load circuit (LMT1, LMT2) is affected by the 
external stimulus and other electric components by shunting the energy 
flow. Similarly giving circuit equations for the physical variables and the 
neural circuits are coupled to control the artificial muscles as follows 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
dV1

dt
= is + iL1 +

1
ρ

(

V1 −
V1

2

2V0
−

V1
3

3V2
0

)

− iMT1 +
(V2 − V1)

R
,

L
diL1

dt
= E − iL1R − V1,

LMT
diMT1

dt
= V1 − iMT1R0,

C
dV2

dt
= is + iL2 +

1
ρ

(

V2 −
V2

2

2V0
−

V2
3

3V2
0

)

− iMT2 +
(V1 − V2)

R
,

L
diL2

dt
= E − iL2R − V2,

LMT
diMT2

dt
= V2 − iMT2R0.

(10) 

The variables including voltage and channel currents for the left side 
circuit are marked with subscript 1, while the variables for right side 
circuit in Fig. 7 are discerned by adding subscript 2, and the same 
electric components for two sides of the coupled neural circuits are 

Fig. 4. Jointed pendulums driven by artificial muscles, which the electronic motor controls the contraction and relaxation of the flexible ropes. EM1 and EM2 are 
controlled by external electrical signals.

Fig. 5. (RLC) Neural circuit is composed of capacitor C, inductor L, nonlinear 
resistor NR. Constant voltage E denotes reverse potential of ion channel, R is a 
constant resistor, iS represents external forcing current.
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selected identical parameter value, for example, L1=L2=L, C1=C2=C, 
LMT1=LMT2=LMT, E1=E2=E, R1=R2=R, R01=R02=R, is1=is2=is. By 
applying similar definition in Eq.(8) on the physical variables and pa
rameters in Eq.(10), the coupled neurons interacted with feedback 
modulation from the artificial muscles are described by 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1

dτ = í s + y1 +

(

x1 −
x2

1
2
−

x3
1

3

)

− z1 +
1
c
(x2 − x1),

dy1

dτ = b(a − cy1 − x1),

dz1

dτ = d(x1 − βz1),

dx2

dτ = í s + y2 +

(

x2 −
x2

2
2
−

x3
2

3

)

− z1 +
1
c
(x1 − x2),

dy2

dτ = b(a − cy2 − x2),

dz2

dτ = d(x2 − βz2).

(11) 

When the artificial muscles adhered to the two jointed pendulums 
are controlled by two separate neural circuits, the tensions for the 
artificial muscles can select different values by inducing different tor
ques. For example, T1 is controlled by the series for variable z1 and T2 is 
controlled by the series for variable z2. As a result, the leg can behave 
different gaits freely. Involvement of coupling between two neural cir
cuits can regulate the cooperation between the two jointed pendulums 
and then the leg gaits are controlled. On the other hand, breakdown in 
one of the neural circuit still excites the EMs and then the leg gaits can be 
controlled effectively. In fact, the leg gaits are mainly controlled by the 
criterion in Eq.(5) even the tensions for the artificial muscles can be 
adjusted to select different values.

When the jointed pendulums and the electronic motor are controlled 
by a single neural circuit shown in Fig. 6, the field energy W1 is mainly 

saved in the capacitor and three inductors, and then the field energy is 
replaced with dimensionless Hamilton energy as follows 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

W1 =
1
2

CV2 +
1
2

Li2L + LMTi2MT ,

H1 =
W1

CV2
0
=

1
2
x2 +

1
2b

y2 +
1
2d

z2.

(12) 

For two coupled neural circuits in Fig. 7, the field energy W2 is ob
tained as well and its dimensionless energy function H2 is given in 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

W1 =
1
2

CV2
1 +

1
2

Li2L1 +
1
2
LMTi2MT1 +

1
2

CV2
2 +

1
2

Li2L2 +
1
2
LMTi2MT2,

H2 =
W1

CV2
0
=

1
2
(
x2

1 + x2
2
)
+

1
2b
(
y2

1 + y2
2
)
+

1
2d
(
z2

1 + z2
2
)
.

(13) 

When the legs or jointed pendulums suffer from external load 
bearing, the muscles contract to keep enough tension for keeping gait 
balance. For the neural circuit-coupled jointed pendulum via artificial 
muscle, contraction or relaxation of the ropes enwinding to the elec
tronic motor will change the leg gaits and feedback is activated to 
regulate the neural circuit by generating induced electromotive force in 
the N-turns coils in the load circuit of the electronic motor. For nu
merical verification, the fourth order Runge-Kutta algorithm can be 
applied to find solutions for Eq.(9) and its energy evolution in Eq.(12) 
can be detected when two EMs are driven by the same channel current 
from the neural circuit. Similarly, numerical solutions can be obtained 
for Eq.(11) and its energy function in Eq.(13) when the two EMs are 
driven by a couple coupled neural circuits. According to Eq.(2) and Eq. 
(5), the rotation angles (θ1, θ2) for the two jointed pendulums can also be 
estimated and different leg gaits are formed in stable way. For dynamical 
analysis, external forcing current can be selected with photocurrent 
across a phototube or piezoelectric current converted from an acoustic 
wave via piezoelectric ceramic. In addition, noisy disturbance can also 

Fig. 6. Neural circuit excites the EMs for mimicking the artificial muscles. LMT and R0 denote the intrinsic inductance and resistance for the load coils in the EM. The 
current across the EM coils IMT=Imotor in Eq.(2).

Fig. 7. Two coupled neural circuits are activated to driven the load circuits for the artificial muscles. The coupling channel is built by connecting two neural circuits 
via a linear resistor with the same resistance R.
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be applied to detect the response in the leg gaits and energy conversion 
between capacitive and inductive energy when the leg and artificial 
muscles are controlled in static states.

Based on the simple neural circuit in Fig. 5, the neural signals are 
derived to excite the electronic motor, and the flexible ropes connected 
to the jointed pendulums are adjusted, as a result, the jointed femur, 
tibia and fibula are guided to present different leg gaits. Combination of 
other functional electronic components including memristor, phototube, 
piezoelectric ceramic and thermistor into the neural circuit in Fig. 5 can 
enhance the physical perceptive function of the neural circuit. In 
particular, involvement of memristor into neural circuit can induce 
multi-stability [81,82] and controllability to external electromagnetic 
radiation because external physical stimuli inject energy into the 
memristive channel.

From control aspect, external stimuli inject energy into the neural 
circuits, and a part of field energy is shunted into the load circuits of the 
EMs for generating strong torques to control the tension in the ropes, 
which connect to the skeleton. As a result, the leg gaits can be controlled 
effectively within short transient period. As is known, neural signals are 
propagated to the leg muscles and then the leg behave suitable gaits by 
generating appropriate muscle tensions (pulling force) during contin
uous movements. In fact, the leg gaits can be discerned by detecting the 
detectable rotation angles (θ1, θ2). On the other hand, detection of the 
moving velocity of jointed point B provides another way to measure the 
reciprocating motion of the leg, which is similar to the rehabilitation 
training for disabled legs. When the physical parameters for the load 
circuits of the EMs are fixed, activation of adaptive law depends on the 
regulation of the channel current across the EMs coils synchronously. By 
applying larger channel current in the load circuit, the EMs torques and 
rope tensions are increased to speed the rotation movement of the 
jointed pendulums, and the leg moves quickly. Otherwise, the leg and 
jointed pendulums move slowly. The field energy in the neural circuit 
and EMs are converted to mechanical energy due to the coupling be
tween EMs and neural circuit. That is, changes of the energy ratio be
tween capacitive energy and inductive energy will control the 
movement state the jointed pendulums and the EMs. Similar to the 
parameter growth law for a single neural circuit [38.80], an adaptive 
control law for controllable parameters can be suggested as follows 
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dc
dτ = δ⋅c⋅ϑ(H − H0), ϑ(U) = 1,U ≥ 0, ϑ(U) = 0,U < 1,

H =
1
2
x2, for Fig.6,

H =
1
2
(
x2

1 + x2
2
)
, for Fig.7.

(14) 

In Eq.(14), the gain δ controls the growth intensity of the parameter 
c, H measures the capacitive energy in the neuron or neural circuit, and 
H0 is the threshold for the energy. The energy level can be calculated 
when all variables are available. In practical way, the kernel variable of 
the Heaviside function in Eq.(14) can be replaced by using detectable 
voltage variable. Therefore, the adaptive growth law in Eq.(14) is 
updated by 
⎧
⎪⎪⎨

⎪⎪⎩

dc
dτ = δ⋅c⋅ϑ(x − x0), ϑ(U) = 1,U ≥ 0,ϑ(U) = 0,U < 1,

db
dτ = δ⋅b⋅ϑ(x − x0), x = x1, or x2 for Fig.7.

(15) 

When the membrane potential or the capacitor voltage is beyond the 
threshold x0, the parameter c or b can keep continuous growth, and the 
total energy function H1 in Eq.(12) or H2 in Eq.(13) will be modified. 
Positive value for the δ will apply negative regulation to decrease the 
variable y or variables (y1, y2), and inductive energy in the neural cir
cuits is decreased synchronously. As a result, the load circuit of the EMs 
will share more energy flow to control the EMs effectively, and then the 
jointed pendulums are guided to behave suitable gaits. For static state, 

the angles can be estimated from Eq.(4) when the tension and torques 
generated by the artificial tissue in Eq.(2) are invariable. In presence of 
time-varying stimulus, the channel current across the load circuit of the 
EMs will generate different toques and tensions, and the rotation 
movement of the jointed pendulum can be explored by finding numer
ical results from Eq.(3).

Indeed, electronic motors can be used to contract or relax the length 
of flexible ropes, and simple artificial muscles can be mimicked to 
control the body gaits. Two jointed pendulums can be controlled to 
mimic the movement and rotation of arms and legs, and activation of 
artificial muscles are helpful to aid the disabled legs. By taming the 
electrical activities in the neural circuits, the output voltage and current 
from the neural circuit can be used to control the electronic motors and 
then the jointed pendulums and even robot arms and legs can be 
controlled to keep stable gaits. This scheme provides some clues to 
design and control artificial legs, and it is helpful to keep safe body gaits 
for those people with disabled legs. Damage of body muscles can ignore 
the electrical stimuli and then the body gaits are out of control from the 
neural signals simultaneously. Therefore, gaits stability and normal 
muscle movements are disturbed to behave suitable states. On the other 
hand, blocking the regulation from neural signals due to different ner
vous disorders [83–85] also disables muscle movements and auxiliary 
neural circuits can be designed to control the muscle relaxation for 
behaving safe body gaits.

3. Numerical results and discussion

According to the stability condition in Eq.(4), the jointed beams/ 
pendulums can keep appropriate angles and gaits when the pulling 
forces from the EMs are applied to balance the intrinsic gravitational 
moments. In fact, the joined beams can also keep stability even only one 
EM is activated because the jointed point A supports them at suitable 
angles by adjusting the pulling force from one EM via the ropes. Any 
changes of the horizontal displacement for free end B (X=xOB=OAcos 
(θ1) +ABcos(θ2)=l1cos(θ1)+l2cos(θ2)) will modify the leg gaits and 
rotation angles (θ1, θ2), which depend on the pulling forcing from the 
EMs. In numerical approach, the gains (k1, k2) can select maximal value 
1, and different constant values for T1 and T2 can be applied to detect the 
static gait angles (θ1, θ2).

Considering the continuous movements of the jointed pendulums as 
shown in Eq.(5), for simplicity, P1=P2, T1=T2=T, k1=k2=1.0. The 
internationally recognized normal ratio of thighs to calves is: the ideal 
size of thighs is height multiplied by 0.341, and the ideal size of calves is 
height multiplied by 0.21. The vertical supporting force N can be 
selected as zero or other positive value less than P2. Here, l1=0.6 m, 
l2=0.4 m, g = 10.0 N/kg, P1=2.5 kg, P2=2.5 kg, N = 1 kg, and then the 
Eq.(5) is updated by 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dθ2

dt
= ω2,

dω2

dt
=

3gk2T2 + 3Ngcosθ2

P2l2
−

3g
2l2

cosθ2

= 30T2 − 7.5cosθ2,

sinθ1 =
l2
l1

sinθ2 =
2
3

sinθ2.

(16) 

By setting different constant values for T, the numerical solutions for 
Eq.(6) can discern the movements of the jointed pendulums/legs. As 
shown in Eq.(2), the pulling force T is proportional to the channel cur
rent across the motor coils, which shunts current from the driving neural 
circuits. Therefore, the force T can also be selected with a specific 
function, constants or periodic series for keeping static balance or 
continuous movement in the legs. For example, T = k′z from Eq.(9) or 
T2=k′z2 from Eq.(11), that is, the artificial muscle produces tension 
proportional to the channel current in the coils of the EM. The coefficient 
is mainly decided by the coils in the EM. The neuron in Eq.(9) and the 
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coupled neurons in Eq.(11) can be excited to present periodic, spiking, 
bursting activities, and then the movements of the jointed pendulums 
can be explored by finding numerical solutions from Eq.(16). When the 
anticlockwise torques are not balanced by the clockwise torques in the 
second formula in Eq.(16), the jointed pendulums or legs keep contin
uous rotation, as a result, the gait angles (θ1, θ2) will be beyond safe 
thresholds and the electromechanical legs are destroyed.

