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Abstract
In batch processes, the accurate prediction of quality variables plays a crucial role in smooth production and quality control. 
However, various sources of noise in the production environment cause abnormal data fluctuations that deviate from the 
real value. Coupled with the dynamic nonlinearity of batch processing and the complex spatiotemporal relationship of vari-
ables, which greatly increase the difficulty of prediction and pose a severe challenge to prediction performance. Therefore, 
a denoising autoencoder-Spatial Temporal Convolution Attention Fusion Network (DAE-STCAFN) prediction method is 
proposed. Firstly, combining DAE and maximum information coefficient (MIC), multi-level data features are extracted to 
prepare high-quality input data for the quality prediction model. DAE is used to denoise the original data, and relevant vari-
ables are selected through MIC. Then, an augmented matrix is constructed to eliminate the autocorrelation of the selected 
variables in the time series. Secondly, a spatial temporal convolutional attention fusion mechanism is created to extract the 
spatial temporal fusion features between the input and output variable sequences. Thirdly, to further enhance the learning 
ability of the model, a batch attention module is constructed to automatically learn the relationship among sample in small 
batch. Finally, experiments were carried out on the simulation platform of penicillin fermentation and hot tandem rolling 
process. In the prediction process of penicillin concentration, RMSE and MAE of the proposed method were 0.0099 and 
0.0077, respectively. In the prediction of strip thickness, the RMSE and MAE are 0.0008 and 0.0003 respectively. The results 
show that the proposed method is effective both in simulation experiment and in actual industrial production in terms of 
prediction accuracy, stability and generalization ability.

Keywords  Batch processes · Quality prediction · Denoising-Autoencoder · Maximum Information Coefficient · 
Spatiotemporal convolutional attention

1  Introduction

As one of the main production ways in modern industry, 
batch process is widely used in the fields of fine chemicals, 
biotechnology, pharmaceuticals and specialty polymers. 
Unlike continuous process, batch process data have the 
characteristic of batch, the production process is cyclical 
and dynamic, and the product quality is easily affected by 
the factors such as the production environment and the state 
of the equipment [1, 2]. With the increasing emphasis on 
batch process safety and product quality, as an important 
strategy to ensure production reliability, quality prediction 
has become a hot research topic in both academia and indus-
try [3, 4].

In recent years, data-driven methods [5, 6] have gradually 
attracted the attentions with the wide applications of big 
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data and the improvement of computing power. Data-driven 
quality prediction methods can be broadly categorized into 
multivariate statistical methods and deep learning methods 
[7–9]. The multivariate statistical methods mainly include 
principal component analysis [10], partial least squares [11] 
and other methods. Considering the nonlinear characteristic 
of real data, further kernel-based statistical learning methods 
[12–14] and support vector machine [15] are widely used. 
Compared to multivariate statistical methods, deep neural 
networks(DNN) [16, 17] have multiple hidden layers, which 
can fit nonlinear systems through hierarchical nonlinear 
characterization and can handle complex network training 
problems through unsupervised pretraining and supervised 
fine-tuning. Typical deep learning methods include Deep 
Belief Network (DBN), Stacked Autoencoder (SAE). For 
the past few years, deep learning using multilayer nonlinear 
mapping has achieved good results in the study of quality 
prediction for real industrial production. Shang et al. [18] 
proposed an industrial soft sensor based on Deep Belief 
Network (DBN) to predict 95% of the cut points of heavy 
diesel fuel. Yan et al. [19] proposed a denoising autoencoder 
(DAE) integrated with neural network method to improve 
the soft sensor's prediction performance and robustness. In 
order to analyze the relationship between input and target 
variables, Yuan et al. [20] proposed a variable weighted 
stacked autoencoder (VW-SAE) to achieve a linear corre-
lation metric between input and target variables to extract 
the features related to the output. Liu et al. [21] proposed 
a new stacked neighborhood maintaining autoencoder for 
extracting hierarchical neighborhood maintaining features 
in the accurate quality prediction for industrial hydrocrack-
ing process. Sun et al. [22] proposed a gated stacked target 
correlation autoencoder (GSTAE) that utilized gated neurons 
to extract and control the features of different hidden layers 
to improve the soft measurement performance.

However, the above methods are mainly used for static 
network modeling. Industrial processes have complex non-
linear dynamic characteristics due to the presence of feed-
back control as well as complex physicochemical reactions 
and dynamic noise. Therefore, industrial process data can be 
viewed as time series with highly nonlinear temporal corre-
lation. In order to capture the temporal correlation in produc-
tion data, Recurrent Neural Network (RNN) was proposed to 
achieve the transfer of information so as to effectively deal 
with simple time series [23]. For long time series modeling, 
the gradient vanishing problem occurs by using recurrent 
neural networks. In order to solve the gradient vanishing 
problem, long-short-term memory network (LSTM) was 
proposed [24]. LSTM has special memory units and gat-
ing mechanisms, which can utilize past outputs and current 
inputs to process long sequence data and solve the gradient 
vanishing problem. However, for multivariate time series, 
LSTM cannot focus on different variables at different time 

steps. In industrial process quality prediction, the data sam-
ples of previous moment always have various impacts on 
the current data. Yuan et al. [25] proposed a variable atten-
tion mechanism to adaptively select the variables related to 
quality variables for dynamic modeling of industrial pro-
cesses. Xiang et al. [26] proposed a long and short-term 
memory neural network with weight amplification by using 
the attention mechanism for predicting gear life. For highly 
redundant data in industry, Ren et al. [27] proposed a wide-
deep sequence model that integrated LSTM with a multi-
layer perceptron network for quality prediction. Yuan et al. 
[28] further explored and constructed a spatial–temporal 
attention-based LSTM network for soft sensor modeling, 
which improved the prediction performance by comprehen-
sively considering the spatial–temporal mass interactions. 
These methods have certain applicability, end-to-end predic-
tion comes at the expense of a certain level of model inter-
pretability. A recurrent long short-term memory networks 
(RNN-LSTM) architecture is proposed for early diagnosis 
of diabetic retinopathy [29]. LSTM has some advantages 
in dealing with long-term dependency problems, but it 
has some problems such as high computational resource 
consumption and easy layer disappearance or explosion. 
Through in-depth analyses of industrial soft sensor model, 
we find the following challenges that may be encountered 
in practical applications: 1) The problem of data quality: 
the accuracy and reliability of industrial soft sensor depend 
heavily on data quality [30]. The problems such as missing 
data, noise interference, outliers, etc. may seriously affect 
the prediction accuracy of soft sensor models. 2) Insufficient 
model generalization ability: Although the soft sensor model 
performs well on the training set, it limits the generalization 
ability on new data sets. Especially when dealing with com-
plex and changing industrial processes, the model may have 
the difficulty in adapting to new data samples. 3) Difficulty 
in feature selection: feature selection and feature extraction 
are crucial steps when constructing soft sensor model [31, 
32]. However, due to the complexity of industrial processes, 
certain key features may be difficult to capture, which further 
increases the difficulty of feature selection and negatively 
affects model performance.

Based on the above analysis, this paper proposes a batch 
quality prediction method based on the fusion network of 
denoising autoencoder and spatiotemporal convolutional 
attention mechanism. The main innovations are as follows:

1)	 We innovatively combined DAE and MIC to provide 
high-quality feature input for subsequent model train-
ing through data noise reduction and high-correlation 
feature extraction. At the same time, in order to effec-
tively eliminate the autocorrelation between variables, 
we construct an augmentation matrix, which enhances 
the robustness of the model.
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2)	 In order to capture the dynamic characteristics of batch 
processes more accurately, we propose a new spatial 
temporal feature fusion strategy. Specifically, we input 
spatial convolution attention and temporal convolution 
attention into the encoder and decoder of the Trans-
former network, respectively. The multi-head attention 
mechanism in transformer network is used for deep spa-
tial temporal feature fusion.

3)	 A DAE-STAFN is proposed for quality prediction of 
batch process. In order to enhance the adaptability of 
the model to the batch process, we further proposed to 
construct batch attention. Use batch attention to model 
the relationship among samples in small batch. The 
extracted same sample features and small batch sample 
features were input into the full connection layer respec-
tively for prediction.

The rest of the paper is organized as follows. Section 2 
reviews the basics of the DAE and Transformer. Section 3 
specifically describes the proposed denoising autoencoder-
spatial–temporal convolutional attention mechanism fusion 
network model. Experimental validation results are shown in 
Sect. 4. Section 5 gives the conclusion and outlook.

2 � Preliminaries

2.1 � Denoising autoencoder (DAE)

As a neural network architecture, autoencoder is used to 
encode the input data to obtain a low-dimensional repre-
sentation, followed by decoding this low-dimensional rep-
resentation to reconstruct the original input. DAE [33], as 
an extension of AE, further introduces noise into the input 
data and trains the model to recover the original noise-free 
data from these noisy inputs. This training process not only 
allows the encoder to capture the most salient features in the 
input data, but also significantly improves its generalization 
ability, making it better at handling general encoders. DAE 
is unique in its ability to process high-dimensional redundant 

input data. By deeply learning the intrinsic dependencies 
and rules of data, DAE can show strong robustness to par-
tially damaged inputs at the intermediate presentation layer, 
that is, it can extract and reconstruct effective features from 
damaged inputs. This is in contrast to traditional filtering 
techniques, which mainly focus on noise removal and have 
relatively limited contributions to feature extraction. DAE 
can effectively extract features while removing noise. The 
schematic diagram of DAE is shown in Fig. 1, DAE consists 
of input data x, corrupted data x̃  , intermediate features h 
and reconstructed data z. The corrupted data x̃ are used as 
input data, DAE learns mapping from input to representation 
and reconstruction from representation to input to effectively 
capture the essential features of data.

The d-dimensional input x is mapped to the hidden rep-
resentation by a deterministic mapping encoding function 
as shown in Eq. (1).

where, s represents the sigmoid function, W is a weight 
matrix and b is a bias vector.

The intermediate feature representation h is then mapped 
back into the input space, z is the reconstructed vector of x, 
and the decoding function is shown in Eq. (2).

where, W′ and b′ represent the weight matrix and the bias 
vector, respectively. W� = WT.

If the input x is a continuous value vector, the recon-
structed loss function is traditional squared error, as shown 
in Eq. (3).

2.2 � Transformer

Transformer is a deep learning model widely used in the 
field of natural language processing. It was originally pro-
posed by Vaswani et al. [34] in 2017. Transformer consists 

(1)h = f� (̃x) = s(Wx̃ + b)

(2)z = f��(h) = s(W�h + b�)

(3)L(x, z) = ‖x − z‖2

Fig. 1   Schematic diagram of DAE
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of an encoder and a decoder. The encoder is responsible 
for transforming the input sequence into a series of hidden 
states, and the decoder generates the output sequence based 
on these hidden states. Both the encoder and decoder are 
stacked with multiple identical layers, each containing a self-
attention mechanism and a feed-forward neural network, the 
structure of which is shown in Fig. 2.

As a key feature of the Transformer, Self-Attention Mech-
anism is capable of weighting and aggregating various parts 
of the input sequence x = {x1, x2,⋯ , xj}, xi ∈ Rn . The calcu-
lation process is shown in Fig. 3.

Firstly, for each input feature, Query, Key and Value vec-
tors are generated through three different linear layers. These 
vectors are obtained by multiplying the input elements with 
a set of learnable parameters. The Query vector is used to 
compute the similarity to all the Key vectors to determine 
which input element should be focused on when generating 
the output.

where, Wq , Wk and Wv are the learning matrices of the linear 
mapping, Q= [q1,⋯ ,qj],K = [k1,⋯ , kj] and V = [v1,⋯ , vj].

Then attention weights are calculated. The similarity 
between each query vector and all key vectors is calculated, 
often by using methods such as dot product or cosine simi-
larity. These similarity scores are normalized to weights by 
using the softmax function, which are assigned to the cor-
responding value vectors when generating the output.

Finally, each value vector is multiplied with its cor-
responding weight and these weighted vectors are then 
summed to obtain the output of the self-attention mecha-
nism. This output contains the information about all relevant 
elements in the input sequence, allowing the model to better 
understand the relationships between the sequences.

3 � Predictive model construction based 
on DAE‑spatial temporal convolutional 
attention mechanism fusion network

This section discusses the principles of the proposed DAE-
STCAFN model applied in batch process quality prediction 
and the implementation process. Firstly, the raw data are pre-
processed, including data unfolding, noise reduction, variable 
selection, construction of augmentation matrix and data nor-
malization. Secondly, spatial convolutional attention is calcu-
lated for the time series of process and quality variables, and 
temporal convolutional attention is calculated for the quality 
variable series. And the spatial–temporal fusion features are 
obtained by multi-head attention mechanism in Transformer. 
Finally, the sample relationship within small batch is learned 
automatically by batch attention. And the quality prediction 

(4)
qi = Wqxi ∈ Rdn ,

ki = Wkxi ∈ Rdn ,

vi = Wvxi ∈ Rdn , i = 1, 2, ..., j

(5)
Similarity(Q, ki) = QT ⋅ ki

Similarity(Q, ki) =
QT ⋅ki

‖QT‖⋅‖ki‖

(6)

Self_Attention(Q,K,V) =

n∑
i=1

softmax(Similarity(Q, ki)) ∗ VT

Fig. 2   Transformer Structure

Fig. 3   Self-Attention Calculation Flow
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model are built before and after the batch attention module to 
achieve quality prediction.

3.1 � Batch process data pre‑processing

The batch process data are three-dimensional data X(I × J × L) 
which consist of variable (J), sampling time (L), and batch (I). 
Therefore, the process data X(I × J × L) are expanded along 
the direction of the variables in the order of increasing batches, 
resulting in a two-dimensional matrix X(IL × J) , as shown in 
Fig. 4. As the number of batches increases, the batch process 
data show time series characteristics.