In practical way, the angles (θ1, θ2) are restricted within a scope less 
than π/2 during the changes of tension T including T1 and T2, which 
should be adjusted in adaptive way. The channel current of the coils in 
the EMs, which are shunted from the neural circuit, can select negative 
or positive values; it indicates that the EM can switch its rotation di
rections following the changes of channel current. On the other hand, T 
> 0 means muscle contracts/shrinks while T < 0 means muscle relaxa
tion. Therefore, a diode can be incorporated into the branch circuit 
connecting to the load circuit (EM), so that the channel current across 
the coils of the EM becomes unidirectional. During numerical approach, 
larger initial value for θ2 means the muscle is contracted with high 
tension (pulling force), while smaller initial value for θ2 means the 
muscle is relaxed with lower tension. In Fig. 8, the artificial muscle is 
activated with different tensions, and the values for T2 in Eq.(16) are 
changed to detect the gait angles (θ1, θ2) under torques balance 
(30T2=7.5cosθ2), and the vertical axis is represented in radians.

From Fig. 8, appropriate setting for the muscle tensions can keep 
suitable leg gaits, and smaller values for the muscle tensions T1 and T2 
will break the gait balance, as a result, the gait angles (θ1, θ2) will obtain 
negative values. As mentioned above, the channel current for the vari
able z and (z1, z2) can be regulated to keep negative or positive values, 
therefore, the EM generates clockwise or anticlockwise torques, which 
means the artificial muscles will present relaxation or contraction state 
with time, and the muscle tension T will select negative or positive 
values with the changes of channel currents in the EMs. In Fig. 9, the 
muscle tension T is controlled by the channel current as T2=k′z = 0.4z 
(switch between negative and positive values), and the evolution of gait 
angles and displacement xB are plotted in Fig. 9.

From the results in Fig. 9, it is demonstrated that gait angles (θ1, θ2) 
can present values beyond the safe threshold π/2 when the electrome
chanical leg is controlled by the artificial muscles, which is regulated by 
the output signals from the neural circuit. Therefore, the channel current 
of the EMs should be controlled to keep positive values for the pulling 
forces (muscle tensions) T1 and T2. As suggested above, T=|k′z|, absolute 
value supports positive value for the pulling force in the artificial mus
cles. During circuit control, a diode can be used in the branch circuit 
connecting the coils of EMs (load circuit). For adaptive control, the 

external forcing or one intrinsic parameter can be adjusted following the 
growth law in Eqs. (14) and (15), so that the EMs produce positive/ 
anticlockwise torques to balance the clockwise tensions, as a result, the 
leg gaits are controlled in safe state.

In a summary, an artificial muscle device is proposed by regulating 
the length of the ropes winded to an EM, which is controlled by the 
electrical signals from a neural circuit. The coils of the EM is considered 
as load circuit (branch circuit) of the neural circuit, and the EMs produce 
suitable torques to control the contraction and relaxation of the muscles 
during changes of the length of flexible ropes. By taming the neural 
circuit, the channel current shunted from the neural circuit is modified 
to induce different toques and then the electromechanical leg keeps 
appropriate gaits.

4. Conclusions

In this paper, we suggested a simple model for artificial muscle by 
enwinding flexible ropes on an electronic motor, and the artificial 
muscles control the leg gaits by regulating the tensions (pulling forces). 
The leg gait is approached by using a pair of jointed pendulums and the 
electronic motor is driven by a neural circuit. The N-turns coils in the 
electronic motor are considered as a load circuit to the driving neural 
circuit. The neural circuit controls the rotation of electronic motor and 
the length of the winded rope is changed to mimic the contraction and 
relaxation of the muscles, as a result, the tensions and torques are 
modified to regulate the gait angles (θ1, θ2) for the jointed pendulums. In 
this way, the leg gaits are controlled effectively. This scheme can be 
further used to design and control artificial arms/legs, and complex 
body gaits can be controlled completely. It also provides clues to sup
press movement disorders in presence of neural diseases including 
seizure, Parkinson’s disease and Alzheimer’s disease [86–90].
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A B S T R A C T

The mechanical characteristic of an arm can be investigated in a two-stage cascade pendulum, which two jointed
pendulums rotate to a jointed point and move forward for keeping stable gaits. The arm gaits and stability are
controlled by the electrical signal interacted with the muscle. In this paper, two short beams are jointed to mimic
the motion and stability of an arm driven by electromechanical force, which is generated from the gear or friction
interaction between a beam and electromotor activated by electric signals from a neural circuit. On end of the
artificial arm is jointed to a fixed point, another end is connected to a moving beam along horizontal direction.
An electrical motor is driven by the output signals from a neural circuit, and it generates effective horizontal
force to control the stability and gaits in the coupled pendulums via a gear interaction. When the electrical motor
(EM) is activated, it has a feedback on the driving neural circuit by changing the firing activities because the load
circuit of the EM generates induced electromotive force as an additive branch circuit of the neural circuit, and
this interaction is similar to the processing that athletic training can modify the mentality by training the neural
activities. External physical signal is applied and changed to control the neural circuit, and then the moving beam
can impose time-varying force to control the stability of the jointed pendulums. In presence of noisy excitation,
similar nonlinear resonance can be induced in the neural circuit. The dynamics in the neural circuit-coupled
pendulums is explored in detail. That is, the neural circuit regulates the EM for generating electromechanical
force and then the jointed pendulums are controlled in the arm gaits. This mechanical process is similar to the
rehabilitation training for disabled arms with movement disorders. The results provide helpful clues to design
artificial electromechanical arm and application of arm rehabilitation for muscular injuries.

1. Introduction

Skeletal muscles are controlled by electrical signals from nervous
system [1–5] and different body gaits depend on the muscle contraction
and relaxation. After a stroke [6–8], the body gaits are corrupted and the
arms seldom behave normal behaviors. Movement related impairments
and limitations in walking are common long-term after stroke. On the
other hand, trembling arms [9–13] is considered as disability in body
gaits due to impairments in the arm and abnormality in nervous system.
Therefore, it is worthy of investigating approach of electromechanical
arms and legs [14–19], and jointed pendulums [20–24] can be driven by
circuit array or neural circuits [25–29], which can encode external
physical signals including light and voice, and then these biophysical
neurons [30–34] derived from functional neural circuits [35–39] can be

used to control the artificial arms or legs.
A generic neuron model can present distinct firing patterns including

quiescent, spiking, bursting and even chaotic characteristic by applying
appropriate external stimulus, and noisy excitation can induce a kind of
nonlinear resonance including stochastic resonance and coherence
resonance [40–44], logical resonance [45–49] and chaotic resonance
occurs by applying filtered signals [50–54]. The simple neuron models
can be described by nonlinear oscillator [55–58] or maps [59–62], and
functional description can be enhanced by introducing more specific
nonlinear terms into the mathematical neurons or biological neurons for
proposing some functional neurons [63–67], which can perceive
external illumination, temperature changes, acoustic wave and elec-
tromagnetic field by incorporating different electronic components into
the neural circuits. For example, the memristive neurons developed
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from neural circuit composed of memristors [68–70] can be controlled
to show multistability [71,72] and intrinsic electromagnetic induction
and even radiation can be estimated in theoretical way [73–76]. Based
on these memristive neurons [77–81], self-organization and collective
behaviors can be explored in the memristive neural networks [82–85],
and spatial electromagnetic radiation [86,87] has distinct impact on the
wave propagation in the networks. That is, involvement of memristor
enhances the controllability of neural circuit and self-adaptive property
of biophysical neurons can be released by the energy flow [88,89]. For a
brief guidance, readers can find clues in the recent reviews and the
references therein [90,91].

Am gaits can be simulated by using a paired jointed pendulums
connecting to a fixed point, and the contraction and relaxation of an arm
in a plane produce similar rotation and movements in the jointed pen-
dulums driven by an external force. The movements of biological arms
are controlled by muscles, and relaxation and contraction of muscles
adhered to the skeleton are adjusted by the neural signals. As a result,
disabled arms/legs due to muscles disability seldom present normal
movements, and necessary rehabilitation training becomes important by
applying continuous forcing on the arm end [92]. On the other hand,
smart mechanical arms of robots often depend on the involvement of
artificial tissue for generating more freedom degrees in motion. Two-
degree-of-freedom robotic manipulators [93–97] have been investi-
gated in the past twenty years. For reliable control, neural networks are
proposed to stabilize the robotic manipulators [98–100]. Indeed, the
shape memory enables alloys to represent muscles and tendons
[101–105]. In fact, electromagnetic brakes in joints [106–110] are
important for the gaits control and thus the artificial arms can behave
complex gaits and movements. On the other hand, magnetorheological
fluids are effective for designing brakes in joints [111–115] and thus the
robot gaits can be controlled effectively. From mechanical aspect, the
movement and rotation of electromechanical device including arms and
legs depend on active driving and excitation for electromechanical
forces, which can be generated from electric motors or pneumatic sys-
tems [116–120], the involvement of neural circuit interacting with the
control device can guide the robots to present smart responses and
actions.

In this paper, two pendulums are jointed to mimic the motion of an
arm, one end of the jointed pendulums is hanged to a rotating point and
another end is jointed to a moving beam geared with an electrical motor.
The torques of the electrical motor is dependent on the electrical signal
from a neural circuit composed of a magnetic flux-controlled memristor
(MFCM). The jointed pendulums-coupled with moving beam is consid-
ered as an electromechanical device for mimicking the dynamical
property of artificial arm driven by neural signals generated from a
neural circuit. The kinetics relation, mechanical interaction between the
jointed pendulums and moving beam (excitation source), circuit equa-
tion and energy characteristic are defined and discussed. The scheme is
helpful to design reliable artificial arms and further dynamical control in
the electromechanical devices.

2. Model and control strategy

An arm can behave different gaits due to the interaction between
muscles and nervous electrical signals. Contraction exercise can train
the muscle and arm flexibility, and the motion of arms can be controlled
by the electrical signals from nervous system. When the palm suffers
from external mechanical force, the movement of the arms can be esti-
mated by the measuring the movements and stability of two jointed
pendulums in a plane space. The external applied torques keeps against
the muscle contraction and intrinsic gravity of skeleton, and then
appropriate arm gaits are stabilized synchronously.

2.1. Simulation of an arm with jointed cascade pendulums

The mechanical characteristic of an arm can be investigated when

the arm is considered as cascade pendulums shown in Fig. 1.
The cascade pendulums suffered to two different gravitational mo-

ments and an external moment activated by a horizontal force F(t) via a
beam with length l. The cascade pendulums can rotate to the hanging
points O and A0 in Fig. 1. Horizontal force to the right can generate
counterclockwise torques to be against the clockwise gravitational tor-
ques, and the two jointed pendulums can be controlled to keep balance.
On the other hand, applying Horizontal force to the left long a beam is
also effective to control stability in the jointed pendulums when the
horizontal beam is jointed to the connecting point B0. To keep static
balance and stability in the jointed cascade pendulums, the torques
equation meets the following criterion in Eq. (1).
⎧
⎪⎪⎨

⎪⎪⎩

P1⋅
l1
2
cosθ1 + P2⋅

(

l1cosθ1 +
l2
2
cosθ2

)

= F⋅(l1sinθ1 + l2sinθ2),

P2⋅
l2
2
cosθ2 = F⋅l2sinθ2.

(1)

When the jointed pendulums are used to mimic the mechanical
response, the force F(t) can be considered as a mechanical control from
the muscle. Furthermore, correlation in Eq. (1) can be updated to pre-
sent a simple form as follows
⎧
⎪⎨

⎪⎩

P1⋅
l1
2
cosθ1 + P2⋅l1cosθ1 = F⋅l1sinθ1,

P2⋅
l2
2
cosθ2 = F⋅l2sinθ2.

(2)

When external forcing F(t) is fixed, the compound pendulums control
their correlated angles in stable state.
⎧
⎪⎨

⎪⎩

tanθ1 =
P1 + 2P2

2F
,

tanθ2 =
P2

2F
.

(3)

Indeed, any changes of the forcing value F=F(t) can modify the gait
of the two jointed pendulums, which will rotate to a new pairs of angles
for keeping stable gaits. Therefore, the angle relation between θ1 and θ2
is dependent on the applied force F with time. In a practical way, the
beam forcing along horizontal direction can be selected with a pulse
form, periodic and even chaotic type, and the coupled pendulums will
keep different gaits by changing the angles (θ1, θ2) synchronously. Ac-
cording to the stability criterion in Eq. (3) and Fig. 1, the jointed pen-
dulums keep stability at θ1 > θ2 and instability occurs at θ1 = θ2. For
example, it means damage of the arms at θ2 > θ1. On the other hand,
direction switch of horizontal forcing F along horizontal axis positive
direction to the left direction also can supports dynamical stability and
balance of the two pendulums as well because of jointed interaction via
point B0, and this case θ1 < θ2 just occurs for jointed pendulums. In a
generic way, periodic F(t) can break the gait stability of the two jointed
pendulums.

In fact, when the end point of the jointed pendulums B0 is activated
by a continuous forcing without connecting a horizontal beam (no
jointed interaction), the jointed pendulums can keep dynamical balance
during changes of the angles (θ1, θ2). For example, the force F(t) in Eq.
(3) can be selected with periodic or chaotic signals from a nonlinear
circuit or neuron oscillator, in a simple way, the output voltage series
equal to the value for F(t), the gaits for the jointed pendulums will be
controlled completely.

2.2. Horizontal reciprocating motion of a moving beam

As shown in Fig. 1, applying a horizontal force to the right direction
can keep stable state in the jointed pendulums and switch of horizontal
force to the left will break the stability of the coupled pendulums.
Therefore, time-varying force F(t) will change the arm gait and stability
in the jointed pendulums accompanying with changes in the angles (θ1,
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θ2). In practice, the moving beam with a length l can be driven by an
electrical motor via gear or friction as shown in Fig. 2.

According to Fig. 2, the horizontal beam is forced to keep recipro-
cating motion via gears interaction when the gear adhered to the electric
motor is driven the motor. When one end of the moving beam in Fig. 2 is
jointed to the end terminal B0 of the coupled pendulums in Fig. 1,
continuous forcing will generate time-varying torques, which is effective
to change the movement and rotation of the two jointed pendulums. The
electrical motor has an N-turns coil and its electric torques is measured
by
⎧
⎨

⎩

M
⇀
= P

⇀
m × B

⇀
= N⋅ISSn̂ × B

⇀
,

M = N⋅IS⋅S⋅B⋅sin
(
n̂,B

⇀)
= NSBISsin

(
n̂,B

⇀)
.

(4)

where the parameters (B, S, IS) denote the magnetic field intensity, coil
area and current intensity across the N-turns coil in the electrical motor,
respectively. That is, the electric torques is mainly controlled by the
current IS across the coil, and this current will be generated from a
neural circuit in subsection 2.3. The N-turns coil is considered as an
additive branch circuit or load circuit of the driving neural circuit. By
applying larger value for the current IS across the electric motor, a
stronger torques is generated to speed up the moving beam and the
jointed pendulums will be controlled with a larger force F(t). Periodical
change in the current IS can generate clockwise and counterclockwise
torques, respectively, and then the moving beam will move to opposite
directions intermittently. As a result, the joint pendulums will keep
different rotation directions, and this processing is similar to the
stretching and relaxing movement of arms. As shown in Fig. 2, the
electromagnetic torques can impose tangential force on the moving
beam via gear interaction, the motor has a radius r and the tangential
force from the EM can be approached by

F = F(t) =
NSISB

r
sin

(
n̂, B→

)
=

NSIS(t)B
r

sin(ω0t). (5)

The parameter ω0 measures the angular frequency of the electrical
motor and it is relative to the external load driven by the motor because
of resistive torques. The moving beam can apply load damping to the
electrical motor via gear interaction because the two jointed pendulums
can apply feedback via jointed point B0 to the beam, and then the motor
can keep continuous rotation under fixed angular frequency, which is
also restricted by the velocity of the moving beam as ω0r = dx/dt. The
variable x measures the displacement of the moving beam. For animal
arms or legs, the modulation of body gaits is controlled by the muscle via
electrical signals from nervous system. On the other hand, continuous
muscle training has positive feedback on the nervous system and the
neural activities can be tamed effectively. Supposing the moving beam
interacted with the electrical motor has a quality m, and its dynamics of
displacement x is measured by
⎧
⎪⎪⎨

⎪⎪⎩

m
d2x
dt2

+ η dx
dt

= F(t) =
NSIS(t)B

r
sin(ω0t),

dx
dt

= ω0r = v.

(6)

The second term in the first formula of Eq. (6) denotes the damping
modulation due to constraint from the jointed pendulums, and it is
proportional to the moving velocity with a constant gain η. Eq. (6) can be
replaced by an equivalent couple of first order differential equations as
follow
⎧
⎪⎨

⎪⎩

dx
dt

= v,

dv
dt

=
NSIS(t)B

mr
sin(ω0t) −

η
m
v.

(7a)

Or
⎧
⎪⎨

⎪⎩

dx
dt

= v,

dv
dt

=
NSIS(t)B

mr
sin

(v
r
t
)
−

η
m
v.

(7b)

Furthermore, the current variable IS in Eqs. (7a) and (7b) can be
converted to dimensionless variable for obtaining a dimensionless
oscillator model for the displacement and velocity. Reciprocating mo-
tion of a moving beam will apply time-varying force to the jointed
pendulums to rotate the jointed points and their mechanical energy is
mainly kept as rotational kinetic energy (WP1, WP2), and the moving
beam keeps a translational kinetic energy (Wl).

Fig. 1. Schematic diagram for a pair of cascade pendulums. P1 and P2 represent the gravity for the pendulum with a length l1and l2, respectively. The time-varying
force F(t) is applied along the horizontal direction via a beam with a length l, which is jointed to the coupled pendulums.

Fig. 2. Reciprocating motion of a beam driven by an electrical motor (EM). The
rotation of the motor can be driven by electrical signals from a neural circuit,
and switch of the output voltage from negative to positive value will control the
rotation direction of the motor and the moving beam is switched in
the directions.
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

WP1 =
1
2
J1ω2

1 =
1
2

(
1
3
P1

g
l21

)

ω2
1 =

1
6g

P1l21

(
dθ1

dt

)2

,

WP2 =
1
2
J2ω2

2 =
1
2

(
1
3
P2

g
l22

)

ω2
2 =

1
6g

P2l22

(
dθ2

dt

)2

,

Wl =
1
2
m
(
dx
dt

)2

=
1
2
mv2.

(8)

From Eq. (3), the evolution of rotation angles (θ1, θ2) for the coupled
pendulums can be obtained by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dθ1

dt
= ω1 =

P1 + 2P2

2
cos2θ1

d
dt

(
1

F(t)

)

= −
r(P1 + 2P2)cos2θ1
2NBSI2S(t)sin2(ω0t)

[
dIS(t)
dt

sin(ω0t) + ω0IS(t)cos(ω0t)
]

,

dθ2

dt
= ω2 =

P2

2
cos2θ2

d
dt

(
1

F(t)

)

= −
rP2cos2θ2

2NBSI2S(t)sin2(ω0t)

[
dIS(t)
dt

sin(ω0t) + ω0IS(t)cos(ω0t)
]

.

(9)

During the time-varying modulation from F(t), the angular velocities
for the two jointed pendulums have distinct ratio at ω1:ω2 = (P1+P2)
cos2(θ1)/(P2cos2(θ2)). For simple case P1––P2, it obtains ω1:ω2 =

2cos2θ1/ cos2θ2. As shown in Eq. (6), the mechanical forcing F(t) is
dependent on the product of two time variables, and the angular velocity
in Eq. (9) and rotational kinetic energy in Eq. (8) can be estimated by
numerical approach. Similar to Eq. (7b), the variable ω0 in Eq. (9) can be
replaced with ω0 = v/r and rotation frequency of electrical motor can be
approached synchronously. In fact, during continuous rotation of the
two jointed-pendulums, the angles (θ1, θ2) are modified synchronously
to satisfy the stability criterion in Eq. (3) and the ration for angular
frequency (ω1:ω2) is dependent of external force F(t). Referring to the
hanging point (original point) O, the displacement or jointed points
position (x, y) is given in
{
xB0 = l1cosθ1 + l2cosθ2, yB0 = l1sinθ1 + l2sinθ2,
xA0 = l1cosθ1, yA0 = l1sinθ1.

(10)

When the position (x, y) or (xB0, yB0) for the jointed point B0 is
detected, the jointed point A0 is predicted simultaneously. That is, the
jointed pendulums keep two freedoms when a horizontal forcing is

applied to the terminal end B0. According to Fig. 2, the jointed point B0 is
driven by the left terminal end of the moving beam forced by the EM,
that is, the displacement x can obtained under the constraint condition
in Eq. (7b). Therefore, numerical solutions from Eq. (7) obtains the
evolution of displacement variable x = xB0, and then the change re-
lations can be detected from the first formula in Eq. (10). When the two
jointed pendulums are forced, the torque constraint for the jointed point
B0 is derived by

M = J
d2θ2
dt2

= F⋅l2sinθ2 − P2⋅
l2
2
cosθ2 =

P2l22
3g

d2θ2

dt2
. (11)

where J = P2l22/3 g represents the moment of inertia for the pendulum
A0B0 against to the jointed point B0. The angle series θ2 can be obtained
from Eq. (11), and available series for displacement x = xB0 support the
solution for the evolution of angle series θ1 according to the displace-
ment condition in Eq. (10) when the force F=F(t) is detected or known.
Indeed, scale transformation should be applied to the variables in Eqs.
(7a)–(11) to obtain equivalent dimensionless forms during numerical
approach when the force F=F(t) is generated from EM driven by the
neural circuit. A complete dynamical description for movement of the
jointed pendulums is shown in Eq. (12) for any known force F=F(t),
which is applied to the point B0.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx
dt

= v,

dv
dt

=
F(t)
m

−
η
m
v,

dθ2
dt

= ω2,

dω2

dt
=

3g
2P2l2

[2F(t)sinθ2 − P2cosθ2 ],

cosθ1 =
1
l1
(xB0 − l2cosθ2) =

x − l2cosθ2
l1

,

or, θ1 = arccos
(
x − l2cosθ2

l1

)

.

(12)

That is, the angles (θ1, θ2) and displacement x can obtain the nu-
merical solutions from Eq. (12), and the jointed point B0 also detect its
displacement y= yB0 along y-axis direction following the criterion in Eq.
(10). Therefore, the position for jointed A0 can also be detected

Fig. 3. Schematic diagram for the electrical motor-coupled neural circuit. LMT denotes the inductance of the N-turns coil in the electric motor, C, L, M represents the
capacitor, inductor and memristor, R0 is the intrinsic resistance of the electric motor, R and E represents the resistance and reverse voltage in the ion channel.
External physical signal is is applied to excite the neural circuit.
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according to Eq. (10) when the numerical solutions for (θ1, θ2) are
available from Eq. (12) by setting any constant value or periodic value
for F(t).

2.3. Electromechanical arm coupled with a neural circuit

The electrical motor forced the moving beam to control the jointed
pendulums, and the electromagnetic torques is dependent on the output
voltage and current from the driving neural circuit, which is controlled
by external physical signals, for example, acoustic wave or illumination
can be converted to equivalent electrical signals applied to the neural
circuit. The electromagnetic induction in the electric motor has distinct
feedback on the driving neural circuit via a linear resistor R0, and the
driving-response neural circuit and motor circuit are presented in Fig. 3.

The electric motor adhered to the moving beam can mimic the
interaction between muscle and neural electrical signals, and the elec-
tromechanical coupling between jointed pendulums and neural circuits
is approached by applying load circuit to the driving neural circuit. For
simplicity, a magnetic flux-controlled memristor (MFCM) is considered
in the branch circuit of the neural circuit in Fig. 3. The channel current
across the MFCM is approached by

iM = M(ϕ)V =
(
α+3βϕ2)V. (13)

where the variable V represents the voltage for the capacitor and
memristor, and the parameters (α, β) are relative to the material prop-
erty of the MFCM. In presence of external magnetic field, the magnetic
flux φ for the memristive channel will be affect and then the memristive
current across the memristor has distinct modulation on the capacitive
channel, which is also controlled by external forcing is and inductive
channel current iL as well. The correlation between the physical vari-
ables in Fig. 3 can be described by the circuit equations according to the
Kirchhoff's theorem, and dynamics of the voltage, induction current and
magnetic flux variables for the Fig. 3 are given in

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
dV
dt

= is − IS − iM − iL,

LMT
dIS
dt

= V − ISR0,

L
diL
dt

= V + E − iLR,

dϕ
dt

= V + k1ϕ.

(14)

where the variables (V, IS, iL) indicates the voltage across the capacitor,
channel current for the load coil with inductance LMT and the inductor L,
respectively. When the equivalent load inductor in Fig. 3 is removed, it
indicates that the neural circuit cuts connection to the electromechan-
ical device and the electric motor is switched off excitation from the
neural circuit. The physical parameter k1 is relative to the material
property of the memristor and high value for k1 means that intracellular
ions in the memristor are active to support the occurrence of magnetic
field. High order term associated with the memristive current iM in Eq.
(13) and Eq. (14) seldom supports an exact analytical solution for the
neural circuit. Therefore, scale transformation is applied to the physical
variables in Eq. (14), and a group of new dimensionless variables and
parameters are obtained by
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u1 =
V
E
, u2 =

ISR
E
, u3 =

iLR
E
, φ =

ϕ
RCE

,

τ =
t
RC

, ís =
Ris
E
, αʹ = αR, βʹ = βR3C2E2,

k = RCk1, λ1 =
R2C
LMT

, λ2 =
RR0C
LMT

, λ3 =
R2C
L

.