In the actual industrial data acquisition process, it is often 
disturbed by noise. Firstly, the unfolded data X(IL × J) are 
processed to reduce noise using DAE. In this process, DAE 
can remove part of noise, but due to the differences of the noise 
level between variables, it may lead to a complex nonlinear 
relationship between the variables. On the other hand, MIC 
can still reflect the real association between variables more 
accurately when analyzing the relationship between variables, 
even if there is a certain degree of noise in the data. On the 
other hand, MIC can simplify the model and improve the pre-
diction accuracy by screening the process variables that have a 
significant effect on the target variables. Therefore, this paper 
uses MIC to calculate the correlation between input and target 
variables. MIC is a feature selection method based on mutual 
information, which has been widely used in the literature[35, 
36] on quality prediction in recent years for relevant feature 
extraction, and has achieved relatively satisfactory results. The 
mutual information of X, Y is calculated as shown in Eq. (7).

where, p(x, y) denotes the joint probability distribution func-
tion of X and Y, while p(x) and p(y) denote the marginal 
probability distribution function of X and Y, respectively.

(7)I(X, Y) =
∑
x∈X

∑
y∈Y

p(x, y)log(
p(x, y)

p(x)p(y)
)

The MIC formula is shown in Eq. (8):

where, a, b are the number of lattice divisions in the x, y 
direction. B is a variable with a size of about 0.6 times of 
data.

To fully consider the dynamic characteristics of batch 
processes, we construct an augmented matrix based on 
time series for the screened features. By constructing this 
matrix, more variable information is introduced to elimi-
nate the autocorrelation of time series. In addition, the aug-
mented matrix provides more abundant variables, enabling 
the model to analyze and predict time series from multiple 
angles, thereby enhancing the model's time series predic-
tion ability. For the process data Xi ∈ RL×Jx of the i-th batch, 
the augmentation matrix is built with window width m, as 
shown in Eq. (9).

where, X̂i ∈ R(L−m+1)×mJx.
For better data analysis and training of machine learning 

models, data normalization is performed on the augmented 
process variables. Here, the max–min method is utilized to 
linearly transform the data to the range of [0, 1], as shown 
in Eq. (10).

where, xvalue is the original data value, xmin and xmax are the 
minimum and maximum values in the data set respectively.

3.2 � Quality prediction model based on spatial–
temporal convolution attention fusion network

3.2.1 � Spatial convolution attention mechanism

Supposed the input and output sequences are 
x = (x1, x2,⋯ , xj) = (x(1), x(2),⋯ , x(L)) ∈ Rj×L   , 
y = (y(1), y(2),⋯ , y(L)) ∈ RL respectively, for the complex 
spatial dependence between multivariate time series, we 
propose a new spatial convolutional attention, whose com-
putational process is shown in Fig. 5.

F o r  m u l t i v a r i a t e  t i m e  s e r i e s 
X̂ = (x1, x2,⋯ , xj, y)

T
∈ R(j+1)×L , xn represents the n-th time 

series. Considering that local contextual information in the 
time dimension may be ignored when applying the point-
by-point attention mechanism to capture the relationship 

(8)MIC(X, Y) = max
a∗b<B

I(X, Y)

log2min(a, b)

(9)

X̂
i =

⎡
⎢⎢⎢⎢⎢⎣

x
i

1,1
x
i

1,2
⋯ x

i

1,m

x
i

1,2
x
i

1,3
⋯ x

i

1,m+1

⋮ ⋮ ⋮ ⋮

x
i

1,L−m+1
x
i

1,L−m+2
⋯ x

i

1,L

⋯ x
i

J
x
,1

⋯ x
i

J
x
,m

⋯ x
i

J
x
,2

⋯ x
i

J
x
,m+1

⋮ ⋮ ⋮ ⋮

⋯ x
i

J
x
,L−m+1

⋯ x
i

J
x
,L

⎤
⎥⎥⎥⎥⎥⎦

(10)xvalue� =
xvalue − xmin

xmax − xmin

Fig. 4   Schematic of the 3D data expansion
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between multivariate time series, local temporal convolu-
tion is introduced for the existence of complex spatial cor-
relations between different time series, which consists of a 
convolutional layer and a pooling layer.

The convolutional layer consists of a 1-D CNN filter of 
length � ( �<L). For each univariate time series, the h-th 
CNN filter scans along the time dimension and generates 
the vector mj

h
= ReLu(�h ∗ xn+bk) ∈ RL−�+1 , correspond-

ing to the matrix Mj ∈ Rdmodel×(L−�+1) , where dmodel repre-
sents the number of filters. Then, a 1-D maximum pooling 
layer on each row of Mj is used to reduce the output size 
and prevent overfitting. The final feature extracted from 
each univariate time series by local time convolution is 
pj = MaxPool(Mj) ∈ dmodel . Thus, the time series feature 
matrix P = (p1, p2,⋯ , pj+1)

T
∈ R(j+1)×dmodel is obtained. Each 

row of the feature matrix can be considered as a learned 
representation of the univariate time series.

Next, each univariate time series feature learned is fed 
into the spatial self-attention mechanism to capture the spa-
tial dependence between different sequences. The feature 
matrix P and the input matrix X̂ are converted into p differ-
ent query matrices Qs

i
 , key matrix Ks

i
 and value matrix Vs

i
 , 

as shown in Eq. (11).

where, i is the serial number of the attention head. Wqs

i
 , Wks

i
 

and Wvs
i

 represent learnable parameter matrices.
After that, a series of outputs are computed as shown in 

Eq. (12) using the scaled dot product self-attention func-
tion. Finally, these outputs are concatenated and linearly 

(11)
Qs

i
= PW

qs

i

Ks
i
= PWks

i

Vs
i
= X̂Wvs

i

projected again to produce a representation matrix as shown 
in Eq. (13).

where, 
√
dk denotes the scaling factor.

This new spatial convolutional attention mechanism 
combines local temporal convolution, pooling layer, and 
spatial self-attention mechanism, which can better capture 
the complex spatial dependencies among multivariate time 
series, and improve the modeling ability and prediction per-
formance for time series data.

3.2.2 � Time convolution attention mechanism

Time attention is calculated as shown in Eqs. (14)-(16).

For time series data, the effect of local similarity since 
observations at the current moment can only reflect the 

(12)

Heads
i
= Attention(Qs

i
,Ks

i
,Vs

i
) = sof tmax(

Qs
i
(Ks

i
)T

√
dk

)Vs
i

(13)Z = Concat(Heads
1
,⋯ ,Heads

h
)Wos

(14)
Qt

i
= YW

qt

i

Kt
i
= YW

qt

i

Vt
i
= YW

qt

i

(15)Headt
i
= Attention(Qt

i
,Kt

i
,Vt

i
) = softmax(

Qt
i
(Kt

i
)
T

√
dk

)Vt
i

(16)U = Concat(Headt
1
,Headt

2
,⋯ ,Headt

h
)Wot

Fig. 5   Spatial Convolutional Attention Computation Process
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current state and cannot predict future information. By 
employing causal convolution, query values and key values 
for information retrieval are generated. The unique feature 
of temporal convolutional attention is the ability to correlate 
different positions of the target sequence in the time dimen-
sion, which enables the model to learn long-term temporal 
dependencies and thus exhibiting enhanced performance in 
handling complex time series analysis tasks. Figure 6 illus-
trates the computational process of temporal convolutional 
attention.

3.2.3 � Spatial–temporal convolution attention fusion 
mechanism

To better capture the spatial–temporal relationships between 
the variables, in the encoder part of the Transformer, we use 

the computed spatial convolutional attention as the input, 
which helps the model better capture the spatial correlation 
in the input data. Meanwhile, we use the temporal convolu-
tional attention as the input to the decoder part. As shown 
in Fig. 7, the outputs of the encoder and decoder are more 
efficiently fused by the multi-head attention mechanism 
in Transformer to generate a representation with rich spa-
tial–temporal map �st , as shown in Eq. (17).

where, Wqst , Wkst ∈ Rdmodel×dk denote the learned parameters. 
dmodel is the dimension of the features.

The temporal-spatial attention fusion features used for 
prediction can be expressed as Tst = �st(ZWvst) . Input the 

(17)�st = softmax(
(ZWqst)(UWkst)

T

√
dk

)

Fig. 6   Temporal Convolutional 
Attention Computation Process

Fig.7   Flowchart for calculating 
the batch attention mechanism
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spatial–temporal fusion features Tst into the fully connected 
regression layer to predict the quality output:

To further enhance the learning capability of the model, 
we propose a batch attention mechanism module for the 
generated spatial–temporal fusion features Tst

1
, Tst

2
,⋯ , Tst

M
 , 

which helps the model understand the underlying struc-
ture of the data more thoroughly by learning the feature T̂  
between samples within a batch. Batch attention is mainly 
composed of multi-head attention (Multi-Head), layer nor-
malization (Layer-Norm) and feed-forward network (FFN). 
The batch attention calculation process is shown in Eq. (18).

Input the spatial–temporal fusion features T̂  into the fully 
connected regression layer to predict the quality output:

where, WT and u are prediction weights and bias vectors, 
which belong to prediction sharing parameters. � represents 
regression coefficient.

F i n a l l y ,  t h e  n e t w o r k  p a r a m e t e r  s e t 
{�1

STCAFN
;�2

STCAFN
;...;�n

STCAFN
;WT , u} is obtained by mini-

mizing the unconstrained optimization problem shown in 
formula (21).

where, y(i) is the truth value.
The overall time complexity of DAE-STCAFN is the 

sum of the time complexity of the noise reduction DAE and 
the spatial–temporal convolutional fusion network, includ-
ing the forward propagation time of the input data in the 
DAE through the autoencoder and the convolution time and 
fusion operation time in the spatial–temporal convolutional 
network.

As the size of batch data increases, the DAE-STCAFN 
can improve processing efficiency through distributed com-
puting and parallel processing. In addition, the structure of 
the network can be adjusted according to the size of the 
data. For large-scale data, the dimensions of hidden layers 
or the number of convolutional kernels can be increased to 
improve the expressive power of the model, but this would 
also increase the computational time. Therefore, a trade-off 
needs to be made between model performance and compu-
tational efficiency. The number of parameters of the net-
work mainly depends on the hidden layer dimensions of 
the autoencoder, the size and number of spatial–temporal 

(18)ỹ = �(WTTst + u)

(19)
T� = LayerNorm(MultiHead(T) + T)

T̂ = LayerNorm(FFN(T�) + T�)

(20)ŷ = �(WTT̂ + u)

(21)

L(�
STCAFN

) =
1

2n

n�
i=1

‖ỹ(i) − y(i)‖2 + 1

2n

n�
i=1

‖ŷ(i) − y(i)‖2

convolutional kernels, and the complexity of the fusion 
operation. These parameters can be adjusted to suit different 
application needs. So the DAE-STCAFN can improve the 
accuracy of quality control by denoising and feature extrac-
tion of data and can meet the real-time requirements.

The batch process quality prediction model based on 
DAE-STCAFN is divided into two parts: offline modeling 
and online prediction, and the flow chart is shown in Fig. 8.

Offline modeling:

Step 1: Collect historical data of batch processes, pre-
process the data: noise reduction, variable selection, con-
structing augmentation matrices and normalization.
Step 2: Compute local temporal attention for univariate 
time series of input variables and spatial convolutional 
attention between multivariate time series.
Step 3: Compute temporal convolutional attention for the 
quality-variable time series.
Step 4: In the Transformer model, spatial convolutional 
attention is used as the input of the encoder.
Step 5: The temporal convolutional attention is used as 
the input of the decoder, and the spatial-temporal fusion 
features are obtained through the spatial-temporal fusion 
mechanism.
Step 6: Establish a batch attention mechanism to auto-
matically learn the correlation characteristics between 
variables.
Step 7: Separate regression predictions were made for the 
features before and after the batch attention calculation, 
respectively.

Online prediction:

Step 1: Collect batch process online data and pre-process 
the data.
Step 2: Compute spatial convolutional attention.
Step 3: Compute temporal convolutional attention.
Step 4: The computed spatial convolutional attention and 
temporal convolutional attention are put into the trained 
quality prediction model for quality prediction.
Step 5: The predicted values are inversely normalized to 
obtain the final quality prediction.

Furthermore, the three criteria are used to evaluate the 
performance of the proposed method. They are Mean Abso-
lute Error (MAE), Root Mean Square Error (RMSE) and 
determinate coefficient (R2), which are shown in Eq. (23). 
RMSE can well reflect the deviation between the predicted 
value and the actual value. The value of MAE visually rep-
resents the mean absolute deviation between the predicted 
value and the true value, making it easier to understand and 
interpret. R2 is mainly used to compare the ability of differ-
ent models to fit the same dataset. When there are multiple 
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models to choose, it is possible to determine which model 
performs better in fitting the data by comparing their R2 
values.

where, is the true value, ŷi represents the model predicted 
value, and N represents the number of samples in the test 
set.Yi is the mean of Yi.

4 � Experimental verification

To validate the performance of DAE-STCAFN, it is applied 
for the penicillin fermentation simulation process and hot 
strip mill process. These computations are done in Python 

(22)

MAE =
1

N

∑N

i=1
�yi − ŷi�

RMSE =

�
1

N

∑N

i=1
(yi − ŷi)

2

R2 = 1 −
∑N

i=1
(yi−ŷi)

2

∑N

i=1
(yi−Yi)

2

3.7. The hardware is an Intel (Intel) Core (TM) i7-8700 GPU 
@ 3.20 GHz 16.00G RAM.

We employ a variety of regularization techniques in our 
model to avoid overfitting. First, L2 regularization in the 
layers of neural networks is used to limit the complexity of 
the model and prevent overfitting by penalizing the weights. 
Specifically, we add a weight decay parameter to the opti-
mizer to regularize the weights of the model. In addition, 
we also employ Dropout technology to randomly discard 
some nerve cells during training, increasing the generaliza-
tion ability of the model. Dropout can effectively reduce 
co-adaptation between nerve cells and prevent overfitting, 
which is used in multiple layers of the model, and we experi-
mentally adjust the probability of Dropout to obtain the best 
performance.