(15)

Furthermore, the dynamics of the neural circuit in Eq. (14) can be
explored in a dimensionless memristive neuron by inserting the new

variables and parameters in Eq. (15) into Eq. (14) as follows

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

du1
dτ = ís − u2 − u3 −

(
αʹ + 3βʹφ2)u1,

du2
dτ = λ1u1 − λ2u2,

du3
dτ = λ3(u1 + 1 − u3),

dφ
dτ = u1 + kφ.

(16)

In generic way, the sampled time series for the membrane potential
u1 can be calculated by applying the fourth order Runge-Kutta algorithm
with a suitable time step, and then the changes of energy function in the
memristive neuron in Eq. (16) can be calculated according to the defi-
nition in Eq. (17). Furthermore, external membrane noise and even
electromagnetic radiation can be imposed to control the mode transition
in the neural activities. In fact, mode transition and changes in the
membrane potential in Eq. (16) will adjust the current variable u2 for the
load circuit, and then the torques is modified to control the movement of
the beam and jointed pendulums. The field energy functions kept in the
capacitive, inductive and memristive elements in Fig. 3 are defined, and
the corresponding dimensionless forms are respectively presented by
⎧
⎪⎨

⎪⎩

W =
1
2
CV2 +

1
2
LMTI2S +

1
2
Li2L +

1
2

ϕiM,

H =
W
CE2 =

1
2
u21 +

1
2λ1

u22 +
1
2λ3

u23 +
1
2
(
αʹφ + 3βʹφ3)u1.

(17)

In an effective way, the average value <H > for the Hamilton energy
in Eq. (17) can be estimated within a transient period (running time for
numerical approach), and it is effective to predict energy shift, mode
transition and nonlinear resonance. Furthermore, the distribution of <H
> vs. noise intensity can be used to predict the occurrence of coherence
resonance and stochastic resonance when a maximal value is detected in
the curve for <H > vs. noise intensity D. For simplicity, additive
Gaussian white noise with zero average is considered, and its statistical
property is <ξ(τ)ξ(s) ≥2Dδ(τ− s). Applying similar scale transformation
for the physical variables (displacement and velocity) and parameters in
Eq. (7b) and kinetic energy of the moving beam Wl in Eq. (8), an
equivalent dimensionless moving equation and energy function Hl are
obtained in Eqs. (18a) and (18b).

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dxʹ

dτ = vʹ,

dv́
dτ = λ4u2sin(λ5v́ τ) − λ6v́ ,

Hl =
Wl

CE2 =
1
2
mv2

CE2 =
1
2

λ7vʹ
2
.

(18a)

⎧
⎪⎪⎨

⎪⎪⎩

xʹ =
x
l1
, v́ =

v
l1
RC, λ4 =

NRC2ESB
ml1r

,

λ5 =
l1
r
, λ6 =

ηRC
m

, λ7 =
ml21

C3E2R2.

(18b)

The variables (x',v') represent the dimensionless displacement and
velocity. In fact, the mechanical energy including the kinetic energy in
the coupled pendulums and moving beam, field energy in the electrical
motor are mainly converted from the field energy in the neural circuit in
presence of external continuous electrical stimulus. Higher energy value
for H in Eq. (17) indicates that the memristive neuron in Eq. (16) can
generate continuous oscillation and then energy is pumped to drive the
motor and the jointed pendulums. On the other hand, continuous rota-
tion of the jointed pendulums will apply mechanical feedback on the
moving beam and the motor, and then the current in the motor coils is
changed to regulate the electrical activities in the neural circuit. That is,
the coils in the EM can be considered as load circuit, which can shunt
energy flow and apply feedback on the driving neural circuit as additive
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branch circuit.
As shown in Eq. (9), calculation of the angular velocities of the

coupled pendulums (ω1, ω2) still involves physical units. Inserting the
second formula in Eq. (14) into Eq. (9), and then applying the same scale
transformation on the variables and parameters, the dimensionless
angular velocities for the jointed pendulums can be estimated by finding
the solutions for the following equations.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dθ1

dτ = ω'
1

=
RCrE(P1 + 2P2)cos2θ1
2NBSI2S(τ)sin2(ω'τ)

[(
u1
LMT

−
R0

RLMT
u2
)

sin(ω'τ) + ω'

R2C
u2cos(ω'τ)

]

,

dθ2

dτ = ω'
2

=
RCrEP2cos2θ2

2NBSI2S(τ)sin2(ω'τ)

[(
u1
LMT

−
R0

RLMT
u2
)

sin(ω'τ)+

ω'

R2C
u2cos(ω'τ)

]

.

(19)

where angular frequency ω0t = ω'τ, ω' = λ5v' and τ = t/RC. A group of
physical parameters are included in the Eq. (19), and its numerical so-
lution is relative to the values of the physical variables. The parameters
in Eq. (16) and Eqs. (18a) and (18b) are defined without physical units
for obtaining numerical results. In experimental way, all the parameters
should be endowed with standard international physical units. For
simple estimation, all the physical parameters can be selected with 1,
and then all the dimensionless parameters or coefficients in Eq. (16), Eq.
(18a), Eq. (18b), Eq. (19) can be simplified to select a parameter value 1
as well. Furthermore, the rotational kinetics energy for the jointed
pendulum can also be estimated in the first and second formulas in Eq.
(8) as well. In fact, the displacement x has direct relation to the angle θ1
and θ2 in Eq. (10) no matter whether the force F(t) is applied freely or
results from the driving from the electromechanical device coupled with
the neural circuit. According to Eqs. (18) and (18b), the constraint
relation in Eq. (10) can be replaced with dimensionless variables as well,
and then the positions for the jointed points (A0, B0) and angles (θ1, θ2)
are also obtained by updating Eq. (12) in dimensionless forms. Both Eq.
(2) and Eq. (3) defines the constraint relationship of torques for any
static balance and stability, and it is helpful to keep normal or safe arm
gait. If so, Eq. (9) and Eq. (19) provides a numerical estimation for the
angular frequency for the jointed pendulums. For simplicity, setting l1 =
l2 and P1––P2, the frequency ratio between two pendulums is estimated
at ω1:ω2 = 2cos2θ1/ cos2θ2, or dθ1/dθ2 = 2cos2θ1/ cos2θ2.To keep safe
arm gaits, the two angular frequencies for the jointed pendulums should
comply with the constraint relationship in Eq. (3), otherwise, two parts
of the jointed pendulums will rotate its jointed point freely. As a result,

the artificial arm developed from the electromechanical arms seldom
keeps stability and breakdown occurs under external load bearing.
When the external force F(t) is generated from the moving beam, which
is interacted with the rotating EM, the tangential force from generated
from EM excites the jointed point B0 along the moving beam. As a result,
the jointed pendulums began to rotate under the torques generated by
the force F(t) and their gravitational moments. According to Eq.5 and
Eq. (7b), the constraint relations for the angles and displacement in Eq.
(12) can be updated as follows

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx
dt

= v,

dv
dt

=
NSIS(t)B

mr
sin

(v
r
t
)
−

η
m
v,

dθ2
dt

= ω2,

dω2

dt
=

3g
2P2l2

[

2
NSIS(t)B

r
sin

(v
r
t
)
sinθ2 − P2cosθ2

]

,

cosθ1 =
1
l1
(xB0 − l2cosθ2) =

x − l2cosθ2
l1

,

or, θ1 = arccos
(
x − l2cosθ2

l1

)

.

(20)

The channel current IS(t) can be obtained from Eq. (14), and the
movements of the jointed pendulums can be calculated from Eq. (20).
For numerical approach, similar scale transformation can be used to
convert the physical variables including velocity, displacement and
physical time into dimensionless variables (v', x', ω'). In fact, Eq. (20)
assumed that the jointed point B0 can move in the x-y plane and the force
F(t) is kept along horizontal direction, and the jointed pendulums have
two freedoms in the plane space. However, in a practical way, as shown
in Fig. 4, the jointed point B0 is restricted to move along horizontal di-
rection because the electromechanical device (moving beam and EM) is
fixed on the experimental platform, and the jointed point B0 can't move
along y-axis direction. As a result, the jointed point A0 can move with
two freedoms and the constraint relation in Eq. (20) is updated by
removing the third and fourth formulas because the jointed point B0
presents linear motion without rotation movement.

The work flow in Fig. 4 is summarized, external physical signals
including acoustic wave encoded by piezoelectric ceramics, illumination
via phototubes, filtered signal via thermistor or Josephson junction are
applied to control the firing activities. The time-varying neural signal
from the neural circuit drives the electrical motor, and its rotation di-
rections are controlled by the channel current across the resistor R0.
Switch of negative and positive voltage for the capacitor will control the
rotation direction and frequency of the electrical motor, and then the
horizontal beam is activated to keep reciprocating motion via gear
coupling to the electrical motor. Reciprocating motion of the moving

Fig. 4. Schematic diagram for jointed pendulums-coupled with moving beam and neural circuit. The N-turns coils in the electrical motor mark an inductance LMT,
and it is a load circuit to the driving neural circuit.
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beam applies force and moment to the jointed pendulums via the jointed
point B0, and then the gait stability of the jointed pendulums is
controlled. In this way, the relation between the angles (θ1, θ2) and the
displacement for point B0 is given in
{
y = yB0 = l1sinθ1 + l2sinθ2 = Constant = l0,
x = xB0 = l1cosθ1 + l2cosθ2, l1 ≤ l0 ≤ l1 + l2.

(21)

The constant l0 in Eq. (21) is the initial value for point B0 along y-axis
in the jointed pendulums. The correlation between the angles (θ1, θ2)
can be estimated from Eq. (21) when the displacement x is detected. The
movement of the jointed point B0 is calculated in Eq.7b and its dimen-
sionless form in Eq. (18a) by measuring its displacement x' = x/l1 with
time. The transcendental equation is updated with dimensionless form
to find numerical solutions of the angles.
⎧
⎪⎪⎨

⎪⎪⎩

yʹ = yʹ
B0 =

y
l1
= sinθ1 +

l2
l1
sinθ2 =

l0
l1
,

xʹ = xʹ
B0 =

x
l1
= cosθ1 +

l2
l1
cosθ2 = xʹ.

(22)

From Eq. (22), a stable and specific solution can be confirmed as θ1=
θ2= π/2 at l1= l2= l0/2 and it indicates the moving beam is stabilized at
x' = x = 0. Usually, the upper arm length of adults is about 30–40 cm,
and the forearm length is about 20–30 cm. Therefore, the ratio l2/l1 can
be selected values from 0.5 to 1.0, and the ratio l0/l1 can select values
from 1.0 to 2.0. During numerical approach in next section, the pa-
rameters can be selected as l2/l1 = 0.8 and l0/l1 = 1.2 (or, l2/l1 = 0.8 and
l0/l1 = 1.5; l2/l1 = 1.0 and l0/l1 = 1.5). The second formula in Eq. (22)
indicates the displacement x' varies within the scope (− l2/l1–1) to (1+
l2/l1). It means that the jointed pendulums are restricted in the angels,
and it also applied feedback to the moving beam via the jointed pointed
B0. Combing the dynamical description in Eq. (16) and Eq. (18a), the
correlation between dimensionless displacement and variables for Fig. 4
are described by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

du1
dτ = ís − u2 − u3 −

(
αʹ + 3βʹφ2)u1,

du2
dτ = λ1u1 − λ2u2,

du3
dτ = λ3(u1 + 1 − u3),

dφ
dτ = u1 + kφ,

dxʹ

dτ = vʹ,

dvʹ

dτ = λ4u2sin(λ5vʹτ) − λ6v́ .

(23)

From dynamical viewpoint, external stimulus i's modifies the excit-
ability of the neuron, and different firing patterns are activated
accompany with suitable channel current u2, which controls the moving
beam via the gear meshing from electrical motor, and then the jointed
pendulums are excited via the jointed point B0. That is, any changes of
the exciting current i'swill modify the variable u1, and then u2 is adjusted
to control the displacement x' and moving velocity v', as a result, the
coupled pendulums rotate against the jointed point (A0, O). For effective
numerical approach of angle θ2 and θ1, the time series x' from the fifth
formula in Eq. (23) can be used in Eq. (22), and the two constraint
equations enable numerical finding for θ1 and θ2. There are nine pa-
rameters in Eq. (9), the neural circuit can be tamed to present different
firing activities, and the displacement x' for the moving beam is
controlled. Indeed, parameter setting should be selected carefully so that
the constraint criteria in Eq. (22) can be satisfied, otherwise, the

displacement x' will obtain large values and the jointed pendulums are
destroyed. From physical aspect, external excitation injects energy into
the neural circuit, and a part of energy is converted to mechanical en-
ergy of the moving beam and the jointed pendulums. For potential
application, continuous forcing to the jointed pendulums via the moving
beam can be considered as a kind of rehabilitation training on disabled
arms.

3. Dynamical analysis and discussion

As shown in Fig. 4 and Eq. (23), the fourth order Runge-Kutta al-
gorithm can be applied to find numerical solutions for the dimensionless
variables. Furthermore, the changes of angles (θ1, θ2) can be detected
from Eq. (22) and the movement of the coupled pendulums can be
discussed. In this way, the driving and response in the neural circuit-
coupled electromechanical arms can be analyzed. For clear illumina-
tion, it is interesting to clarify the dynamics of the jointed pendulums,
neural circuit, respectively. As presented in Eq. (3), the stability of the
coupled pendulums is dependent on the excitation F(t), which can be
selected with different kinds of signals. For example, external mechan-
ical force can be applied to the end point B0 along the horizontal di-
rection. In numerical way, we can select one variable from the Lorenz
system as external force F(t), and the response of the rotation can be
obtained by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX
dτ = a(Y − X),

dY
dτ = bX − Yy − XZ,

dZ
dτ = XY − cZ,

θ1 = arctg
P1 + 2P2

2F
= arctg

P1 + 2P2

2X
,

θ2 = arctg
P2

2F
= arctg

P2

2X
.

(24)

Setting parameters (a, b, c) to suitable values will develop periodic or
chaotic states in the Lorenz system. For example, a = 10, b = 28, c =

2.667 will induce chaos in the Lorenz oscillator. For simplicity, the
jointed pendulums can select the same gravity as P1 = P2 = P, and the
angular frequency of the coupled pendulums under any stability can be
estimated by
⎧
⎪⎪⎨

⎪⎪⎩

ω1 =
dθ1
dt

= −
3P
2X2cos

2θ1
dX
dt

= −
3aPcos2θ1

2X2 (Y − X),

ω2 =
dθ2
dt

= −
P

2X2cos
2θ2

dX
dt

= −
aPcos2θ2
2X2 (Y − X).

(25)

In chaotic states, the angular frequencies for the jointed pendulums
will present chaotic changes while applying periodic forcing can make
the rotation of coupled pendulums produce periodic changes in the
angular frequencies. However, time-varying angular frequencies in the
jointed pendulums still support dynamical balance between the two
coupled pendulums. Most of the chaotic systems can be controlled to
present periodic states and the sampled time series will keep distinct
period. Therefore, the parameters in Lorenz system and Eq. (24) can be
adjusted to apply periodic signals for F(t) = X(t), and the jointed pen-
dulums will be controlled to present periodical motion. On the other
hand, generic and mathematical neuron models can be excited to pre-
sent spiking and bursting patterns, and a neuron model can be used to
replace the Lorenz system in Eq. (24). As a result, similar neural signals
can be applied to drive the coupled pendulums for predicting the me-
chanical and dynamical response in presence of neural stimulus.

For the neural circuit without considering load coils of the electrical

Y. Guo et al. Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 189 (2024) 115739 

7 

153



motor (EM), its electrical activities can be estimated by simplifying Eq.
(16) and the correlation between three variables is shown in Eq. (26).

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

du1
dτ = ís − u3 −

(
αʹ + 3βʹφ2)u1,

du3
dτ = λ3(u1 + 1 − u3),

dφ
dτ = u1 + kφ.

(26)

Its intrinsic Hamilton energy can be derived from Eq. (17), and it
meets the following form

H =
1
2
u21 +

1
2λ3

u23 +
1
2
(
αʹφ+3βʹφ3)u1. (27)

Any adjustment of the external stimulus and noisy excitation on the
neuron in Eq. (26), the excitability will be modified to induce suitable
firing modes in the electrical activities. According to Eq. (27), the energy
values for the memristive neuron are changed synchronously, and
continuous change of the intrinsic parameters of the memristive neuron
will induce shift between the average energy levels. For example, the
average energy for the Hindmarsh-Rose has four distinct levels and
taming one bifurcation parameter can induce energy shift between the
four levels for the average energy [121] accompanying mode transition.
From physical viewpoint, average energy<H>within a transient period
estimates the average power and it has similar role as signal to noise
ratio (SNR) in predicting the occurrence of nonlinear resonance. Indeed,
its energy function can be further verified by using the Helmholtz the-
orem when the neuron model in Eq. (26) is rewritten in a vector form as
follows

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

du1
dτ
du3
dτ
dφ
dτ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= Fc(u1, u3,φ) + Fd(u1, u3,φ)

=

⎡

⎢
⎢
⎣

i's − u3 −
(
α' + 3β'φ2)u1

λ3(u1 + 1 − u3)

u1 + kφ

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

− u3 −
(
α' + 9β'φ2)u1

λ3u1 − 3β'λ3φ3

2u1 + φ
(

α' + 3β'φ2 +
u3
u1

)

⎤

⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎣

i's + 6β'φ2u1
λ3
(
1 − u3 + 3β'φ3)

kφ − u1 − φ
(

α' + 3β'φ2 +
u3
u1

)

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

0 − λ3 − 2

λ3 0 − λ3
φ
u1

2 λ3
φ
u1

0

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

u1 +
1
2
(
α'φ + 3β'φ3)

u3
λ3
1
2
(
α' + 9β'φ2)u1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎣

a11 0 0

0 a22 0

0 0 a33

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

u1 +
1
2
(
α'φ + 3β'φ3)

u3
λ3
1
2
(
α' + 9β'φ2)u1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

a11 =
i's + 6β'φ2u1

u1 +
1
2
(α'φ + 3β'φ3)

, a22 = λ23
(
1 − u3 + 3β'φ3)u3,

a33 =
− 2u1 − 2φ

(

α' + 3β'φ2 +
u3
u1

− k
)

(α' + 9β'φ2)u1
.

(28)

The energy function H for Eq. (26) is the same as the form in Eq. (27)
because it meets the criterion as follows

[
− u3 −

(
αʹ+9βʹφ2)u1

] ∂H
∂u1

+
(
λ3u1 − 3βʹλ3φ3) ∂H

∂u3

+

[

2u1 +φ
(

αʹ+3βʹφ2 +
u3
u1

)]
∂H
∂φ

.

(29)

Fig. 5. Distribution of rotation angles vs. external force F. For (a) P1 = P2 = 1, (b) P1 = P2 = 4.

Fig. 6. Distribution of rotation angles vs. external force F(t) = 0.5cos(0.2 t). For
(a1, a2, a3) P1 = P2 = 1, (b1, b2, b3) P1 = P2 = 4.
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And its derivatives to time is verified by

dH
dτ = ∇HTFd(u1, u3,φ) =

[
ís + 6βʹφ2u1

] ∂H
∂u1

+

[
λ3
(
1 − u3 + 3βʹφ3) ] ∂H

∂u3
+

[

− u1 − φ
(

αʹ + 3βʹφ2 +
u3
u1

− k
)]

∂H
∂φ

.

(30)

In presence of noisy excitation, the isolated neuron can be tamed to
present coherence resonance accompanying with high regularity in the
neural activities. In practical way, the average energy <H > in Eq. (27)
can be calculated to predict the emergence of coherence resonance. That
is, <H > obtains a highest value within a transient period and it means
that the average power reaches the maximal values. It provides a better
way rather than calculating the common distribution for CV (coefficient
of variability) and signal to noise ratio. Similarly, the energy function H
for Eq. (16) can also be verified by using Helmholtz theorem when it is
rewritten with an equivalent vector form as follows.

The new energy function for the memristive neuron considering load
regulation in Eq. (16) and Eq. (31) can be approached by the theoretical
solution for the following formula

[
− u2 − u3 −

(
αʹ + 9βʹφ2)u1

] ∂H
∂u1

+ λ1
(
u1 − 3βʹφ3) ∂H

∂u2
+

λ3
(
u1 − 3βʹφ3) ∂H

∂u3
+

[

2u1 +
(

αʹ + 3βʹφ2 +
u2 + u3

u1

)

φ
]

∂H
∂φ

.

(32)

Indeed, the energy function in Eq. (17) is the sole exact solution in
Eq. (32), and the energy evolution vs. time is calculated by

dH
dτ = ∇HTFd(u1, u2, u3, φ) =

[
i's + 6β'φ2u1

] ∂H
∂u1

+
(
− λ2u2 + 3λ1β'φ3) ∂H

∂u2
+ λ3

(
1 − u3 + 3β'φ3) ∂H

∂u3

+

[

− u1 + kφ −

(

α' + 3β'φ2 +
u2 + u3

u1

)

φ
]

∂H
∂φ

.

(33)

It should be emphasized that the mechanical energy for the moving
beam and the jointed pendulums are not associated with field energy
because it seldom meets the applicable conditions for Helmholtz theo-
rem. Therefore, the total energy for Eq. (23) can be approached by using
the Helmholtz theorem, and then the mechanical energy can be obtained
by using physical scheme defined in Eq. (8) when the angular frequency
for the jointed pendulums are available.

In experimental way, external electrical stimulus controls the output
voltage of the neural circuit, and then the channel current in the load

circuit of the electrical motor is changed to control the velocity of the
moving beam via gear interaction. Continuous impact or pull to the
jointed point B0, which connects the end and terminal of the moving
beam and the pendulum, will control the gait of the coupled pendulums
completely. In this way, neural signals are propagated to control the
electromechanical arms effectively. For generic dynamical analysis,
numerical solutions for Eq. (22) and Eq. (23) can be obtained by taming
the external stimulus even noisy disturbance is applied. For energy
analysis, Eq. (17) presents complete description for the neuron-

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

du1
dτ
du2
dτ
du3
dτ
dφ
dτ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= Fc(u1, u2, u3,φ) + Fd(u1, u2, u3,φ) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

i's − u2 − u3 −
(
α' + 3β'φ2)u1

λ1u1 − λ2u2
λ3(u1 + 1 − u3)

u1 + kφ

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− u2 − u3 −
(
α' + 9β'φ2)u1

λ1
(
u1 − 3β'φ3)

λ3
(
u1 − 3β'φ3)

2u1 +
(

α' + 3β'φ2 +
u2 + u3

u1

)

φ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

i's + 6β'φ2u1
− λ2u2 + 3λ1β'φ3

λ3
(
1 − u3 + 3β'φ3)

− u1 + kφ −

(

α' + 3β'φ2 +
u2 + u3

u1

)

φ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 − λ1 − λ3 − 2

λ1 0 0 −
λ1
u1

φ

λ3 0 0 −
λ3
u1

φ

2
λ1
u1

φ
λ3
u1

φ 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

u1 +
1
2
(
α'φ + 3β'φ3)

u2
λ1
u3
λ3
1
2
(
α' + 9β'φ2)u1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎣

a11 0 0 0

0 a22 0 0

0 0 a33 0

0 0 0 a44

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

u1 +
1
2
(
α'φ + 3β'φ3)

u2
λ1
u3
λ3
1
2
(
α' + 9β'φ2)u1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

a11 =
i's + 6β'φ2u1

u1 +
1
2
(α'φ + 3β'φ3)

, a22 =
λ1( − λ2u2 + 3λ1β'φ3)

u2
,

a33 =
λ23(1 − u3 + 3β'φ3)

u3
, a44 =

− 2u1 + 2kφ − 2
(

α' + 3β'φ2 +
u2 + u3

u1

)

φ

(α' + 9β'φ2)u1
.

(31)
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electromechanical arms developed from the neural circuit coupled with
jointed pendulums. For energy dependence on firing modes in the
memristive neuron, Eq. (17) and Eq. (27) denote exact energy functions
and the distribution of average value<H> vs. noise intensity provides a
feasible way for predicting the coherence resonance and stochastic
resonance under noisy driving. Following our study and suggestions in
this work, assistive wearable devices can be adhered to the arms and
electrical signals from miniature neural circuits can be activated to
control the skeletal muscles, and then the disabled arms can be trained
to present normal gait.

For clear understanding the relation between the neural circuit,
moving beam and movement of the coupled pendulums, numerical re-
sults are provided by setting different mechanical forces, and then the
neural activities are also calculated during the interaction between the
electromechanical device and the neural circuits. According to stability
criterion for jointed pendulums in Eq. (3), setting different external
forces can keep stability in the jointed pendulum, and the results are
plotted in Fig. 5.

By applying different constant forces on the jointed pendulums, the
two rotation angles are modified to keep static body gaits. That is, under
the stability restraints from Eq. (3), any external forces will adjust the
two rotation angles synchronously and adaptively. In fact, we assumes

that the external force can produce anticlockwise torques to balance the
clockwise torques resulting from gravities of the pendulums and Eq. (3)
is obtained. In fact, applying horizontal left-direction force can generate
clockwise torques while the gravities of the pendulumwill generate anti-
clockwise torques, and then the jointed pendulums can also keep
dynamical stability. Furthermore, time-varying force is applied to track
the stability in the jointed pendulums, and the results are plotted in
Fig. 6.