To ensure that the model does not overfit, we employ a 
rigorous validation procedure. We divide the dataset into 
a training dataset, a validation set, and a test set. During 
training, we use a training dataset to train the model, a vali-
dation set to monitor the model's performance, and adjust 

Fig.8   Flowchart of quality pre-
diction based on DAE-STCAFN
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the model's hyperparameters based on the validation set's 
performance. When the model's performance on the valida-
tion set no longer improves, we stop training to prevent over-
fitting. We also use an early stop technique, where we stop 
training when the model's performance on the validation set 
does not improve for several consecutive epochs to prevent 
overfitting. In order to verify the generalization ability of 
the model, we divide the test set into several independent 
datasets for verification, and take the average of each per-
formance index as the verification result of the final test set.

4.1 � Penicillin fermentation simulation platform

In this section, the proposed model is validated by perform-
ing experiments on a penicillin fermentation simulation 
platform. The production of penicillin is a typical batch 
process, which requires suitable conditions such as medium 
environment, pH value, aeration rate, stirring power, etc., 
to ensure that the bacteria can carry out antibiotic growth 
and anabolism normally. The whole process is characterized 
by nonlinearity, time-varying and uncertainty. Considering 
the complexity of the intrinsic reaction mechanism, the key 
parameters cannot be directly measured online, so predictive 
modelling of the key parameters is very important. In 2002, 
Cinar led a group at the Illinois Institute of Technology to 
develop the Pensim2.0 simulation software[37], which could 
simulate the batch process more realistically and comprehen-
sively, so it has been widely used in research fields such as 
batch process monitoring and quality control[38, 39]. The 

flow chart of penicillin fermentation process is shown in 
Fig. 9.

In this paper, the time period of the penicillin reaction 
process is set to 400 h and the sampling time is set to 0.5 h, 
and then 10 batches of data under normal working condi-
tions with different initial conditions and within the allow-
able range are obtained. Among 18 process variables, 10 
process variables are selected. This specific value ranges 
of the variables are presented in Table 1. Additionally, the 
quality variables are penicillin concentration and biomass 
concentration.

Random noise with a mean value of 0 and variances of 
0.01, 0.1, and 1 is added to all measured data to simulate the 
actual data in production. The mean square error between the 
original data and the reconstructed data under three different 
noises is shown in Fig. 10. As can be seen from Fig. 10, after 
adding random noise with a mean value of 0 and a variance 
of 1, the mean square error between the original data and 
the reconstructed data is the smallest. Therefore, in this sec-
tion, penicillin concentration and biomass concentration are 
predicted in a noise environment with (0,1).

As shown in Fig. 11, the data distribution histograms of 
the original and reconstructed data are presented under the 
(0, 1) noise environment. The horizontal axis represents the 
value range of the data after the data noise reduction process 
by DAE. For the penicillin fermentation simulation data, it 
encompasses the 10 features listed in Table 1. The horizontal 
axis covers the interval from the minimum to the maximum 
value in the data and is divided into several intervals, each 
corresponding to a specific data range. The vertical axis 

Fig.9   Flow chart of penicillin 
fermentation process
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represents the number or frequency of data points within 
each interval, reflecting the number of data points in a par-
ticular data range. A higher value on the vertical axis indi-
cates more data points in the corresponding interval, while 
a lower value indicates fewer data points. By observing the 
histograms of the original and reconstructed data, we can 
visually compare their data distributions within different 
value ranges and then assess that the data distributions are 
less altered after DAE processing, thus better preserving the 
original characteristics and meaning of the data.

The results of quality-related feature selection using 
MIC are shown in Fig.  12, where the blue bars rep-
resent the variables associated with the penicillin 
concentration variables. It can be seen that the vari-
ables × 3, × 4, × 5, × 6, × 7, × 8 have a greater effect on 
penicillin concentration. The orange bar graph rep-
resents the variables associated with the biomass 

Table 1   Ten main variables and initial value settings for penicillin 
fermentation process

Variable Description Default setting Setting range

 × 1 Aeration rate (L/h) 8.6 8 ~ 9
 × 2 Agitator power (r/min) 30 29 ~ 31
 × 3 Substrate feed flow rate 

(L/h)
0.042 0.039 ~ 0.045

 × 4 Substrate feed temperature 
(K)

296 295 ~ 296

 × 5 Substrate concentration 
(g/L)

15 14 ~ 18

 × 6 O2 (%) 1.16 1.0 ~ 1.2
 × 7 Culture volume (L) 100 100 ~ 104
 × 8 CO2 (%) 0.5 0.5 ~ 1.0
 × 9 PH 5.0 4.5 ~ 5.5
 × 10 Temperature (K) 298 295 ~ 301

Fig. 10   Mean square error 
(MSE) of original data source 
and reconstructed data in differ-
ent noise environments

Fig. 11   Distribution histogram 
of original data source and 
reconstructed data
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concentration variables, it can be seen that the vari-
ables × 3, × 5, × 6, × 7, × 8, × 9 have a large effect on the 
concentration of bacteriophage. By selecting the key fea-
tures, it helps to provide a basis for decision making in the 
model on one hand, and on the other hand, it allows the 
practitioner to visualize which factors are most important 
in the input data.

In order to analyze the rationality of the model structure 
and the help of each component to improve the prediction 
accuracy of the model, an ablation experiment was carried out 
on the DAE-STCAFN model. The Non-DAE-STAFN, DAE-
STAFN, Non-DAE-STCAFN and DAE-STCAFN models 
were experimentally compared. As can be seen from Table 2, 
the RMSE and MAE values of the DAE-STCAFN model are 
the smallest, with smaller errors. Further analysis of the results 
shows that the model Non-DAE structure has insufficient data 

feature extraction ability, resulting in poor model prediction 
performance. Models without a convolutional structure cannot 
extract enough important time information from the time step, 
which affects the prediction effect of the model.

Predicted results of penicillin concentration
Firstly, the penicillin concentration is taken as the predic-

tion target, and the prediction is carried out with the existing 
models such as LSTM, S-LSTM [40], GSTAE, STA-LSTM, 
DAE-STAFN and the DAE-STCAFN model proposed in this 
paper. To ensure the objectivity of the validation results, 
the data are divided into training set, validation set and test 
set according to 6:2:2. As shown in Table 3, the proposed 
model has the best performance in all the metrics compared 
to the other five models. The results of the six models for 
penicillin concentration prediction are shown in Table 3. It 
can be seen from the table that compared with the other five 
models, the proposed model has the smallest RMSE and 
MAE values and the largest R2 value, which shows that the 
proposed model has the best prediction performance.

In order to show more visually the prediction effect of 
each model on penicillin concentration, Fig. 10 shows the 
prediction fit curves after inverse normalization for each 
model, separately, the red color curve represents the true 
value and the blue color curve represents the predicted 
value. As shown in Fig. 13 (a), this is the prediction effect 
of LSTM, it can be seen that there is large error between 

Fig. 12   Variable selection 
results

Table 2   Comparison of Ablation Experiment Results of Concentra-
tion Model in Penicillin Production Process

Model RMSE MAE R2

Non-DAE-STAFN 0.0363 0.0102 0.9931
Non-DAE-STCAFN 0.0346 0.0050 0.9938
DAE-STAFN 0.0345 0.0215 0.9970
DAE-STCAFN 0.0099 0.0077 0.9990

Table 3   Performance metrics 
of six models for predicting 
penicillin concentrations

Model

Metrics S-LSTM LSTM GSTAE DAE-STAFN STA-LSTM DAE-STCAFN

RMSE 0.1693 0.0568 0.0258 0.0345 0.0163 0.0099
MAE 0.1541 0.0460 0.0205 0.0201 0.0117 0.0077
R2 0.7508 0.9719 0.9960 0.9970 0.9988 0.9990
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the predicted value of LSTM and the actual value, this is 
because, in the calculation of LSTM, the information at each 
time step needs to rely on the state of the previous time 
step and the current input. As the sequence increases, the 
information transmission path becomes longer and the risk 
of information loss also increases. Figure 13(b) is the predic-
tion fitting curve of S-LSTM model. It realizes the simulta-
neous use of quality variables and input variables to learn 
more relevant dynamic hidden states. However, S-LSTM 

has the problem of large computational resource consump-
tion. Figure 13(c) shows the prediction effect of GSTAE on 
penicillin concentration, as a target correlation auto-encoder 
with a gating structure, GSTAE is capable of controlling 
the validity of the historical information. Although GSTAE 
has its unique features in processing spatiotemporal data, it 
has shortcomings in dealing with complex dynamic changes 
and noise interference. Figure 13(d) shows the predictive fit-
ting effect of SAT-LSTM model. SAT-LSTM is a long-term 

Fig.13   Prediction results of penicillin concentration by (a) S-LSTM, (b) LSTM, (c) GSTAE, (d) STA-LSTM, (e) DAE-STAFN, (f) DAE-
STCAFN
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and short-term prediction network based on spatiotemporal 
attention computation. However, STA-LSTM only uses spa-
tial–temporal attention to filter out useful spatial–temporal 
location information, and does not suppress redundant infor-
mation through convolution, so its performance is affected. 
Figure 13(e) shows the prediction effect of DAE-STAFN on 
penicillin concentration. It can be seen from the figure that 
its prediction accuracy R2 is 0.9970 without the convolution 
operation. It can be seen from Fig. 13(f) that the prediction 
effect of DAE-STCAFN is better than the other five predic-
tion models. The DAE-STCAFN model reduces the noise 
of the data on the one hand and ensures that the data are not 
disturbed by noise during model training. On the other hand, 
the dynamic spatial–temporal relationship between variables 
is deeply explored through the spatial–temporal convolu-
tional attention mechanism, and the learned spatial–temporal 
relationship is fused by transformer to extract more accurate 
spatial–temporal relationship features, so as to improve the 
prediction performance of the proposed model.

Figure 14 shows the scatter plots of penicillin concen-
tration predicted by six models, in which the blue asterisk 
the true value and the predicted value, and the red solid 
line represents the reference line. We find that the S-LSTM 
model has a large deviation throughout the quality prediction 
process. The LSTM and GSTAE models has a large devia-
tion at the beginning of the batch. At the beginning of the 
reaction, the real value of STA-LSTM model is slightly dif-
ferent from the predicted value. In the DAE-STAFN model, 

there is also a slight deviation between the predicted value 
and the real value at the beginning of the reaction. It can be 
seen that the DAE-STCAFN has the best prediction results 
in the quality prediction process except for a few samples 
with bias. This further demonstrates the effectiveness and 
good generalization ability of the DAE-STCAFN model in 
the quality prediction of batch process.

Predicted results of biomass concentration
In the prediction of biomass concentration, the average 

evaluation indexes of each model after 10 repetitions of 
prediction are shown in Table 4, it can be seen that in the 
prediction of biomass concentration, RMSE of the proposed 
model is 0.0052 and MAE is 0.0036, compared to the other 
five models, the proposed model has the best prediction 
performance.

Figure  15 demonstrates the inverse normalization 
results of the six models for the prediction of biomass 
concentration, it can be seen that the other five models 
have larger error between the true value and the pre-
dicted value throughout the prediction process, while the 
proposed model has a better prediction performance. It 
means that the time step feature extraction of individual 
variables can help the model better solve the spatial–tem-
poral relationship between variables, and improve the 
generalization and effectiveness of the proposed model. 
In addition, the DAE-STCAFN model has a p-value of 
8.624576457542713e-10 and a confidence interval of 
(−0.058337165430181186, −0.05154930202663644). A 

Fig. 14   Scatter plots of predicted penicillin concentration by (a) LSTM, (b) S-LSTM, (c) GSTAE, (d) STA-LSTM, (e) DAE-STAFN, (f) DAE-
STCAFN
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Table 4   Performance metrics 
of the six models for predicting 
biomass concentration

Model

Metrics S-LSTM LSTM GSTAE DAE-STAFN STA-LSTM DAE-STCAFN

RMSE 0.2623 0.0458 0.0235 0.0218 0.0152 0.0052
MAE 0.2470 0.0383 0.0179 0.0165 0.0108 0.0036
R2 0.0727 0.9717 0.9924 0.9933 0.9968 0.9990

Fig.15   Prediction results of biomass concentration by (a) S-LSTM, (b) LSTM, (c) GSTAE, (d) STA-LSTM, (e) DAE-STAFN, (f) DAE-
STCAFN
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low p-value means that the model's predictions are sta-
tistically significant, while a narrow confidence interval 
reflects a higher accuracy of the model's predictions.

The scatter plots of biomass concentrations predicted 
by the six models are shown in Fig. 16. It can be seen 
that the S-LSTM, LSTM and GSTAE models have large 
deviation throughout the quality prediction process, The 
STA-LSTM model has some deviation in the beginning 
part of the batch. The DAE-STAFN model has bias in the 
whole process. The DAE-STCAFN model has the best 
prediction results in the quality prediction process except 
for a few samples with bias. This further demonstrates 
the effectiveness and good generalization ability of the 
DAE-STCAFN model in the quality prediction of batch 
processes.

4.2 � Case study on hot strip mill process (HSMP)

The experimental data for this section are obtained from a 
1700 mm hot strip mill process at a steel company [41]. The 
field data collected from this line are for the production of 
hot strip with a thickness of 2.70 mm. Figure 17 presents the 
configuration of the hot strip mill. As can be seen in Fig. 17, 
the industrial HSMP basically consists of 6 main sections 
in sequence: heating furnace, roughing mill, conveyor table 
and shear, finishing mill, cooling table, and coiler. During 
the roughing stage, the thickness of the hot rolled steel slab 
is roughly reduced, while its length increases proportionally 
to the reduction in thickness. After being conveyed through 
the transfer table, the head and tail of the strip are sheared 
to avoid damage to the work rolls. Next comes the finishing 
cut, the centerpiece of the process, which further reduces 
the thickness so that the exact desired thickness is achieved. 