When periodic force is applied to control the jointed pendulums, the
rotation angles also show symmetrical changes with time. In particular,
any changes of one rotation angle will trigger synchronous change of
another rotation angle so that the jointed pendulums keep stability
completely. Extensive numerical results for F(t) = A+Bcos(0.2 t) can
confirm similar results by setting different values for the amplitudes (A,
B). According to Eq. (24), chaotic series can be selected for external force
F(τ), stability criterion in Eq. (3) supports adaptive regulation of the
angles for presenting chaotic changes with time as well. Fig. 5 and Fig. 6
discussed the case that the jointed pendulums are controlled by external
mechanical force. Following the stability criterion in Eq. (3), the two
angles changes synchronously to keep balance in the torques. From Eq.
(23), external electric stimulus control the neural circuit (and neuron) to
present periodic or chaotic state, and then the shunted current across the

Fig. 7. Evolution of membrane potential vs. time. For (a)ω = 0.5; (b)ω = 1.0; (c)ω = 1.5. Setting parameters α = 0.01, β = 0.001, A = 2.3, k = − 0.3, λ1 = 0.8, λ2 =
0.2, λ3 = 0.6, λ4 = 0.3, λ5 = 0.2, λ6 = 0.5, and external periodic forcing i's = Acos(ωτ). Inserted figures are enlarged version within finite period 500 to 600 time units.

Fig. 8. Evolution of displacement (a), (b)velocity of moving beam, (c, d) rotation angles and (e) angle error for the jointed pendulums driven by neural circuit.
Setting parameters α = 0.01, β = 0.001, A = 2.3, ω = 0.5, k = − 0.3, λ1 = 0.8, λ2 = 0.2, λ3 = 0.6, λ4 = 0.3, λ5 = 0.2, λ6 = 0.5, and external periodic forcing i's = Acos
(ωτ). Scale on the vertical axis is marked with degree angle (not radian).
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electric motor will produce different torques and then the jointed pen-
dulums are controlled to present different movements. The changes of
three variables of the neurons are plotted in Fig. 7 when the neuron is
excited by periodic signal i's = Acos(ωτ). Furthermore, modifcation of
the displacement, velocity of the moving beam, rotation angle agnist the
jointed point O is presented in Fig. 8 following the criterion for angles in
Eq. (22).

In presence of periodic excitation on the neuron, it used to present

periodic firing patterns and the channel current across the load circuit
adhered to the electronic motor also keeps periodic signals to induce
periodic force, which controls the stability of the jointed pendulums.
Furthermore, setting the corresponding forcing frequency, the changes
of displacement, velocity and angles are calculated in Fig. 8, Fig. 9 and
Fig. 10, respectively.

From Fig. 8 and Fig. 9, the displacement and velocity show switch
between positive and negative values, it indicates that the moving beam
and jointed point B0 keep continuous reciprocating motion, and then the
rotation angles are controlled with appropriate gaits. Further increasing
the forcing frequency of external electric stimulus on the neural circuit
as shown in Fig. 10, periodic neuron controls the electromechanical
beam and the jointed pendulums to move along negative direction,
which the displacement x' becomes negative within a transient period
about 500 time units. From Fig. 10(b), the velocity keeps transition
between negative and positive values, and it means that reciprocating
motion still occurs for the moving beam and coupled pendulums.

When the neuron is excited to present periodic activities, the periodic
channel current in the load circuit of EM seldom supports periodic
displacement and velocity of the moving beam. That is, both of the
electromechanical devices including the moving beams and the jointed
pendulums move in non-periodic way. When the displacement and ve-
locity of the moving beam are fixed a constant, the rotation angle is
stabilized. On the other hand, irregular changes in the displacement of
the moving beam means switch of the moving velocity, and then the
rotation angle becomes irregular synchronously. In fact, the jointed
pendulums interacted with the moving beam and the EM is controlled by
the damping force, and then the neural circuit is controlled due to the
feedback via the load circuit. Therefore, the neural activities of prefer to
keep periodic types. On the other hand, it also means external me-
chanical force and training via EM can suppress chaos in the neural
circuit.

In a summary, skeletal muscles control the arms/legs via neural
electric signals and thus the body can keep safe gaits. On the other hand,
activation of body gaits has positive feedback to the nervous system due

Fig. 9. Evolution of displacement (a), (b)velocity of moving beam, (c, d) rotation angles and (e) angle error for the jointed pendulums driven by neural circuit.
Setting parameters α = 0.01, β = 0.001, A = 2.3, ω = 1.0, k = − 0.3, λ1 = 0.8, λ2 = 0.2, λ3 = 0.6, λ4 = 0.3, λ5 = 0.2, λ6 = 0.5, and external periodic forcing i's = Acos
(ωτ). Scale on the vertical axis is marked with degree angle (not radian).

Fig. 10. Evolution of displacement (a), (b)velocity of moving beam, (c, d)
rotation angles and (e) angle error for the jointed pendulums driven by neural
circuit. Setting parameters α = 0.01, β = 0.001, A = 2.3, ω = 1.5, k = − 0.3, λ1
= 0.8, λ2 = 0.2, λ3 = 0.6, λ4 = 0.3, λ5 = 0.2, λ6 = 0.5, and external periodic
forcing i's = Acos(ωτ). Scale on the vertical axis is marked with degree angle
(not radian).
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to electromechanical coupling. Therefore, the neurons in the nervous
system can present mode transition in the neural activities. The arm
motion can be considered as a kind of jointed pendulums stimulated by
external excitation from a neural circuit, which suffers a feedback
modulation via the equivalent induced current across the electrical
motor or inductor in the feedback loop by adding an additive branch
circuit of the driving neural circuit. That is, the external stimulus acti-
vates the neural circuit, and the electrical signals applied a mechanical
forcing on the jointed pendulums, while the rotation of the coupled
pendulums generates suitable feedback current via electromechanical
coupling as muscle contraction. As a result, the interaction between
muscle and neural electrical signals is explored in a couple jointed
pendulums coupled by a neural circuit. The moving beam driven by
electrical motor and the neural signals from the neural circuit plays
similar role as muscle in the body. We just discussed the case that the
jointed pendulums and the moving beam are controlled to move or
rotate in the same plane space. It is worthy of investigating the case
when the coupled pendulums and moving beam are connected by using
spherical joints, and then the jointed pendulums can present different
arm gaits in three-dimensionless space. In extensive studies, springs can
be introduced to connect the jointed pendulums, and further involve-
ment of electrical signals from neural circuit can be effective to control
the elastic force via these springs. That is, electrical signals-controlled
springs can be used to control the stability and dynamical states of the
jointed pendulums and artificial arms can be designed to give help to
animals with disabled arms or legs. Appearance of neural diseases
[122–124] is harmful for activating normal body gaits, and clarification
of oscillatory characteristic of brain electric activities [125–127] are
helpful to propose possible schemes to aid neural regulation. Further-
more, electromechanical devices can be designed to aid the stability of
body gaits and movement. This work just used a neural circuit to control
the movements of the jointed pendulums, the complex movements of
jointed pendulums with higher freedom requires activation of more
neural circuits, and the synchronous control of neural networks [128]
can be helpful to control the cooperative movements of the artificial
manipulators and electromechanical arm/legs.

4. Conclusions

In this paper, a simple electromechanical coupling device is proposed
to explore the interaction between muscle and nervous signals. A couple
of jointed pendulums are forced by a moving beam driven by an elec-
trical motor, which the current is shunted from a neural circuit. Any
physical stimuli applied to the neural circuit will regulate the output
voltage and channel current across the electric motor adhered to the
moving beam, which can impose continuous force and suitable moment
to the jointed pendulums. On the other hand, changes of the gait in the
jointed pendulums will impose force feedback on the moving beam and
the connected motor, in which the coils is considered as a load branch
circuit, and then the channel current across the motor coils will apply
feedback to the driving neural circuit. This processing is similar to the
interaction between skeletal muscles and electrical signals from the
nervous system because muscle contraction can regulate the neural
signals. The correlation between physical variables for the jointed
pendulums, moving beam and neural circuit are described and exact
energy functions are defined, furthermore, dimensionless models and
Hamilton energy/kinetics energy are obtained by applying scale trans-
formation on the variables and parameters in the physical definitions.
The driving-response processing in the electromechanical device pro-
vides possible clues to design and control artificial arms for those
disabled animals or humans. It also indicates that mechanical training is
helpful to control the neural activities and then the nervous system can
be guided to behave suitable firing patterns.
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Abstract An effective and rapid response of muscle contraction and relaxation is crucial for performing appropriate body
gaits, including movements of the arms and legs. Any deformation in the muscles can disrupt gait stability, making muscle
movement difficult. The arm, consisting of the radius, ulna, and humerus, can be modeled as mechanically jointed pendulums,
with tensions from the arm muscles varying during contraction and relaxation. In a static state, the muscles maintain constant
tension and length, even when external gravitational force is applied to the hand. This study presents a system in which a pair of
jointed pendulums is driven by artificial muscles, represented by flexible ropes wound around the edge of an electronic motor’s
wheel. Muscle movement is simulated through the adjustment of the length of the flexible ropes attached to the motor.
Switching between the clockwise and counterclockwise rotation of the motor modifies the length of the flexible ropes,
thereby altering the intrinsic tensions to control arm movements. Electrical signals from a simple neural circuit are used
to control the rotation of the electronic motor, enabling the regulation of muscle movement in the arm model by adjustable
flexible ropes. The stability criterion for the electromechanical arm is derived, and the interactions among the neural
circuit, electronic motor, and jointed pendulums are examined in detail. The results and proposed scheme can contribute to the
design of controllable artificial arms, providing potential assistance to disabled arms by incorporating auxiliary artificial
muscles.
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1 Introduction

A continuous heartbeat maintains stable blood pumping,
resulting from the ongoing relaxation and contraction of
cardiac tissue controlled by electrical signals emitted from
the sinoatrial node, which generates stable target waves
[1−5]. Specifically, the sinoatrial node produces impulses
that coordinate the heartbeat as these pulses propagate
through the cardiac tissue. Any ischemic defects in the car-
diac tissue can obstruct the propagation of target waves,
potentially inducing arrhythmia and leading to the formation
of spiral waves in the heart. These spiral waves, which ex-
hibit a higher rotation frequency, can suppress target waves

and block signal propagation [6−10]. In severe cases, the
breakup of these spiral waves can lead to fibrillation, making
sudden cardiac death inevitable [11−14]. Therefore, con-
tinuous and robust regulation of cardiac tissue through
electrical signals is essential for effective blood pumping,
hemoglobin, and oxygen exchange, and maintaining a
healthy metabolism. Conversely, the brain cortex plays a
critical role in signal processing, body movement control,
and decision-making. For example, the selection and control
of body muscles are mainly governed by neural signals ori-
ginating from the brain and spinal cord.
Stable body gaits and safe body movements mainly rely on

the adaptive regulation and control of muscles, including
those in the arms and legs. The relaxation and contraction of
muscles in various limbs are governed by electrical signals
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from the nervous system [13−17]. Damage to the arm or leg
muscles can significantly restrict limb movement. Conse-
quently, designing electromechanical devices can provide
valuable assistance to disabled animals and humans [18],
enabling disabled arms or legs to perform appropriate body
movements and maintain safe gaits. The movements of
jointed skeletons are constrained and depend on the tension
of the attached muscles. Many movement disorders are as-
sociated with the disruption of neural signal propagation,
resulting in muscles losing control of the neural signals
originating in the brain. To address this, electromechanical
devices can be utilized to assist body movements, enabling
disabled arms and legs to perform appropriate gaits. The
driving forces for robotic arms, legs, or manipulators can be
achieved through the use of hydraulic devices, electric mo-
tors, and artificial muscles, with movement freedom being a
critical factor for robotic manipulators. The instantaneous
motion state should be monitored, allowing rapid feedback to
adjust the manipulator and electric motor accordingly. For
example, neural networks can be trained to control robotic
manipulators [19−22], enabling the detection of potential
faults to prevent incorrect movements. Alloys with distinct
shape memory properties exhibit material and mechanical
characteristics similar to those of muscles and tendons
[23−26], making them suitable for fabricating flexible
manipulators, as discussed in recent reviews [27]. Ad-
ditionally, joint braking mechanisms can be activated using
magnetorheological fluids [28−31]; for further guidance,
refer to the reviews and references therein [32−34]. Two-
degree-of-freedom robotic manipulators [35−38] control
movement within a plane, and their characteristics can be
emulated using jointed pendulums [39]. The nervous
system exhibits highly self-adaptive properties, enabling the
body to maintain stable and safe gaits. However, artificial
electromagnetic devices and manipulators are subject to in-
evitable stochastic disturbances or excitations. For example,
a flying bird can adaptively control its wings even in com-
plex wind conditions. Refs. [40,41] discuss the impact of
stochastic disturbances on airfoils in hypersonic flows and
outline potential control strategies. Beyond nonlinear vi-
bration, complex movements such as rolling motion under
stochastic disturbances merit further study, with relevant
insights and guidance found in recent works, such as in
ref. [42].
In this study, two jointed pendulums are used to simulate

the mechanical properties and movements of disabled arms.
The disabled arm muscles are replaced with an artificial
muscle device, implemented using flexible ropes attached to
an electronic motor, with tension adjustments made by
changing the rope length. The rotation of the electronic
motor is regulated by current diverted from a neural circuit,
which is controlled by external electrical stimuli. Conse-
quently, the tensions applied to the jointed pendulums are

modified to maintain balance with the external weight/load
and the intrinsic weight of the arm simultaneously. The
torques and tensions produced by the artificial muscles are
controlled by electrical signals from two coupled neural
circuits. The stability conditions for the electromechanical
arm driven by artificial muscles are analyzed through dy-
namical equations, and the energy characteristics of the
neural circuit are also clarified. The suggestions and dis-
cussions presented in this work offer valuable insights for
designing artificial arms and provide potential assistance for
disabled arms and legs.