Fig.16   Scatter plots of predicted biomass concentration by (a) S-LSTM, (b) LSTM, (c) GSTAE, (d) STA-LSTM, (e) DAE-STAFN, (f) DAE-
STCAFN

Fig.17   Schematic layout of the hot strip mill
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Finally, the hot rolled strip is rolled into the desired prod-
uct through laminar flow cooling equipment. There are 20 
process variables, including roll gap, rolling force and roll 
bending force for the seven stands of the finishing mill (no 
roll bending force for the first stand). The quality variable 
is the finishing mill exit thickness. The process and quality 
variables are described in Table 5. In addition, the sampling 
time is 30 s and the sampling period is 10 ms, so the total 
number of samples is 3000[42].

LSTM, S-LSTM, GSTAE, DAE-STAFN, STA-LSTM and 
DAE-STCAFN proposed in this paper were used to predict 
strip thickness. Table 6 shows the index values of the predic-
tion results. It can be seen that compared with other mod-
els, the DAE-STCAFN model has the smallest RMSE and 
MAE values. It shows that the DAE-STCAFN model has the 
smallest prediction error and better prediction performance.

Figure 18(a) shows the fitting curve of the prediction of 
the strip thickness by the LSTM model, it can be seen that 
there is a large error between the true value and the predicted 
value during the whole prediction process. This is because 
the information lost by LSTM gradually increases as the 
sequence increases. It can be seen from the prediction effect 
of S-LSTM on the strip thickness shown in Fig. 18(b) that 
although S-LSTM extracts the quality-related features of the 
process variables before forecasting, the prediction accuracy 
of the later prediction is not high, compared with the LSTM 
model, the prediction accuracy is slightly improved. The 
GSTAE model shown in Fig. 18(c) not only extracts the 
quality-related features, but also makes full use of the fea-
tures of each hidden layer by gating nerve cells, so the pre-
diction effect is better than that of the S-LSTM model. Fig-
ure 18(d) shows the prediction effect of STA-LSTM on strip 
thickness, and the prediction effect is generally better than 
that of the previous models. Figure 18(e) shows the fitting 
effect of the DAE-STAFN model to predict the thickness 

of the strip. It can be seen that there is no local information 
extraction of spatial–temporal features, and its prediction 
effect is not ideal. Figure 18(f) shows the prediction fitting 
curve of the model proposed in this paper, it can be seen 
that the prediction accuracy R2 of the DAE-STCAFN model 
reaches 94.72%. Therefore, the proposed model has better 
prediction accuracy. In addition, the proposed model has a 
p-value of 1.14032569423156e-06 and a confidence inter-
val of (0.02006123456111642, 0.02331562348956123). The 
p-value is much less than the common significance level of 
0.05, this indicates that the difference between the model's 
prediction value and the true value is highly statistically 
significant. The lower bound of the confidence interval is 
0.0200 and the upper bound is 0.0233. Therefore, a low 
P-value means that the model's predictions are statistically 
significant, while a narrow confidence interval reflects a 
higher accuracy of the model's predictions.

5 � Conclusion

This paper proposes a batch process quality prediction 
method based on the DAE-STCAFN. Data quality is first 
considered and noise reduction is performed using DAE, 
then variable selection is used to eliminate the variables that 
are not related to the quality variables. Autocorrelation of 
the variables in the time series is eliminated by construct-
ing an augmentation matrix. In order to effectively learn 
the spatial–temporal relationship between the variables, 
the spatial–temporal convolutional attention mechanism is 
proposed. Temporal convolutional attention is computed to 
enhance the attention to dynamic temporal dependencies. 
Spatial convolutional attention is computed to attend to 
complex spatial correlations. And the computed temporal 
attention and spatial attention are input into the Transformer 
model separately to obtain more accurate spatial–temporal 
fusion features. The batch attention module is proposed to 
learn the features for each small batch of samples and build 
the regressor before and after the batch attention module 
for quality prediction. Finally, it was verified in the simu-
lation process of penicillin fermentation and hot strip mill 
rolling, and the prediction performance was compared with 
S-LSTM, LSTM, GSTAE, STA-LSTM, DAE-STAFN. We 
found that the R2 of the proposed model was 0.9990 in the 
prediction of penicillin concentration. In the prediction of 

Table 5   Description of process and quality variables in finishing mill

Variable Type Description Unit

v1 ~ v7 Measured Average gap of Fi stand, i = 1, …,7 mm
v1 ~ v14 Measured Total force of Fi stand, i = 1, …,7 MN
v15 ~ v20 Measured Work roll bending force of Fi stand, 

i = 1, …,7
MN

y Quality Finishing mill exit thickness of strip mm

Table 6   Performance metrics 
of the six models for predicting 
strip thickness

Model

Metrics LSTM S-LSTM GSTAE STA-LSTM DAE-STAFN DAE-STCAFN

RMSE 0.1485 0.1233 0.0359 0.0030 0.0010 0.0008
MAE 0.1687 0.1482 0.0258 0.0025 0.0007 0.0003
R2 0.5660 0.6019 0.8524 0.8996 0.9055 0.9472
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Fig.18   Prediction results of strip thickness by (a) S-LSTM, (b) LSTM, (c) GSTAE, (d) STA-LSTM, (e) DAE-STAFN, (f) DAE-STCAFN
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strip thickness, the R2 of the proposed model is 0.9472, indi-
cating that the proposed model has significant advantages in 
noise reduction effect, prediction performance and generali-
zation. However, DAE-STCAFN model involves the learn-
ing of sample relationships, which is suitable for the learning 
of small sample data, and may takes a long time for large 
quantities of data. In the following research, the learning 
ability of the model should be improved.
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Abstract
Batch processes play an important role in modern chemical industrial and manufacturing
production, while the control of product quality relies largely on online quality prediction.
However, the complex nonlinearity of batch process and the dispersion of quality-related
features may affect the quality prediction performance. In this paper, a deep quality-related
stacked isomorphic autoencoder for batch process quality prediction is proposed. Firstly, the
raw input data are reconstructed layer-by-layer by isomorphic autoencoder and the raw data
features are obtained. Secondly, the quality-related information is enhanced by analyzing the
correlation between the isomorphic feature of each layer of the network and the output target,
and constructing a correlation loss function. Thirdly, a deep quality-related prediction model is
constructed to predict the batch process quality variables. Finally, experimental validation was
carried out in penicillin fermentation simulation platform and strip hot rolling process, and the
experimental results demonstrated the feasibility and effectiveness of the model proposed in this
paper for the quality prediction of the batch process.

Keywords: batch processes, quality prediction, isomorphic autoencoder,
quality-related information, maximum information coefficient

1. Introduction

Batch processes are highly flexible and adaptable and have
been widely used in industrial production, such as bioferment-
ation, energy, and semiconductors. To improve the product
quality and economic benefits of batch processes, it is essential
to realize online monitoring of key variables [1, 2]. However,
unlike continuous production, batch processes are segmented
and discontinuous due to the existence of batch production

∗
Author to whom any correspondence should be addressed.

characteristics, resulting in the collection of segmented and
discontinuous data. Therefore, the three-dimensional charac-
teristics of the production data of batch processes need to
be taken into account in quality prediction, and the con-
struction of its quality prediction models is more complex
than that of continuous processes [3]. At the same time,
in large-scale industrial production systems, the safety of
batch processes is largely challenged by the complex equip-
ment operating environments and production conditions that
make it difficult to measure some important quality variables
directly online, while offline measurements lead to serious
delays [4, 5].
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With the development of digital and intelligent production,
a large amount of process data containing useful information
have been collected and stored. How to extract the informa-
tion from process data and build data-driven quality predic-
tion models has become a growing concern in industry and
academia [6, 7]. Themain idea of data-driven soft-basedmeas-
urement is to extract the representations from available his-
torical process variable data, then to establish the relation-
ships between the representations and the target variables, and
finally to measure hard-to-obtain quality variables by using
available variables in an online program. Multivariate statist-
ical machine learning techniques, such as principal compon-
ent analysis (PCA) [8], partial least squares regression (PLSR)
[9], principal component regression (PCR) [10] and partial
least squares (PLS) [11] have been developed to enable soft
sensor techniques through low-dimensional data embedding.
Nomikos and MacGregor extended traditional PLS to batch
processes for quality prediction and developed a multi-way
partial least squares method (MPLS) [12]. At the same time,
some scholars have explored kernel-based methods for deal-
ing with nonlinear relationships between process variables
and quality variables. The kernel methods, such as kernel
partial least squares (KPLS) [13, 14], kernel principal com-
ponent regression (KPCR) [15] and support vector regres-
sion (SVR) [16], map the nonlinear variables into a high-
dimensional space and then perform feature extraction and
regression. However, they still have the problem of excess-
ive computation and are difficulty in determining a reasonable
kernel function for dealing with complex nonlinear batch pro-
cess data.

Although data-driven soft-sensor-based methods have the
ability to collect a large amount of process data, and establish a
regression model between the process variable and the quality
variable to realize the prediction of difficult-to-measure qual-
ity variables indirectly [17]. However, these methods basic-
ally perform shallow feature extraction, which are not suf-
ficient to extract complex features for large-scale and com-
plex industrial production processes, so it is difficult to realize
high-precision and reliable prediction. In recent years, as a
powerful machine learning method with the ability to pro-
cess complex data and extract advanced features, deep learn-
ing has opened up new possibilities for industrial process qual-
ity prediction [18–20]. Stacked autoencoder (SAE), as a deep
learning method, has the ability to automatically learn feature
representation and dimensionality reduction, and is widely
used in the field of quality prediction [21]. Considering that
SAE reconstruction is not fully accurate enough, Yuan et al
[22] proposed a new deep stacked isomorphic autoencoder
(SIAE) to obtain a better feature representation of the raw
input data. However, SIAE only seeks to learn deep feature
representations of the raw input data, when it is used for quality
prediction modeling, it is difficult to learn the features related
to quality. To realize quality-related feature representations,
Yuan et al [23] proposed a variable weighted stacked autoen-
coder (VW-SAE), which achieved the selection of quality vari-
ables that were important for its input layer, but the VW-SAE
ignored the deep representations of input variables. Yuan et al

[24] proposed stacked quality-driven autoencoders that use
quality data to guide the learning of quality-related features.
Jiang et al [25] proposed a soft sensor model for deep quality-
related representation learning via mutual information and use
it for penicillin production process prediction. Wang et al [26]
used LSTM method to extract comprehensive quality-related
hidden features from the long time series of each stage, which
were further integrated by SAE to predict the chain-growth
batch copolymerisation process. However, those methods did
not fully consider the importance of input data reconstruction
for deep feature extraction. Since input features and quality-
related features are of equal importance in the quality pre-
diction model, we should consider both raw input features
and quality-related features comprehensively when perform-
ing batch process quality prediction.

This paper proposes a deep quality-related stacked iso-
morphic autoencoder for batch process quality prediction
model. The batch process data are expanded as two-
dimensional data along the variable direction, and the expan-
ded input data are constructed through the isomorphic autoen-
coder, so as to reduce the error accumulation in the training
process. At the same time, the correlation between input vari-
ables and quality variables is calculated layer-by-layer, and
the variables with higher correlation are retained to reduce
the amount of redundancy. The correlation error loss func-
tion is designed to pre-train the model, then the extracted deep
quality-related features are fed into the regression network for
batch process quality variable prediction. The main contribu-
tions are as follows:

1. The raw input data features are constructed by stacked iso-
morphic autoencoder layer-by-layer.

2. For the inputs to each layer of the network, the correlation
between inputs and target outputs is calculated by Maximal
information coefficient- General Jaccard Coefficient (MIC-
GJC). The GJC is originally used to compare the similarity
of the sample sets, and combined with MIC for similarity
metrics to further access deep quality-related features.

3. The correlation error function is constructed and the net-
work structure is optimized. The acquired deep quality-
related features are fed into a regression network for batch
process quality variable prediction.

The reminder of this paper is arranged as follows. Section 2
reviews SAE. The proposed quality prediction model for
Batch Process is described in detail in section 3. Section 4
describes the experimental studies conducted on the penicil-
lin fermentation process and the hot strip mill process. Finally,
Section 5 provides the conclusion of this paper.

2. Autoencoder and stacked autoencoder

Autoencoder (AE) is a neural network model. Its network
structure is shown in figure 1. It consists of an encoder and
a decoder, which work together to reconstruct the input data.
The encoder compresses the m-dimensional input data X=
{x1,x2, · · · ,xm} into a lower n-dimensional representation h=

2
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Figure 1. AE structure diagram.

{h1,h2, · · · ,hn}, called the latent space, while the decoder
reconstructs the original input from this latent representation
as X̃= {x̃1, x̃2, · · · , x̃m}. The nonlinear mapping is shown in
equation (1).

h= fe (Wx+ b)

x̃= fd
(
W̃h+ b̃

) (1)

Where fe and fd, W and W̃, b and b̃ are the activation functions,
weight matrixes, bias vectors of the encoder and decoder,
respectively.

The reconstruction error is calculated by comparing the
reconstructed output with the original input. The model para-

meter set θAE =
{
W,b;W̃, b̃

}
. is updated by using back-

propagation and gradient descent to minimize the reconstruc-
tion error. The reconstruction error is expressed as follows:

L(θAE) =
1
M

M∑
m=1

∥x̃m− xm∥2. (2)

Multiple iterations are made until the model converges and
the reconstruction error is minimized.

Stacked Autoencoder (SAE) is an extension of the basic
AE, where the output of each auto-encoder is used as an input
to the next autoencoder, and each autoencoder can be trained
to map from the raw data to a low-dimensional representa-
tion. Figure 2 shows the schematic diagram of SAE structure
composed of k AE structures. The learning process of SAE
network consists of unsupervised pre-training and supervised
fine-tuning. The red arrows represent the pre-training process
and the green arrows represent the supervised fine-tuning pro-
cess. The individual training for each AE process is realized
through pre-training. Following the direction of the red arrow
in figure 2, the raw input vector x ∈ Rdx is fed to the input layer
of the AE1, and its parameter set {W1,b1} is trained by solving
equation (1), and the hidden layer feature h1 is obtained. After
the AE1 is trained, h1 is used as input for the AE 2. By optim-
izing the loss function shown in equation (3), the parameter
set {W2,b2} and the hidden layer feature h2 can be obtained.
After layer-by-layer training to the kth AE, the parameter set

{Wk,bk} and the hidden layer feature hk are obtained, and the
pre-training of the whole SAE is completed.

L(θAE - k) =
1
M

M∑
i=1

∥∥∥h̃k−1 (i)− hk−1 (i)
∥∥∥2 (3)

where k represents the number of hidden layers.
After completing the pre-training of the SAE, a fully con-

nected layer is added to the top of the SAE in order to perform
regression. Supervised fine-tuning of the network is performed
in the direction shown by the green arrow in the figure 2.
Through forward propagation, the estimated quality output
value ŷ can be obtained:

ŷ= fo (WOhk+ bo) (4)

where fo is the activation function of the output layer, WO and
bo represent the weight matrix and bias vector of the output
layer, respectively.

3. The quality prediction model for batch process

The training of SAE-based neural networks consists of unsu-
pervised pre-training and supervised fine-tuning processes. It
is important to note that each layer during the pre-training
process may result in the loss of original data information.
In addition, the hidden features extracted at each layer may
contain the information that is irrelevant to the output predic-
tion. As the pre-training proceeds, the irrelevant information
propagates forward to the next layer until it reaches the last
layer. This results in a large amount of redundant information
in the extracted high-level features, degrading the prediction
performance. In order to change the impact of this unsuper-
vised reconstruction, it is important to ensure that the amount
of raw information lost is minimized on the one hand, and on
the other hand, to make the learned features highly correlated
with the output variables, the reconstruction is more accurate.
Based on the above analysis, a deep quality-related stacked
isomorphic autoencoder for batch process quality prediction
is proposed and efficient quality prediction model based on
the learned correlation representation is constructed.

3.1. Batch process data preprocessing

The batch process data composition has a batch dimension in
addition to the variable and time dimensions: X(K×I×J), K
represents the samples, I represents the batch, and J repres-
ents the variable. The process data are first unfolded along
the variables. Figure 3 shows the schematic diagram of data
processing.

Since each variable has a different data range, the values
are not of the same order of magnitude, so in the training
process of neural network, it may cause the problem that the
data convergence speed is too slow. Therefore, the data of dif-
ferent orders of magnitude are unified to the same order of
magnitude by normalization process, this makes the data more

3
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Figure 2. SAE structure diagram.

Figure 3. The schematic diagram of 3D-data processing.

meaningful and can better reflect the characteristics of the data.
By applying a linear transformation to the original data, the
results of the transformation fall into the interval [0,1]. The
maximum-minimum function is:

x∗i =
xi− xmin

xmax − xmin
(5)

where, x∗i represent the normalized value, xi represent the fea-
ture value corresponding to the ith sample, xmin and xmax rep-
resent the maximum value and minimum value of the charac-
teristic corresponding to the samples, respectively.

3.2. Deep quality-related feature extraction

Quality irrelevant features do not provide valid information for
the prediction of quality variables. Therefore, for each layer
of input variables, quality-related variables are retained and
quality-irrelevant information is eliminated. Maximal inform-
ation coefficient (MIC) [27] can detect not only the linear rela-
tionship between two variables, but also the nonlinear relation-
ship between them. MIC further considers higher order rela-
tionships between variables compared to MI. The formula for
calculating the maximum information coefficient is shown as
equation (6)

MIC=max
{
I(x(u) ,y)/log2min

{
nx(u),ny

}}
(6)

where, nx(u) · ny < B(n) represents the upper bound of the grid
division, B(n) = n0.6, nx(u) and ny are the number of cells along
the x(u) and y axes, respectively. I(x(u),y) is the value of the
mutual information along x(u) and y, which can be obtained
by equation (7)

I(x(u) ,y) = H(x(u))+H(y)−H(x(u) ,y)

=

nx(u)∑
k=1

ρ
(
xk (u)

)
log2

1
ρ(xk (u))

+

ny∑
s=1

ρ(ys) log2
1

ρ(ys)

−
nx(u)∑
k=1

ny∑
s=1

ρ
(
xk (u)ys

)
log2

1
ρ(xk (u)ys)

(7)

where, H(x(u)) and H(y) are the entropies of x(u) and y,
respectively, and H(x(u),y) is the joint entropy of x(u) and
y.ρ(xk(u) and ρ(ys) are the probability density values of
xk(u)and ys, respectively. ρ(xk(u)ys) is the joint probability
density value of the two variables x(u) and y. The range of
MIC values is [0,1].

After data preprocessing, the spatial differences in batch
processing data are considered more important than numerical
differences. Therefore,MIC can be combinedwith the General
Jaccard Coefficient (GJC) [28] to construct a hybrid correla-
tion measure to assess the correlation between variables. GJC
is used to compare the similarity and diversity of samples. For
finite sample sets U and Y, J(U,Y) for computing the correla-
tion between U and V is defined as equation (8):

J(U,Y) =
|U∩Y|
|U∪Y|

=
|U∩Y|

|U|+ |Y| − |U∩Y|
(8)

where U, Y denote two sample sets respectively. If both U and
Y are empty sets, then letJ(U,Y) = 1. The numerator of GJC is
the inner product of the vectors and the denominator of GJC
is the quadratic sum of the vectors minus the inner product of
the vectors. GJC is shown in equation (9)

GJC(x(u) ,y) =

l∑
i=1

xi (u)yi

l∑
i=1

(xi (u))
2
+

l∑
i=1

(yi)
2 −

l∑
i=1

xi (u)yi

. (9)
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It is worth noting that the value of GJC ranges from 0 to
1, and it has the characteristics of normalization and sym-
metry. When the variables are independent of each other, the
value of GJC is 0. Therefore, sim(x(u),y) is the mixed cor-
relation measure for variables x(u) and y, which is shown in
equation (10)

sim(x(u) ,y) = ωMIC(x(u) ,y)+ (1−ω)GJC(x(u) ,y)
(10)

where, ω denotes the mixing coefficient, which takes the value
between 0 and 1. ω = 0.5 is chosen in this paper [29].

3.3. Establishment of quality prediction models

The structure of the isomorphic autoencoder (IAE) is
described in the literature [22]. As an autoencoder, IAE also
consists of input, hidden and output layers. Its input vectors
are usually raw input data or feature states learned in one of
the hidden layers. The output layer of AE learns the same
function for its input vectors. In contrast, the output layer of
IAE is fixed and isomorphic to the observed raw data. That
is, the output layer of an IAE always seeks to reconstruct the
original input data. In order to extract deep quality-related
features, supervised and semi-supervised layered pre-training
strategies are introduced to extract relevant features layer-by-
layer. Assumed that the variable vectors of the input and hid-
den layers are x and h, respectively, the output layer aims to
obtain the reconstructed raw data x̃ from the learned abstract
features h. We still use {W,b} and

{
W̃, b̃

}
to denote the para-

meters of the hidden and output layers, respectively. Also, the
corresponding activation functions are f and f̃. Thus, the com-
putation of x̃ is shown in equation (11)

x̃= f̃( f(x)) . (11)

It is assumed that all training data consists of labeled
and unlabeled data, where the labeled data are{Xl,Yl}=
{(x1,y1), · · · ,(xMl ,yMl)}, the unlabeled data are{Xu}=
{x1,x2, · · · ,xMu}, whereMl andMu are the numbers of labeled
and unlabeled samples, respectively. After expanding and nor-
malizing the batch process data, the process variables are con-
sidered as the inputs to IAE1. The mixed correlation between
each variable and the output target variable is calculated by
using equation (10) for labeled data. The higher the correla-
tion, the more relevant it is to the target output variable. The
correlation index can be calculated by equation (12):

si = sim(i)/
Ml∑
l=1

sim(l) . (12)

The schematic diagram of deep quality related feature
extraction for stacked isomorphic autoencoder byMIC-GJC is
shown in figure 4, the pink circle indicates the quality-related
variable in each layer of the network. Blue, green and light
blue circles represent the uncorrelated variables eliminated in
each layer of the network, respectively. During the pre-training
process, quality-related variables are selected for each hid-
den layer feature. The variables with higher correlation are

Figure 4. Schematic diagram of deep quality-related feature
extraction.

retained as the input information for the next layer of the net-
work to extract the deep quality-related features.

In order to optimize the model parameters, the relev-
ant loss function J(W,W̃,b, b̃) is constructed and minimized
between the raw input data and reconstructed one as shown in
equation (13)

J
(
W,W̃,b, b̃

)
= si

N∑
i=1

J
(
W,W̃,b, b̃

)
/2N

= si

N∑
i=1

∥x̃i− xi∥2/2N. (13)

Features h1 is as its input vector to IAE 2. After mapping
h1 to the hidden layer of IAE 2 by the encoder, h2 is generated
by a nonlinear activation function. After that, the output layer
of IAE2 seeks to reconstruct the raw data x̃2 by decoder. By
minimizing the correlation loss function implements the pre-
training of IAE 2. Similarly, all k IAEs are sequentially pre-
trained and then stacked one by one to obtain k IAEs. Thus,
the features of the raw input x can be gradually learned from
IAE 1 to IAE k from the lowest hidden layer h1 to the highest
hidden layer hk. In each IAE, the variable correlation index is
computed from the labeled data. IAEs are then trained using
the relevant loss function tomake the hidden features more rel-
evant to the target variables. The final extracted deep quality-
related features are fed into the regression network for qual-
ity variable prediction. The structure of the whole network is
shown in figure 5.
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Figure 5. Quality prediction model structure diagram.

3.4. The process of quality prediction model

Overall, the main process of quality prediction model includes
offline modeling and online prediction, which are shown in
figure 6. The specific steps of offline modeling and online pre-
diction are as follows:

(1) Offline modeling:
Step1: Collect training data from batch process;

Step2: Expand and normalize the training data along the
variable directions;

Step3: For the labeled data {Xl,Yl}, calculate the correla-
tion index between the input data and the target data by using
MIC-GJC;

Step4: Retain the data with larger correlation indices as
input to IAE1, and generated isomorphic data by the decoder.
The correlation error loss function is constructed according to
equation (13) to train IAE1;

Step5: In a similar way, pre-training is performed layer-by-
layer until the k-th IAE module is obtained. At the same time,
depth quality-related features are obtained;

Step6: After pre-training is complete, a regression neural
network is added to the top layer of the network based on deep
quality-related features and quality variables;

Step7: The parameters of the whole network were optim-
ized through a fine-tuning process. Then, a quality prediction
model is established for the batch process.

(2) Online prediction:
Step1: Collect real-time data samples;

Step2: Expand and normalize the real-time data along the
variable directions;

Step3: The processed data are fed into the established qual-
ity prediction model to predict the quality variables.

Step4: The obtained values of quality prediction variables
are inversely normalized to obtain quality prediction values.

4. Experimental analysis

In this section, the proposed quality prediction model is
applied to two industrial processes to verify its prediction per-
formance. One is the penicillin fermentation simulation pro-
cess, which is a typical nonlinear batch process, and the other
is the actual strip hot rolling process, which is based on the
production data from the hot rolling plant of a steel company.

4.1. Penicillin fermentation process

The proposed model is applied on batch penicillin fermenta-
tion process for the validation of penicillin concentration and
biomass concentration prediction. The production process of
penicillin, a potent antibiotic, consists mainly of bacterial cul-
ture, fermentation, extraction, crystallization and purification
processes. Usually, the reaction and production of each batch
need to last for hundreds of hours. Figure 7 is the main flow
chart of the penicillin production process. The experimental
data applied in this paper are obtained through the Pensim
simulation platform [30]. The platform is a commonly used
simulation platform that can comprehensively reflect the peni-
cillin fermentation process with the Birol model as the core,
fully considering various physical quantities and biomass,
with high authority and practicability. The effectiveness of
the proposed model is demonstrated by comparing with some
existing methods: Stacked Autoencoder (SAE), Stacked iso-
morphic autoencoder (SIAE), Gated Stacked Target-Related
Autoencoder (GSTAE) [31], Variable-Wise Weighted SAE
(VW-SAE) and Target-Related Stacked Autoencoder (TSAE).
Where TSAE is a quality prediction model that extracts the
correlation between the output features of the trained stacked
autoencoder and the target variable.

To test the performance of the proposed model, the
model evaluation indicators such as the mean absolute error
(MAE), the root mean squared error (RMSE) and the coef-
ficient of determination (R2) are introduced to quantitat-
ively and comprehensively evaluate the quality prediction
effectiveness of each model. MAE represents the mean
value of the absolute error and reflects the actual situ-
ation of the prediction error. Its expression is shown in
equation (14):

MAE=
1
n

n∑
i=1

∣∣∣yi−⌢
y i

∣∣∣ (14)

where, n represents the total number of samples, yi represents

the actual value, ⌢
y i represents the predicted value.

RMSE denotes the prediction error for the entire valida-
tion or test set and it is defined as shown in equation (15). The
smaller the RMSE, the better the predicted performance of the
model
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Figure 6. Processes for quality prediction modeling.