2 Model description and control discussion

The movement of muscles is controlled by neural electrical
signals, enabling muscles to relax, contract, or maintain a
fixed shape. Specifically, the length and cross-sectional area
of muscles can be adjusted to maintain different body gaits,
which depend on the propagation of electrical signals and
external forces. Muscles control the movements of the arms,
legs, and even the heartbeat, with electrical signals emitted
from the sinoatrial node to generate target waves in cardiac
tissue. Running and walking rely on the movement of leg and
arm muscles, which are controlled by neural signals from the
brain. Additionally, the heartbeat is associated with con-
tinuous contraction and relaxation in cardiac tissue, regulated
by calcium flow and modulated by electrical signals from the
sinoatrial node during wave propagation in the heart. As
illustrated in Figure 1, arm extension and bending can be
controlled by the arm muscles. According to the anatomical
structure of the arm, the upper and lower arms can be
modeled as a pair of jointed pendulums, as illustrated in
Figure 2. The rotation angles relative to the horizontal or
vertical direction can be adjusted by activating muscle ten-
sions or applying external forces.
As illustrated in Figure 1, an electrical stimulus to the

muscles or external gravity will alter the arm’s gait during
muscle movement. From a mechanical perspective, the arm’s
skeletal structure is similar to the movement of two jointed
pendulums, as illustrated in Figure 2.
As illustrated in Figure 2, the point where the scapula

hangs and the connection between the humerus and ulna (and
radius) can be considered as two jointed points for a pair of
connected pendulums. The muscle tensions in the arm can be
modeled by applying an equivalent external force F(t) at the
terminal end B0 of the jointed pendulums. Consequently, the
jointed pendulums can be treated as an artificial arm, with
their movement and stability depending on the intrinsic
gravitational forces of the pendulums (P1, P2) and the ex-
ternal force F(t) under torque balance.
According to the jointed pendulums model in Figure 2, the

stability criterion is derived by
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In the stable state, the rotation angles (θ1, θ2) remain stable
due to the balance between the clockwise torques generated
by P1 and P2 and the counterclockwise torques induced by
the external force F(t), as follows:
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From eq. (2), any change in the external force F(t) or the
muscle tensions will modify the arm gaits by simultaneously
adjusting the rotation angles. Considering the flexibility of
the arm muscles, as illustrated in Figure 3, flexible ropes are
wound around the electronic motors (EM1 and EM2) to si-
mulate the relaxation and contraction of the arm muscles.
The intrinsic tensions produced by EM1 and EM2 are de-
noted as T1 and T2, and the corresponding angles relative to
their pendulum lengths will remain constant when the jointed
pendulums maintain static stability.
Suppose EM1 and EM2 have the same physical config-

uration, with N-turn coils and intrinsic resistance R0. When
an external current IS = Imotor is applied to the EMs, the
rotational torque and tangential force along the wheel edge
are given by

M P B

T
M
r

NSBI
r e B kI t t

= × ,

= 2 = 2 sin( , ) = ( )sin( ).
(3)

M

motor
S0 0 0

The current through the electronic motor (EM) can be
shunted from a neural circuit, with the coils in the EM
functioning as a branch circuit that serves as a load for the
driving neural circuit. Here, r0 represents the motor radius,

Figure 2 (Color online) Jointed arms vs. coupled pendulums. O, A0, and B0 denote the joint points. The lengths of the humerus and ulna are represented by
l1 and l2, respectively. An external force F(t) is applied via a beam with length l.

Figure 1 (Color online) Arm gaits and movements controlled by the arm muscles.

Figure 3 (Color online) Static jointed pendulums for stable arm gaits
under the tensions of the artificial tissue without external load bearing.
EM1 and EM2 represent electronic motors wound with flexible ropes.
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and the gain k is related to the coil size and the internal
magnetic field intensity B when the EM is activated by the
current IS(t). The rotational frequency ω0 is controlled by the
external load and becomes constant once the system reaches
a stable state. When EM1 and EM2 are endowed with the same
physical parameters, the tension T1 = T2 = T, and this value is
proportional to the current IS(t) flowing through the motor
coils. Similar to the situation depicted in Figure 2, the torque
balance between the jointed pendulums is described by

M M M M M+ = + + . (4)P P T T F1 2 1 2

That is, the clockwise torques generated by P1 and P2 will
balance against the counterclockwise torques generated by
F(t), T1, and T2. Specifically, the external force F(t) provides
additional support for the counterclockwise torques and can
be set to zero when the two intrinsic tensions in the artificial
muscles (flexible ropes via the EM) are sufficient to control
the arm gaits. For simplicity, let F(t) = 0, and the criterion for
torque balance is expressed as

T l P l

T l l T l

P l P l

sin = 2 sin ,

[ sin + sin( + )] + sin

= 2 sin + 2 sin .

(5)
2 2 2 2

2
2

2 2 2 1 1 2 2 1 1 1

2
2

2 1
1

1

The relationship between torque and force arm is provided
in the Appendix. As a result, the rotation angles are given by

T
P

T T
P

sin = 2 sin ,

sin = 2 sin( + ) + 2 sin .
(6)

2
2 2

2

1
2 1 2 2 1 1

1

The rotation angle θ1 for pendulum OA depends on the
interaction between the tensions T1, T2, and the gravity P1.
Similarly, the rotation angle θ2, controlled by the gravity P2,
also influences the changes in angle θ1. Once the rotation
angles (θ1, θ2) are obtained numerically, the corresponding
angular velocities can be derived synchronously asω = dθ/dt.
According to the law of rigid body rotation, the relationship
between angular acceleration and external torque for the
jointed points (O, A0) is expressed by

J t J t
P
g l P

g l P
g l t

T l l

T l P l P l

J t J t
P
g l t

T l P l

d
d = d

d

= 1
3 + 1

3 + d
d

= [ sin + sin( + )] +

sin 2 sin + 2 sin ,

d
d = d

d = 1
3

d
d

= sin 2 sin .

(7)
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Eq. (7) reduces to the same form as eq. (5) when the jointed
pendulums are stabilized and not rotating over time. In the
two-dimensional space, the positions of the jointed points
(A0, B0) can be determined by

x l y l
x l l y l l

= sin , = cos ,

= sin + sin , = cos + cos .
(8)

A A

B B

1 1 1 1

1 1 2 2 1 1 2 2

0 0

0 0

In the presence of gravitational disturbance, a gravity force
P is applied at the endpoint B0, similar to the case where the
hand is holding a weight P, as illustrated in Figure 4.
The torque balance for the jointed pendulums in Figure 4

can be expressed as

T l F t l

P l P l

T l l T l
F t l l

P l P l P l l

sin + ( ) cos

= 2 sin + sin ,

[ sin + sin( + )] + sin
+ ( ) [ cos + cos ]

= 2 sin + 2 sin + [ sin + sin ].

(9)

2 2 2 2 2

2
2

2 2 2

2 2 2 1 1 2 2 1 1 1

2 2 1 1

2
2

2 1
1

1 2 2 1 1

When the external force F(t) is removed, the relationship
between the rotation angles is given by

T
P P
T T

P P

sin = 2 sin
+ 2 ,

sin = 2 sin( + ) + 2 sin
+ 2 .

(10)
2

2 2
2

1
2 1 2 2 1 1

1

The involvement of the external weight P alters the angular
frequencies in (θ1, θ2), while the artificial muscles are
regulated to generate varying tensions (T1, T2) to maintain
dynamic balance in the jointed pendulums. In this manner,
the arm gaits are adjusted in synchrony with changes in the
external weight P. As shown in eq. (3), the tension values
(T1, T2) are proportional to the channel current Imotor = IS
flowing through the N-turn coils in EM1 and EM2. Theo-
retically, the stimulus IS can be generated by a piezoelectric
ceramic through the capture of acoustic waves [43, 44] or by
photocurrent generated across a phototube through the con-
version of external illumination. In practice, the forcing
current IS can be derived from a simple neural circuit con-
sisting of a capacitor, inductor, nonlinear resistor, and a
voltage source. As a result, the N-turn coils in EM1 and EM2
can be treated as additive load circuits to the neural circuit.
Assuming the load coils have an inductance denoted as LMT,
and both EMs are selected with the same inductance, LMT1 =
LMT2 = LMT. In Figure 5, external illumination is applied to
activate the phototubes, generating photocurrents. These
photocurrents are then used to excite the two coupled neural
circuits via a resistor with resistance R. The shunted currents
across the load circuits with intrinsic inductance LMT will
activate the electronic motors EM1 and EM2.
The relationship between the physical variables in Figure 5

can be expressed as
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For simplicity, the channel current through the nonlinear
resistor (NR) is given by

i V
V
E

V
E

i V
V
E

V
E

= 1 + ,

= 1 + .
(12)
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The intrinsic parameters (E, ρ) are related to the material

properties of NR and can be estimated by measuring the i-v
curve in the experimental circuit. The field energy (W) is
mainly stored in the capacitive and inductive components,
including capacitors and induction coils, in the neural circuit
illustrated in Figure 5.

W C V L i C V L i= 1
2 + 1

2 + 1
2 + 1

2 . (13)MT MT MT MT1 1
2

1
2

2 2
2

2
2

For the numerical approach and dynamical analysis, the
physical variables in eq. (10) can be redefined as di-
mensionless variables using a scale transformation [39, 45]
as follows:

x V
E y i

E
t
C x V

E

y i
E i i

E i i
E

a C
L b R c C

C R
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As a result, the dynamics of the coupled neural and arti-
ficial muscle model are described by

x i y x x x x x

y
t a x by

x c i y x x x c x x

y
t a x by

d
d = + + + ( ),

d
d = ( ),

d
d = ( + + ) + ( ),

d
d = ( ).

(15)

P

P

1
1 1 1 1

2
1
3

2 1

1
1 1

2
2 2 2 2

2
2
3

1 2

2
2 2

Additionally, the field energy W is replaced by an
equivalent Hamilton energy H, as follows:

H W
C E x ay cx ay= = 1

2 + 1
2 + 1

2 + 1
2 . (16)

1
2 1

2
1
2

2
2

2
2

When two capacitors are selected with the same value, C1

= C2 = C, eqs. (15) and (16) can be updated by setting the
parameter c = 1. By varying the external photocurrents, the
two load circuits are excited to drive EM1 and EM2, al-
lowing the artificial muscles to effectively stabilize arm
gaits. To further enhance the controllability of the neural
circuit in Figure 5, memristors [46–50] can be added to the
branch circuit. The memristive channels can perceive and
capture external physical signals in the presence of an elec-
tromagnetic field, enabling the encoding of external field
energy to excite the EMs, even when the external photo-
currents are of low intensity. Eqs. (15) and (16) provide di-
mensionless definitions for the variables and the energy
function. The current variables across EM1 and EM2 in
Figure 5 and eq. (15) are denoted as iMT1 and iMT2, which
control the torques in the EMs and the tensions in the arti-
ficial muscles defined in eqs. (3) and (5). That is, IS(t) = Imotor
= iMT. In conjunction with eq. (15), the tensions in the arti-
ficial muscles generated by the EMs in eq. (3) can be updated
as follows:

Figure 4 (Color online) Static jointed pendulums for stable arm gaits in
the presence of an external gravitational load P. P1, P2, and P represent the
gravitational forces acting on the pendulum OA0, A0B0, and the external
weight, respectively. EM1 and EM2 apply intrinsic tensions along the
flexible ropes, marked as T1 and T2, respectively.

Figure 5 (Color online) Schematic diagram of the coupled neural circuits
driving the EMs. The photocurrents iP1 and iP2 are generated in the pho-
totubes under external illumination. R0 represents the intrinsic resistance in
the load circuit, and R is the resistance of the resistor in the coupling
channel. NR is a nonlinear resistor, and the functional electronic component
(FEC) can be chosen from options such as a memristor, induction coil,
Josephson junction, thermistor, or piezoelectric ceramic.

Guo Y T, et al. Sci China Tech Sci April 2025, Vol. 68, Iss. 4, 1420403:5

165



T
M
r

NSBI
r e B

NSBi
r e B ki

T
M
r

NSBI
r e B

NSBi
r e B ki

= 2 = 2 sin( , )

= 2 sin( , ) = ,

= 2 = 2 sin( , )

= 2 sin( , ) = .