Figure 7. Penicillin fermentation flow chart.
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Table 1. Process variables and quality variables.

Variable Description Unit

Measurements x1 Aeration rate L/h
x2 Agitator power W
x3 Substrate feed flow rate L/h
x4 Substrate feed temperature K
x5 Substrate concentration g/L
x6 O2 %
x7 Culture volume L
x8 CO2 %
x9 PH 1
x10 Temperature K

Quality y1 Penicillin concentration g/L
y2 Biomass concentration g/L

RMSE=

√√√√1
n

n∑
i=1

(
yi−

⌢
y i
)2

(15)

R2 is used to measure the fitting degree between the actual
value and the predicted value. R2 is defined as equation (16)

R2 = 1−

n∑
i=1

(yi− ŷi)
2

n∑
i=1

(yi− ŷ)2
(16)

where ŷ is the mean of the actual value. The ability of the
model to explain the variance of the output data can be seen
by the value of R2. R2 ⩽ 1, the closer R2 is to 1, the better the
model fit.

Ten variables during penicillin fermentation were selected
as process variables, as shown in table 1, and the quality vari-
ables were penicillin concentration and biomass concentra-
tion. The fermentation cycle was set to be 400 h, the sampling
interval was 1 h, and a total of 40 batches of penicillin fer-
mentation process data were collected. The fermentation pro-
cess data were divided into training set (60%), validation set
(20%) and test set (20%).

The setting of hyperparameters is a key issue in the pro-
cess of setting network parameters. In this paper, the combin-
ation of random search and trial-and-error method is chosen to
determine the optimal hyperparameters [31]. First, several sets
of hyperparameters are generated and run for several times to
obtain experimental data. Then, the roughly optimal intervals
are found by comparison. Finally, the detailed set of optimal
hyperparameters is determined. In addition, the number of hid-
den layers is decided according to the complexity of the pro-
cessed data. Too few layers would result in poor model per-
formance, and too many layers would increase the amount of
computation and there is no significant improvement formodel
performance. The number of hidden layers for several models
involved in this paper are 11, 7, 5, 3.

4.1.1. Penicillin concentration prediction. The penicillin
concentration during penicillin fermentation was predicted

Figure 8. Loss curves of the training process.

using SAE, SIAE, GSTAE, VW-SAE, TSAE and the model
proposed in this paper, respectively. Figure 8 shows the loss
curves for the fine-tuning stage of each model, it can be seen
that the initial loss value of the fine-tuning process of the
proposed model is 0.0055 at the end of the pre-training, and
after 150 epochs of training, the final loss value of the pro-
posed model is smaller than that of the other models and
tends to be stable. This indicates that the proposed model has
good convergence. This also further indicates that the pro-
posed model can extract more relevant features for quality
prediction.

The SAE, SIAE, GSTAE, VW-SAE, TSAE, and proposed
models are used to predict penicillin concentrations, respect-
ively. Considering the generalization performance of the mod-
els, the test sets of 8 batches are divided equally into 4 sub-test
sets. The average RMSE, MAE and R2 values predicted for
each of the four sub-test sets individually are shown in table 2,
it can be clearly seen that the proposed model in this paper
has lower RMSE and MAE than other models, which indic-
ates that the proposed model has better robustness. Also, R2 of
the proposed model is the largest, which indicates that it has
the highest accuracy. The bar charts of RMSE and MAE for
the six models are shown in figure 9(a), and it can be seen that
the proposed model has the smallest RMSE value and MAE
value. Figure 9(b) shows the bar chart of the R2 values of the
six models and it can be seen that the proposed model has the
largest R2 value. In addition, in order to show the prediction
effect of each model more visually, the prediction error box-
plots of the six models are given in figure 10, in each boxplot,
the redmarker line in the center of the box indicates themedian
of the error dataset, and the top and bottom edges of the box
are the upper and lower quartiles of the dataset, respectively.
The points outside the maximum and minimum values repres-
ent outliers. Boxplots can reflect the statistical properties of the
data set. The error boxplots show that SAE, SIAE, VW-SAE
and TSAE have wider error boxes and the median lines are
all deviating from the zero value, which mean that the overall
prediction errors of the comparedmodels are large.Meanwhile
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Table 2. Performance index of five models for predicting penicillin concentration.

Model RMSE MAE R2

SAE 0.0143 0.0095 0.9979
SIAE 0.0122 0.0085 0.9985
GSTAE 0.0109 0.0079 0.9989
VW-SAE 0.0101 0.0070 0.9990
TSAE 0.0095 0.0068 0.9991
Proposed-model 0.0081 0.0064 0.9993

Figure 9. (a) RMSE and MAE bar charts for six models (b) R2 bar charts for six models.

Figure 10. Boxplots of prediction error of penicillin concentration for six models.

the residuals of SIAE show a positive bias of overestimation.
There are more outliers in each model. The GSTAEmodel has
a smaller error box with the most outlier points and more high
outliers than low outliers, which indicates that the model pre-
diction errors are unevenly distributed and biased towards pos-
itive bias. Whereas, the proposed model has a narrower error
box, its median line is located at the zero value, and there are
fewer outliers, which indicates that the proposedmodel has the
smallest prediction error and is evenly distributed around the
zero value. This further indicates that the method proposed in
this paper has good robustness.

To show the prediction effect of each model more intuit-
ively, the predicted values of all models are subjected to the
inverse normalization operation. The prediction results of each
model are shown in figure 11. The prediction effect of the SAE
model is shown in figure 11(a), it can be seen that the SAE

model has a large difference between the predicted values and
the true values throughout the process, which is because the
reconstruction error is accumulated layer by layer during the
training process. Figure 11(b) shows the prediction results of
SIAE, it can be seen that its prediction effect is better than that
of SAE model. This is because the SIAE model reconstructs
the raw data in the output layer and preserves the structural
features of the original data during the training process. The
predictive effect of the GSTAE model on penicillin concen-
tration is shown in figure 11(c), and it can be seen that there
is a large error between the true and predicted values in the
second half of each batch of reactions. The prediction res-
ults of the VW-SAE model are shown in figure 11(d) it can
be seen that the predicted values of the two back-end batches
differ from the actual values, which is due to the fact that the
VW-SAE model constructs the quality-related features layer
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Figure 11. Predicted results of penicillin concentration by (a) SAE, (b) SIAE, (c) GSTAE, (d) VW-SAE, (e) TSAE, and (f) proposed-model.

by layer and ignores the deeper representation of the input fea-
tures. Figure 11(e) shows the prediction effect of TSAE, it can
be seen that the TSAE model has a small error between the
true and predicted values at the last moment of each batch of
responses. This is due to the fact that TSAE considers the cor-
relation with the target variable only after extracting features
layer by layer. The prediction effect of the proposed model in
this paper is shown in figure 11(f), and it can be seen that the
prediction effect is better than other models, this is because the
proposed model not only considers the problem of isomorph-
ization of the raw data structure of each layer of the network,
but also considers the correlation between the representations
and outputs of each layer.

Figure 12 is the scatter plot of the results of the six mod-
els for the prediction of penicillin concentration, the horizontal
axis represents the true values and the vertical axis represents

the predicted values. Both true and predicted values are nor-
malized. The red solid line represents the reference line, and
the closer the blue point is to the reference line, the better the
predictive performance of the model.

4.1.2. Biomass concentration prediction. In order to fur-
ther verify the validity and generalization performance of
the proposed model, six models were used in this section
to predict the biomass concentration during penicillin fer-
mentation. Figure 13 shows the loss curves for the fine-
tuning stage of each model, it can be seen that the initial
loss value of the fine-tuning process of the proposed model
is 0.004 at the end of the pre-training, and after 150 epochs
of training, the final loss value of the proposed model is
smaller than that of the other models and tends to be stable.
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Figure 12. Scatter plot of predicted penicillin concentrations.

Figure 13. Loss curves of the training process.

Table 3. Performance index of six models for predicting biomass concentration.

Model RMSE MAE R2

SAE 0.0581 0.0410 0.9538
SIAE 0.0492 0.0313 0.9641
GSTAE 0.0162 0.0116 0.9960
VW-SAE 0.0088 0.0060 0.9988
TSAE 0.0067 0.0051 0.9993
Proposed-model 0.0049 0.0039 0.9996

Table 3 is the values of RMSE, MAE and R2 of the six mod-
els on the testing dataset, it can be seen that the propose
model has smaller RMSE and MAE than the other models,
while R2 reaches 0.9996, which indicate that the proposed
model has a better accuracy for the prediction of biomass
concentration.

The prediction error boxplots of six models are shown in
figure 14, which show that the proposed model has a better
error distribution than other models. The effectiveness of the
six models in predicting the concentration of biomass respect-
ively is shown in figure 15, it can be seen that SAE and SIAE
have great fluctuations in the prediction process. Figure 15(c)
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Figure 14. Boxplots of prediction error of biomass concentration for six models.

shows the prediction effect of the GSTAE model on the con-
centration of biomass, and it can be seen that the error between
the true and predicted values is large at the beginning of the
first and second batch of reactions. The predicted results of
VW-SAE are shown in figure 15(d), and it can be seen that
during the first batch of reactions, the actual values differ sig-
nificantly from the predicted values. The predicted results of
TSAE are given in figure 15(e), and it can be seen that there
is some errors between the actual and predicted values during
the first batch of responses. Figure 15(f) shows the prediction
effect of the proposed model on the concentration of the bio-
mass, and it can be seen that the prediction effect is better than
that of the othermodels by considering the correlation between
the representation and the output of each layer based on iso-
morphizing the input variables of each layer.

Figure 16 is the scatter plots of the predicted values of
biomass concentration for each model, it can be seen that
the quality prediction of SAE and SIAE has large deviations
throughout the batch. GSTAE, VW-SAE and TSAE have large
deviations at the beginning part. Compared with the above
models, the proposed model has a smaller deviation, which
illustrates its effectiveness and generalization ability in batch
process quality prediction.

4.2. The hot strip mill process (HSMP)

In order to further verify the effectiveness and generalization
of the proposed model in practical industrial applications, the
strip thickness of the hot strip rolling process is used as the
target for validation. As an extremely complex process in the
steelmaking industry, strip hot strip rolling is a rolling pro-
duction project that requires high investment, high quality and
generates high efficiency. The process usually consists of a
heating furnace, roughing mill, intermediate delay rolls, fly-
ing shears, finishing mill units, hot output rolls and laminar
flow cooling and coiling machines [32]. Its basic arrange-
ment is shown in figure 17. Firstly, the heating furnace ensures

that the slabs are heated to about 1200 ◦C and fed into the
roughing mill. In the roughing mill, slabs with a thickness of
100–200 mm are rolled in a number of passes into interme-
diate billets with a thickness of 28–45 mm, which are output
at the temperature of 1050 ◦C. Then, the intermediate delay
roller conveyor would quickly transport the intermediate bil-
let through the flying shear to be sheared into the finishing mill
unit for seven racks of continuous rolling. The width, thick-
ness, plate shape and final rolling temperature of the strip meet
the requirements of continuous rolling through the finishing
unit. Subsequently, the organizational properties of the steel
are further improved by laminar flow cooling, and the steel is
finally wound into coils by an underground coiler. The thick-
ness of the strip is a key quality indicator of the final product,
and depending on the customer’s requirements, the strip hot
rolling process can produce strips with export thicknesses ran-
ging from 1.5 mm to 12.7 mm [33].

In this paper, the 1700 mm strip hot rolling line of a steel
company was used as the background of the study, and field
data on the production of finished 2.70 mm thick strips were
collected for experimental validation. The specific descrip-
tions of process variables and quality variables are shown in
table 4. There are 20 process variables, including the roll gap,
rolling force, and bending roll force of the seven stands of the
finishing mill, in which the first stand is not equipped with
bending rolls. The quality variable is the exit thickness of the
finishing mill. The sampling time is 30 s and the sampling
period is 10 ms. The total number of samples is 3000.

The SAE, SIAE, GSTAE, VW-SAE, TSAE, and proposed-
models are used to predict strip thickness, respectively. The
loss curves of each model fine-tuning stage are shown in
figure 18. From the figure, it can be seen that at the end of
pre-training, the initial loss value of the fine-tuning process of
the model proposed in this paper is 0.0052, which is smaller
than that of the other models, and it tends to stabilize after
120 training sessions. This indicates that the model has good
convergence.
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Figure 15. Predicted results of biomass concentration by (a) SAE, (b) SIAE, (c) GSTAE, (d) VW-SAE, (e) TSAE, and (f) proposed-model.

Considering the generalization performance of the models,
the test set is divided equally into four sub-test sets. The aver-
age RMSE, MAE and R2 values predicted for each of the four
sub-test sets individually are shown in table 5. From the figure,
it can be seen that in the prediction of strip thickness, the pro-
posed model has the smallest RMSE and MAE values and the
R2 is 0.9413.

The prediction error boxplots of six models are shown in
figure 19. From the figure, it can be seen that the error box of
the proposed model in this paper is narrower and the median
is located at zero value compared to the other models, which
indicates that the model has the least prediction error and has
better robustness.

The fitted curves of the six models for predicting the thick-
ness of the strip are shown in figure 18, where figures 20(a)

and (b) are the prediction effects of SAE and SIAE, respect-
ively, it can be seen that in the late stage of prediction, there
is a large error between the real value and the predicted value,
and the models do not get convergence. The predicted results
of GSTAE are shown in figure 20(c), it can be seen that there
is a large error between the true and predicted values through-
out the prediction process. Figure 20(d) shows the prediction
effect of the VW-SAE model, and it can be seen that there is
a difference between the actual value and the predicted value
at the later stage of the prediction. The prediction results of
TSAE are shown in figure 20(e), and it can be seen that there
is an error between the actual and predicted values through-
out the prediction process. However, the overall prediction res-
ults are better than the other four models. Figure 20(f) shows
the fitting curve of the proposed model for strip thickness
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Figure 16. Scatterplot of predicted biomass concentration.

Figure 17. Schematic layout of the hot strip mill.

Table 4. Process and quality variables in finishing mill.

Variable Type Description Unit

1–7 Measured Average roll gap mm
8–14 Measured Rolling force MN
15–20 Measured Roll bending force MN
21 Quality Finishing mill exit strip thickness mm

Figure 18. Loss curves of the training process.
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Table 5. Performance index of six models for predicting strip thickness.

Model RMSE MAE R2

SAE 0.0776 0.0471 0.3503
SIAE 0.0924 0.0631 0.0785
GSTAE 0.0390 0.0316 0.8360
VW-SAE 0.0374 0.0255 0.8486
TSAE 0.0333 0.0231 0.8807
Proposed-model 0.0233 0.0119 0.9413

Figure 19. Boxplots of prediction error of biomass concentration for six models.

prediction, it can be seen that the difference between the actual
value and the predicted value during the whole process of pre-
diction is small, which means the proposed model has a better
performance of quality prediction than the other five models.

The scatter plot of strip thickness prediction of each model
is shown in figure 21, it can be seen that the predicted val-
ues of the proposed model are basically close to the ref-
erence red line, while most of the predicted values of the
other models are far away from the reference line, i.e. they
have larger deviations from the true values. It can be seen
that the proposed model has more superior quality prediction
capability.

5. Conclusion

This paper proposes a deep quality-related stacked isomorphic
autoencoder for batch process quality prediction. First, the
three-dimensional data of batch processes are expanded and
normalized along the variable direction. Then, the raw input
data are reconstructed layer-by-layer by using isomorphic
autoencoders. Correlation calculations are performed layer-
by-layer between numerous input variables and target vari-
ables through MIC-GJC to retain quality-relevant variables.
The correlation error function is constructed to optimize
the network structure layer-by-layer. Deep quality-related
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Figure 20. Predicted results of strip thickness by (a) SAE, (b) SIAE, (c) GSTAE, (d) VW-SAE, (e) TSAE, and (f) proposed-model.

features that facilitate quality modeling are extracted and
fed into the regression network to obtain quality predic-
tions. Finally, SAE, SIAE, GSTAE, VW-SAE, STAE and
the proposed-model are applied to the penicillin fermenta-
tion process and the hot strip mill process, the experimental
results show the proposed model has better quality predic-
tion performance. Since the proposed quality predictionmodel

needs to reconstruct the raw inputs of each layer in the
pre-training phase, while extracting the quality related vari-
ables. It is considered that the pre-training time may be
increased when dealing with very high dimensional raw data-
sets. Therefore, in the next research, it needs to find ways to
optimize the model parameters and reduce the model training
time.
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Figure 21. Scatter plots of predicted strip thickness by SAE, SIAE, GSTAE, VW-SAE, TSAE, and proposed-model.
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Abstract
Batch processes are often characterized by multiphase and different batch durations, which vary
from phase to phase presenting multiple local neighborhood features. In this paper, a sequential
phase division-multiway sparse weighted neighborhood preserving embedding method is
proposed for monitoring batch processes more sensitively. First, batches with uneven durations
are synchronized, and the phases are automatically determined in chronological order. Secondly,
the nearest neighbors are computed at each phase and the optimal sparse representation (SR) is
obtained based on the nearest neighbors. This improves the robustness of the algorithm to noise
and outliers, and solves the problem of computational difficulties associated with global SR
based. Thirdly, the distance values of the neighbor elements are considered to fully extract the
neighbor structure when the optimal SR is calculated. Finally, after dimension reduction, T2 and
squared prediction error statistics are established in feature space and residual space
respectively for fault detection. The effectiveness of the method is verified by a multiphase
numerical simulation example and the penicillin fermentation process.

Keywords: process monitoring, multiphase, neighborhood preserving embedding,
sparse representation, distance weighted

1. Introduction

With the rapid development of modern detection and sensing
technology, a large amount of data reflecting the produc-
tion status can be stored. How to effectively use these data

∗
Author to whom any correspondence should be addressed.

and extract valuable information has become a research
hotspot in process monitoring [1]. Data-driven fault detec-
tion and diagnosis technology has inherent advantages, so
it is becoming more and more popular in the field of
process monitoring [2]. As an important process monitor-
ing method, multivariate statistical methods transform pro-
cess data as process operation knowledge and use histor-
ical data to monitor the process online, which play an

1 © 2023 IOP Publishing Ltd
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important role for ensuring process safety and product quality
[3, 4].

As typical multivariate statistical methods, multiway prin-
cipal component analysis (MPCA) and multiway partial least
squares [5, 6] have been widely used in process monitoring.
Batch process plays an important role in modern industrial
production, which has the nonlinear, dynamic, and other char-
acteristics, some improved methods are proposed to improve
the effectiveness of process monitoring [7, 8]. As most nonlin-
ear dynamic monitoring methods cannot extract the potential
driving forces of slow changes in nonlinear batch processes,
Zhang et al [9] proposed a monitoring scheme based on two-
directional dynamic kernel slow feature analysis to realize the
global modeling of batch-wise dynamics. Independent com-
ponent analysis and related improvement methods are used
to solve the non-Gaussian feature of the process [10, 11].
The actual industrial process does not completely satisfy a
Gaussian or non-Gaussian distribution but usually satisfies a
mixture of Gaussian distribution and non-Gaussian distribu-
tion. The literature [4] solved the mixed distribution prob-
lem by establishing a twin space; however, it ignored the
local structure that was critical to the representation of pro-
cess information. The manifold learning algorithm is a local
information modeling method, which maintains the original
manifold structure of the data while extracting the features
of process data, and reflects the process information more
accurately [12–15].

Multiphase and uneven batch duration are the typical char-
acteristics of batch process in practice, and different phases
may exhibit diverse underlying behaviors. MPCA and related
methods treat the whole process as a single object which can-
not reveal the multiplicity of information. The variable cor-
relation characteristics and trajectories vary from one phase
to another; therefore, it is necessary to establish multiphase
partition methods for batch process to develop phase-based
models [16, 17]. Zhang et al [18] proposed a new index
called the phase recognition factor to divide the phase auto-
matically. Zhu et al [17] proposed a multiphase batch process
method based on a 2D time-slice dynamic system which char-
acterized the batch-wise and variable-wise dynamics simultan-
eously. Chunhao et al [19] proposed an affinity propagation
phase partition method to divide the whole process into sev-
eral steady and transition phases. However, most of these mul-
tiphase methods assume that each batch has the same length
and that critical events occur at the same time. Furthermore,
the local neighbor features in each phase cannot be adequately
characterized. Recent directions in data-driven methods have
focused on applying neural networks in fault detection and dia-
gnosis tasks. However, the unequal length of batch process has
rarely been studied [20, 21].

As a typical manifold learning algorithm, neighborhood
preserving embedding (NPE) [22] has been widely used in
process monitoring [23]. Compared to other manifold learn-
ing algorithms such as locally linear embedding and Laplacian
Eigenmaps (LE), NPE has several advantages: (1) NPE can
explicitly preserve the local neighborhood relationships of
data points. Its purpose is to maintain the pairwise distances
between neighboring points in high-dimensional space and to

ensure that nearby points remain close to each other in low-
dimensional embedding. This makes NPE particularly effect-
ive in capturing the local structure of data. (2) NPE is com-
putationally efficient, which makes it suitable for large-scale
datasets. It avoids the computationally expensive eigendecom-
position required by the algorithm like LE, and it is more scal-
able and applicable to real scenarios. (3) The low-dimensional
representation obtained byNPE retains the local neighborhood
relationships of the original data, making it easier to under-
stand and analyze the data structure.

When the NPE algorithm constructs a neighborhood graph
based on the Euclidean distance in each phase, it is suscept-
ible to process outliers and noise, resulting in a distortion of
the potential manifold structure of process data, which can-
not effectively reflect the features of the process data. Sparse
representation (SR) is used for data classification and image
processing due to its feature selection and task simplification
[24, 25], which solves the optimal SR to remove the variables
that have no contribution or small contribution to the output.
For batch process, the number of process variables is numer-
ous, and how to realize the feature selection is very important
for process monitoring [26]. SR can obtain the sparse coeffi-
cients by solving the L1 norm; therefore, the obtained sparse
coefficients can be used to construct the neighborhood graph,
and the variables that can reflect the feature information of the
process are selected to remove the influence of outliers and
noise. Compared with the Euclidean distance neighborhood
graph, the neighborhood graph constructed by SR can better
reflect the spatial structure of the process data. However, SR
is a global optimization method, when the data dimension is
large, the calculation amount is very large, which causes the
calculation speed to be slower or even exceed the calculation
memory. It also ignores the local characteristics of process
data when the process data are globally optimized, and can-
not fully characterize the process characteristics.

Therefore, a batch process monitoring method for sequen-
tial phase division multiway sparse weighted NPE (SPD-
MSWNPE) is proposed in this paper. The relaxed greedy time
warping (RGTW) is used to accomplish online synchroniz-
ation of the entire batches. After synchronization, the local
neighbor features are synchronized in different batches, and
the phases are recognized based on local neighbor features in
the time sequence automatically, which are defined to reflect
the local feature variation among the whole batch process. For
the divided phases, SR is used to achieve the local optimal SR
after finding the local neighbors, which can avoid the problem
of increasing calculation amount caused by the global optimiz-
ation.When the optimal SR is calculated, the distance between
the data points in the neighborhood is introduced as the weight
value, which can be used to construct an enhanced local sparse
structure. Based on the proposed method, T2 and squared pre-
diction error (SPE) statistics are established to realize fault
detection. The contributions of the proposed method are as
follows:

(1) A phase division model with uneven batches in a time
sequence is established.
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(2) The optimal SR and distance weight values are obtained
based on the nearest neighbors to make it more robust to
noise and outliers and avoid the computational difficulty
caused by global SR.

(3) The distance values of the neighbor elements are calcu-
lated to construct an enhanced local sparse structure.

The remaining parts of this paper are arranged as follows.
In section 2, NPE algorithm and SR are briefly introduced.
The proposed method is described in detail in section 3. In
section 4, the main process and steps of fault detection with
the proposed method are described. The proposed model is
validated on a multiphase nonlinear numerical example and
penicillin fermentation process in section 5. The conclusion
of this paper is given in section 6.

2. Preliminaries

2.1. Neighborhood preserving embedding (NPE)

In NPE algorithm, the neighbor point reconstruction is real-
ized by the linear combination of the neighbor points, and this
reconstruction relationship ismaintained during the dimension
reduction process. For the process data X= {x1,x2, . . . ,xn} ⊆
Rm×n, NPE achieves dimension reduction by solving the pro-
jectionmatrixA ∈ Rm×p(p< m). The specific solution process
is as follows:
k nearest neighbors of a data point are sought. If two points

are within k nearest neighbors, the two points are connected by
an edge. Suppose that the weight matrix is W, if i and j have
an edge connected, the weight is Wij, otherwise, the weight is
0. It can be obtained by equation (1) (i1, . . . , ik are obtained by
the neighborhood graph),

min
W

n∑
i=1

∥∥∥∥∥∥xi−
ik∑

j=i1

Wijxj

∥∥∥∥∥∥
2

2

s.t.
ik∑

j=i1

Wij = 1, j = 1,2, . . . ,m.

(1)

The projection matrix A can be obtained by solving
equation (2),

min
A∈Rm×d

∥∥∥∥∥∥
n∑
i=1

ATxi−AT
ik∑

j=i1

Wijxj

∥∥∥∥∥∥
2

2

. (2)

By introducing generalized eigenvectors, the column vec-
tors of projection matrix A can be obtained by equation (3):

XMXTa= λXXTa

M= (I−W)
T
(I−W)

. (3)

The eigenvectors (a1,a2, . . . ,ap) corresponding to the smal-
lest p eigenvalues (λ1 ⩽ λ2 ⩽ · · ·⩽ λp) in equation (3) consti-
tute the projection matrix A.

2.2. Sparse representation (SR)

For a given data set X= [x1,x2, . . . ,xn] ∈ Rm×n, the SR
uses other vectors in X to reconstruct xi. Suppose
that the n-dimensional coefficient vector of xi is si =
[si,1,si,2, . . . ,si,i−1,0,si,i+1, . . . ,si,n]T, and si,j(i ̸= j) repres-
ents the contribution value of xj reconstructed to xi, and the
sparse coefficient can be obtained by solving equation (4),

min
S

∥X−X · S∥22 +λ∥S∥0 (4)

where ∥∥0 represents the L0 norm. The solution of the L0-norm
is a NP problem. Therefore, based on the compressed sensing
theory, the L1-norm is used to replace the L0-norm to solve the
problem, as shown in equation (5),

min
S

∥X−X · S∥22 +λ∥S∥1 (5)

where ∥∥1 is the L1 norm, which is used to solve the sum
of absolute values in the matrix, and λ is the regularization
parameter.

3. The proposed method

3.1. Sequential phase division (SPD) with uneven lengths

The uneven length problem in batch process would result in
inconsistent batch profiles for different batches and similar
events that appear in different time instants. To divide the batch
process phases reasonably and make each phase have sim-
ilar local neighbor characteristics, it needs to synchronize the
batch trajectories and make the key events occur at the same
time.

Different batches with uneven lengths are collected under
normal operation condition. Then, the RGTW method is used
to synchronize the ongoing batches [27, 28]. For batches of
data with uneven-lengths, a batch close to the middle length
of the duration is selected as the reference batch Fr. The
Euclidean distance between the row vectors of Fr and new
sample fnew,t(1× J) at time t is computed. A set of cumulative
weighted distances Dt,j at t sampling time is estimated, where
j = l̂t, . . . , ût, l̂t and ût are the upper and lower boundaries at
the t sampling time, and the optimal path at first β sampling
time can be derived by following the method of Kassidas et al
[29].