(17)

S

MT
MT

S

MT
MT

1
1

0
1

0

1
0 1

2
2

0
2

0

2
0 2

The coefficient k is related to the physical properties of the
EM, and the dimensional tensions (T1′, T2′) for the artificial
muscles are expressed as follows:
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The dimensionless gain k′ can be considered an intrinsic
parameter for the artificial muscle. Furthermore, the torque
balance criterion in eq. (6) is also updated as follows:

T
P

T T
P

sin = 2 sin ,

sin = 2 sin( + ) + 2 sin .
(19)
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2 2
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1
2 1 2 2 1 1

1

Considering the tension properties of the artificial muscle,
the maximum torque resulting from the muscle tension can
be achieved by setting sinΩ1 = sinΩ2 = 1, where the tension
directions are perpendicular to the pendulum length. In this
case, eq. (19) can be simplified as follows:
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sin = 2 cos( ) + 2
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1
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According to the stability condition for the jointed pen-
dulums in eq. (20), any change in the variable y1, generated
from eq. (15), will simultaneously modify the rotation angles
(θ1, θ2), and the arm gaits will stabilize quickly. In the pre-
sence of external weight P, the torque balance criterion in eq.
(10) can also be updated by setting sinΩ1 = sinΩ2 = 1 (or Ω1 =
Ω2 = π/2) as follows:

T
P P

T
P P

k y
P P

T T
P P

k y k y
P P

sin = 2 sin
+ 2 = 2 sin

+ 2 = 2
+ 2 ,

sin = 2 sin( + ) + 2 sin
+ 2

= 2 cos( ) + 2
+ 2 .

(21)
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1
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From eq. (21), any change in the external weight can in-
duce a new dynamic stability in the jointed pendulums by
adjusting the angles (θ1, θ2) synchronously. That is, the ar-
tificial muscles can adjust the intrinsic tensions to generate
appropriate torques that counteract changes in the external
weight.
In the control circuit illustrated in Figure 5, two phototubes

function like eyes, converting external illumination into
photoelectric currents. These currents then control the EMs
to maintain appropriate tensions and torques in the jointed
pendulums. Capacitive components, such as capacitors and
charge-controlled memristors, are effective at storing electric
field energy under external electrical stimuli.

3 Numerical results and discussion

Using the fourth-order Runge–Kutta algorithm on eq. (15),
the time series for membrane potentials, mapped from the
output voltages of the coupled neural circuits, are obtained
with a time step of 0.01. The transient period is set to 500
time units, and the initial values for the variables are selected
as (0.2, 0.1, 0.2, 0.1). In Figure 6, the sampled membrane
potentials for the first equation in eq. (15) are obtained for
bifurcation analysis by varying the intensity of the photo-
current applied to the neuron, with both neurons receiving
the same photocurrent.
As depicted in Figure 6, the coupled neurons exhibit dis-

tinct mode transitions in electrical activity as the intensity of
the photocurrents increases. In this way, different firing
modes can be induced to control the artificial muscles and
arm movement. Additionally, the evolution of the variables

Figure 6 (Color online) Bifurcation diagram of membrane potential
plotted by tracking the peak values of the variable x1. Parameters are set as
δ = 0.2, a = 0.5, b = 0.3, c = 0.7, ω1 = ω2 = 1.3.
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and energy function for the coupled neurons is illustrated in
Figures 7–9, with varying photocurrent intensities.
From Figures 7–9, the average energy <H> decreases from

2.04842 to 1.33887, followed by a slight increase as the
intensity of the photocurrent increases. This change has a
distinct impact on the excitability and firing patterns of the
coupled neurons. The two neurons rarely maintain syn-
chronization under bidirectional coupling during changes in
the membrane potentials. It is interesting to examine the
changes in the rotation angles of the arm under stable con-
ditions when the neural signals are endowed with different
intensities, as illustrated in Figure 10.
The two parts of the arm control their movements through

the regulation of electrical signals, which activate the arti-
ficial muscles and ensure the arm maintains stability under
external load bearing, as shown in eq. (21). The coupled
neurons and neural circuits direct different currents along
two distinct channels, while the movements of the upper arm
and forearm are regulated synchronously due to the coupling
between the two neural circuits. As a result, the arm can
exhibit different gaits in response to neural stimuli, even
when different load bearings are applied. That is, the
movement or rotation of the upper arm and forearm is in-
fluenced during neural driving, allowing for the stabilization
of appropriate gaits.
As shown in eq. (14), the capacitance C of a capacitor

plays a crucial role in setting reference values for the time
unit and energy unit, with τ = t/RC, during the scale trans-

formation of the physical variables. Additionally, inductive
coils can be incorporated into the branch circuit in Figure 5,

Figure 7 (Color online) Changes in membrane potential (x1, x2), channel
current (y1, y2), and energy value over time. Parameters set as δ= 0.2, a =
0.5, b = 0.3, c = 0.7, ω1 =ω2 = 1.3, A = 0.3.

Figure 8 (Color online) Changes in membrane potential (x1, x2), channel
current (y1, y2), and energy value over time. Parameters set as δ = 0.2, a =
0.5, b = 0.3, c = 0.7, ω1 = ω2 = 1.3, A = 0.7.

Figure 9 (Color online) Changes in membrane potential (x1, x2), channel
current (y1, y2), and energy value over time. Parameters set as δ = 0.2, a =
0.5, b = 0.3, c = 0.7, ω1 = ω2 = 1.3, A = 1.6.

Guo Y T, et al. Sci China Tech Sci April 2025, Vol. 68, Iss. 4, 1420403:7

167



enabling the energy exchange between the magnetic field
and the electric field, which in turn activates complex dy-
namics and firing patterns similar to those observed in bio-
physical neurons. The coupled neural circuits in Figure 5
serve as signal sources, stimulating the artificial muscles,
which are mimicked by a combination of EMs and flexible
ropes, to effectively control body and arm gaits. However,
equivalent neural circuits can be constructed by replacing the
capacitance C with a combination of resistance R and in-
ductance L when a capacitor is unavailable. The dimensional
transformation is described by

T V
LI
RI

L
R

RC R Q
V

R
V IT RI

V T T

C q
V V I L

R RI I L
R

L
R

t
T t R

L
t

RC q q
CV

R
V L q

[ ] = = = ,

[ ] = [ ] = [ ] =  [ ] = [ ],

[ ] = = 1  [ ] = 1  [ ] = ,

= = = , = = .

(22)

2

0

2

0

The symbol [*] represents dimensional operation, where t,
q, v, I, and φ are physical variables. Without the use of
capacitor components, effective nonlinear circuits can still be
constructed to obtain equivalent neuron oscillators for fur-
ther dynamic analysis. In summary, a simple artificial muscle
approach is proposed by controlling the length and tension of
flexible ropes wound around the EM. The stability of the
jointed pendulums closely resembles the selection of arm
gaits controlled by arm muscles. The tensions in the artificial
muscles generate anticlockwise torques to counteract the
clockwise torques caused by the weights in the coupled
pendulums and the external weight. Electrical signals from
the coupled neural circuits control the torques generated by
the EMs, allowing the arm gaits and jointed pendulums to
maintain stability synchronously.
Finally, it is interesting to discuss the implementation of

adaptive dynamical stability in Figures 3 and 4 by regulating

the torques of the EM and the intrinsic tension along the
flexible rope adaptively. The rotational torque generated by
the EM depends on the channel current across its load cir-
cuits (LMT1, LMT2). According to eq. (15), the dimensionless
parameters (a, b, δ) can be adjusted to detect the increase or
decrease of the dimensionless current (y1, y2). A larger value
for parameter b can stabilize the second variable in eq. (15).
When the external heavy load P is decreased, and a smaller
rotational torque can maintain balance with the torques re-
lative to the gravitational forces of the jointed pendulums and
the heavy load. Alternatively, increasing the heavy load P
requires stronger tensions and higher torques to balance the
gravitational torques. The rotational torques are proportional
to the channel current across the load circuit of the EM and
are also dependent on the shunted currents along other
channels and electronic components. The rotation angles (θ1,
θ2) are detectable and observable, and some parameters
mapped from the physical parameters in the driving neural
circuits can be regulated to control the current in the load
circuit, tension, and rotational torque of the EM synchro-
nously and adaptively. Following the adaptive growth cri-
terion of parameters under energy flow, a Heaviside function
composed of detectable kernel variables can be proposed
[51−53]. For example, the parameter b can be regulated to
control the rotation angle θ1 as follows:

b
d b X X

X X

d = ( ), ( ) = 1, 0,

( ) = 0, < 0.
(23)1 0

The gain σ can be selected to have either positive or ne-
gative values, and the parameter b is then increased or de-
creased to adjust the channel current across the load circuit.
The threshold θ0 in the Heaviside function in eq. (23) con-
trols the initiation time for the growth of parameter b. As a
result, the torque from the EM and the tension in the artificial
muscle are regulated. From an energy perspective, a lower
proportion of capacitive energy (energy stored in the capa-

Figure 10 (Color online) Evolution of rotation angles and angle error over time. Parameters set as δ = 0.2, a = 0.5, b = 0.3, c = 0.7, ω1 = ω2 = 1.3, k′ = 0.1,
P′= 0.6, P1′ = 0.5, P2′ = 0.4. For (a1, a2, a3), A = 0.3; (b1, b2, b3), A = 0.7; (c1, c2, c3), A = 1.6.
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citors in Figure 5) will support a higher proportion of in-
ductive energy, allowing the load circuits to maintain higher
energy and channel current. This, in turn, enables the EMs to
generate stronger rotational torques. Consequently, higher
torques lead to increased rotation angles (θ1, θ2). Therefore,
energy proportion can serve as the kernel variable in the
Heaviside function in eq. (23), and an intrinsic parameter can
be adaptively controlled to stabilize the arm gait and rota-
tional angles.
Disabled muscles impede the body’s ability to respond

quickly and efficiently to neural electrical signals, thus re-
stricting body gaits. Neurological diseases [54−57], such as
Parkinson’s and Alzheimer’s, can negatively impact the
stability of body gaits. In addition to potential neurogenic
repair, the implementation of electromechanical systems
under adaptive control may offer auxiliary support for safe
body gaits and movement. Therefore, the proposed scheme,
where muscle tension is controlled through the interaction of
EMs with flexible ropes, can enable the regulation of skeletal
movements to achieve suitable gaits. Building on the con-
cepts discussed in this work, inverted and jointed pendulums
can be further explored to investigate complex arm and leg
gaits achieved through the activation of torques and tensions
from artificial muscles or via gears.

4 Conclusion

In this work, the stability and movements of the arms are
explored using a pair of jointed pendulums driven by artifi-
cial muscles, which are simulated by controlling the re-
laxation and contraction of flexible ropes via an electronic
motor. The tensions in the artificial muscles can generate
anticlockwise torques to counteract the clockwise torques
produced by external weights. The rotation of EMs is con-
trolled by the current from a couple of coupled neural circuit
driven by photocurrents. In turn, the appropriate tensions and
torques are adjusted to maintain stability in the electro-
mechanical arm through torque balance. This scheme is
useful for designing artificial arms and offers insights for
repairing arms disabled due to muscle damage. The numer-
ical solutions for these nonlinear equations can be obtained
using the fourth-order Runge–Kutta algorithm, and the sta-
bility of the artificial arm under torque balance can be ver-
ified numerically, following the theoretical analysis outlined
above. The electromechanical arm device provides valuable
support for individuals with disabled arms.
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Appendix

The relationship between torque and the force arm in the jointed
pendulums is shown in Figures A1, A2, and A3.
According to Figure A1, the relationship between the torque and

force arm at the joint points (O, A0) can be described by

O Joint T l T l l

P l P l l

A Joint T l P l

: sin + sin [ + cos( )]

= 2 sin + ( sin + 2 sin ),

: sin = 2 sin .

(a1)

1 1 1 2 2 2 1 2 1

1
1

1 2 1 1
2

2

0 2 2 2 2
2

2

Similarly, the case for θ1 > θ2 is illustrated in Figure A2 as
follows:
The correlation between torque and force arm is described by

Figure A1 Stability in the jointed pendulums under torque balance for
θ1 > θ2.
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O Joint T l T l l

P l P l l

A Joint T l P l

: sin + sin [ cos( + )]

= 2 sin + 2 sin + sin ,

: sin = 2 sin .

(a2)

1 1 1 2 2 2 1 2 1

1
1

1 2
2

2 1 1

0 2 2 2 2
2

2

Eq. (a1) has the same form as eq. (a2). To better illustrate the
force arm length, an arbitrary arm gait is illustrated in Figure A2.
The torque balance for the jointed points is expressed as

O Joint T l T l l

P l P l l

A Joint T l P l

: sin + [ sin + cos( + )]

= 2 sin + 2 sin + sin ,

: sin = 2 sin .

(a3)

1 1 1 2 2 2 1 1 2 2

1
1

1 2
2

2 1 1

0 2 2 2 2
2

2

It is consistent with the stability constraint criterion in eqs. (a1)
and (a2).

Figure A2 Stability in the jointed pendulums under torque balance when
θ1 < θ2.

Figure A3 Stable jointed pendulums driven by EMs.
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