For the window ηt−β+1,t at the interval [t−β+ 1, t], the
optimal path can be defined as equation (6),

gTt−β+1,t = {w(1) , . . . ,w(Kt−β+1,t)} (6)

where Kt−β+1,t is the number of points for the optimal path
within the window ηt−β+1,t, the alignment would continue by
the sliding window within ηt−β+1,t.

If the endpoint e∗t at the current time is located at one of the
extremes of the band, the lower and upper boundaries must be
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updated according to the position of e∗, which can be calcu-
lated by equation (7),

ui =min(ui+ 2,Kr) i = t+ 1, . . . ,max(Kn)

li =

 lt i = {t+ 1, t+ 2}
li− (lt+2 − lt) i = t+ 3, . . . ,max(Kn)

n= 1, . . . ,N

. (7)

If the ongoing batch exceeds the maximum duration of a
normal batch, the boundaries are extended by taking the value
of the last boundary belonging to the upper and lower bound-
aries when measuring each new value. After alignment, the
samples need to be synchronized. Depending on whether the
algorithm compresses or expands the samples, an update of the
last monitored sample or some new values can be obtained.
Therefore, the whole batch is accessible and can be monitored
in real-time.

After synchronization, the batch data forms a three-
dimensional data matrix X(I× J×K), where I represents the
batch, J represents the number of variables, and K represents
the sample time. To depict the multiphase characteristics and
highlight the local neighbor features, the whole process is par-
titioned according to the local neighbor features and the time
sequence [30].

The three-dimensional datamatrixX(I× J×K) is unfolded
as X(I× JK) along the batch direction. Then, the time slice
matrix X(I× J)k is normalized by equation (8),

X̄k =
X(I× J)k−mean

(
X(I× J)k

)
std

(
X(I× J)k

) (8)

where mean(X(I× J)k) and std(X(I× J)k) are the mean and
standard deviation of X(I× J)k.

For the normalized time slice matrix X̄(I× J)k, NPE is used
to extract the neighbor structure features and get the initial
time slice model as equation (9),

Mk = AkX̄
T
k (9)

where Ak is the projection matrix that can be calculated by
equation (2).

The first h time slices are arranged as X̄c(Ih× J), NPE is
used to calculate the projection matrix Âc based on X̄c(Ih× J),
the phase model is shown as equation (10),

Mc = ÂcX̄
T
c . (10)

Then, we can evaluate the similarity between the kth (k=
h+ 1,h+ 2, . . .) time slice model Ak and the phase mode Âc,
as shown in equation (11),

Mk,c = exp

−

∥∥∥Ak− Âc
∥∥∥

2J

 (11)

where h is the shortest duration time of the phase, J is the num-
ber of variables.

When Mk,c in d successive time slices starting at time k∗

is below the control limit γ, the time slice before k∗ can be

represented as a phase with the same local neighbor feature.
Mk,c in the same phase is larger than that in different phases.
Therefore, if d successive values are lower than the control
limit, the next phase is indicated. The first phase is determ-
ined and the remaining data are updated as the new input
in equation (10), then equations (10) and (11) are repeated
to find the following phases. For each phase, key features
reflecting the state of the batch operation need to be extrac-
ted. Figure 1 shows the schematic diagram of uneven-length
data processing and phase division.

3.2. Multiway sparse weighted neighborhood preserving
embedding (MSWNPE)

For each divided phase X(I× Jp) (p is the length of the
divided phase), it is normalized along the batch direction and
is rearranged as X(Ip× J). Then, the next vital step is to extract
key features of each phase that reflect the operational state of
the batch process. The NPE algorithm is susceptible to outliers
and noise when the process data features are extracted, and
it treats the data points in the neighborhood equally, which
does not consider the impact of different distance values in
the neighborhood. Therefore, a SWNPE algorithm is proposed
for extracting process operation features. SWNPE calculates
the optimal SR in the obtained neighbors, thereby reducing
the number of calculations and maintaining the local sparse
relationship. In the neighborhood, the points that are close to
each other are more important to characterize the local struc-
ture than the points that are far away. So, the distance weight
is introduced to the elements in the neighborhood, and the
enhanced objective function shown in equation (12) is estab-
lished to obtain the local optimal sparse structure,

min
si

∥∥xi−XT(xi)si
∥∥2
2
+λ∥di⊗ si∥1 (12)

where XT(xi) = [xi1 , . . . ,xij , . . . ,xik ] ∈ Rm×k is the k nearest
neighbors of xi, the value of k can be determined by the
[31]. λ > 0 is a regularization parameter that balances recon-
struction error and sparsity, di = [di1,di2, . . . ,dik] ∈ Rk is the
distance weighted vector between xi and its neighbors, si =
[s1i ,s

2
i , . . . ,s

k
i ]
T ∈ Rk is the optimal sparse reconstruction coef-

ficient of xi, di⊗ si = [di1 · si1,di2 · si2, . . . ,dik · sik] ∈ Rk.
Since the distance value represents the degree of proximity

between two elements, a smaller distance value indicates that
the two points are closer, which is more important for the fea-
ture of the local structure. Therefore, a smaller distance value
dij corresponds to a larger sparsity coefficient sij. The distance
value between two elements can be obtained by equation (13),

dij = exp
(∥∥xi− xij

∥∥
2
/σ

)
(13)

where σ > 0 is used to adjust the decay rate of the distance
weight. The sparse coefficient matrix S= [s1,s2, . . . ,sn] ∈
Rn×n is introduced and equation (12) can be rewritten as
equation (14),

min
S

∥X−X · S∥22 +λ∥D⊗ S∥1 (14)

4
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Figure 1. Schematic diagram of uneven length data processing and phase division.

where D= [d1,d2, . . . ,dn] ∈ Rn×n is the distance matrix of
the neighbors, and Dij is the distance between xi and xj
in the neighborhood obtained by equation (13). When D=
[d1,d2, . . . ,dn] ∈ Rn×n is not a distancematrix of the neighbors,
Dij = 0. Similarly, S= [s1,s2, . . . ,sn] ∈ Rn×n is a sparse matrix
of neighbors, when it does not belong to neighbors, Sij = 0.
Equation (14) is solved by the method of the optimal toolbox
CVX [32].

After obtaining the optimal local sparse matrix S, the goal
of SWNPE algorithm is to obtain the projection matrix A ∈
Rm×d(d< m), so that the local sparse structure of the data is
maintained during the dimension reduction process. SWNPE
algorithm can be written in the form of equation (15),

JSWNPE = min
A∈Rm×d

∥∥∥∥∥∥
n∑
i=1

ATxi−AT
ik∑

j=i1

Sijxj

∥∥∥∥∥∥
2

2

(15)

where Sij is the optimal local sparse matrix obtained by
equation (14). The method is robust to outliers and noise
by introducing a locally optimal SR and fully extracts the
local structure by weighting the distance values of neighbor-
ing points. Compared with the global SR, SWNPE algorithm

can reduce the calculation time, and equation (15) can be cal-
culated by equation (16),

JSWNPE = min
A∈Rm×d

∥∥∥∥∥∥
n∑
i=1

ATxi−AT
ik∑

j=i1

Sijxj

∥∥∥∥∥∥
2

2

= min
A∈Rm×d

ATX(I− S)T (I− S)XTA

= min
A∈Rm×d

ATX
⌢

MXTA (16)

where, M̂= (I− S)T(I− S), to avoid degenerate solution, the
constraint ATXXTA= I is introduced; then, equation (16) can
be transformed as:

JSWNPE = min
ATXXTA=I

ATXM̂XTA. (17)

The projectionmatrix A can be obtained by solving the gen-
eralized eigenvalue problem of equation (18),

XM̂XTa= λXXTa. (18)

The projection matrix A is composed of eigenvectors
(a1,a2, . . . ,ad) corresponding to the smallest d eigenvalues
(λ1 ⩽ λ2 ⩽ · · ·⩽ λd). The optimal value of d should be the
inherent structure that can effectively reflect the raw dynamic
data [33].
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Figure 2. Flow chart of fault detection of SPD-MSWNPE.

4. Fault detection

When the batch process phases with uneven length are divided
according to the local neighbor characteristics, the process
local features reflecting the state of the batch operation pro-
cess are extracted by SWNPE, T2 and SPE statistics are
established for process fault detection. Y(y1, . . . ,yn) ∈ Rn×d

is the low-dimensional representation of the original variable
X(x1, . . . ,xm) ∈ Rn×m, where Y= ATX, the feature variables
and residual variables have the following relationships:

X= X̂+ X̄= BY+E

Y= ATX=
(
BTB

)−1
BTX

E= X−BY

(19)

where AT =
(
BTB

)−1
BT is the conversion matrix. X̄ represent

the residual variables, and E represents the residual matrix.
T2 statistic in the feature space is established to measure the

fluctuations of the process data, as shown in equation (20),

T2 = ynewΛ
−1yTnew (20)

where Λ−1 = ((Y)TY/(n− 1)) is the sample covariance mat-
rix of Y. An SPE statistic as shown in equation (21) is created

for the residual space to measure the random variation of the
process,

SPE= ∥xnew − x̂new∥2 = eTe (21)

where x̂new is the reconstruction vector of the low-dimensional
projection ynew, that is x̂new = Bynew.

The control limits of T2 and SPE statistics are obtained by
kernel density estimation (KDE) [34].

Figure 2 shows the monitoring process of fault detection
based on SPD-MSWNPE, which includes two parts: offline
modeling and online monitoring.

4.1. Offline modeling

(1) Pretreat the training data;
(2) RGTW is used for synchronization of uneven-length

batches;
(3) Partition the phases based on local neighborhood features

and time sequence;
(4) Seek nearest neighbors through k nearest neighbors;
(5) Calculate the distance weight matrix D by equation (13);
(6) Obtain the local sparse matrix S by equation (14);
(7) Obtain the projection matrix A by equation (16);

6
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(8) Obtain the monitoring model and use KDE method to cal-
culate the statistical control limits.

4.2. Online monitoring

(1) Standardize the online data;
(2) Identify the phases based on offline modeling;
(3) Obtain the low-dimensional projection Ynew of the online

data through the projection matrix A;
(4) Calculate T2 and SPE statistics of the online data through

equations (20) and (21);
(5) Determine whether the statistics exceed the limits. If

the statistics exceed the limits, it means that a fault has
occurred.

5. Simulation verification

In this part, the performance of the proposed algorithm is veri-
fied through a multiphase nonlinear numerical process and
the well-known penicillin fermentation process. The results
are compared and analyzed using MPCA, multi-way NPE
(MNPE), multi-way dynamic NPE (MDNPE), SPDmulti-way
global NPE (SPD-MGNPE), and SPD-MSWNPE. For SPD-
MSWNPE, the phases are identified based on local neighbor
features in the time sequence automatically, and the sparse
weight matrix is calculated in each phase, which avoids the
increase in computational complexity caused by global optim-
ization. The proposed method calculates optimal SR and
eigenvalue decomposition in divided phases and local struc-
tures, which can improve the computational efficiency of batch
processes.

5.1. Multiphase nonlinear numerical example

A multiphase nonlinear numerical example is employed to
test the monitoring effectiveness of the proposed method
[35, 36]. The numerical example consists of two phases
and seven variables x= [x1 x2 x3 x4 x5 x6 x7]

T, the duration
of each batch varies from 95 to 105 sampling points.
For the first phase, the process data are generated as
follows:

x1(k) = 50+ k+ ζ1
x2(k) = 50− 0.5 ∗ k+ ζ2
x3(k) = 45− 0.2 ∗ k+ ζ3
x4(k) = 0.1 ∗ x2(k)+ 0.5 ∗ x3(k)+ ζ4
x5(k) = x2(k)− 0.2 ∗ x3(k)+ ζ5
x6(k) = 10+ k+ ζ6
x7(k) = 0.1 ∗ x6(k)+ k+ ζ7

. (22)

Figure 3. Phase division results of the numerical simulation
process.

For the second phase, the process data are generated as
follows:

x1(k) = 60+ k+ ζ1

x2(k) = 50− 0.4 ∗ k+ ζ2

x3(k) = 45− 0.2 ∗ k+ ζ3

x4(k) = 0.2 ∗ x2(k)+ 0.5 ∗ x3(k)+ ζ4

x5(k) = x2(k)− 0.2 ∗ x3(k)+ ζ5

x6(k) = 10+ k+ ζ6

x7(k) = 0.1 ∗ x6(k)+ k+ ζ7

(23)

where k is the number of sampling points. [ζ1, ζ2, ζ3, ζ4, ζ5,
ζ6, ζ7] is the independent random noise with Gaussian distri-
bution of N(0,0.1). The train data are composed of 20 batches
with different lengths, and the whole process varies from 95
to 105. To verify the effectiveness of the proposed algorithm,
variable 1 is introduced a 0.05 ∗ (k− 30) ramp fault from the
31th sampling point to the 80th sampling point for fault detec-
tion and verification. The training data are synchronized and
unfolded, then the proposed algorithm is used for phase divi-
sion, and the partition results are shown in figure 3.

We can see from figure 3 that the whole process is divided
into two phases: 0–52 and 53–100 respectively, this is consist-
ent with the numerical batch process, which proves that the
local neighbor features are similar in the same phase and are
different between phases.

Figures 4–8 show the comparison results of fault detection
of MPCA, MNPE, MDNPE, SPD-MGNPE, and the proposed
algorithm. In these figures, the red dashed line represents the
control limit, and the solid line marked with a circle represents
the test results. Figure 4 shows the fault detection results of
MPCA, and it can be seen that T2 and SPE detect the fault at
the 57th and 52th sampling points, respectively. We can see
that both T2 and SPE of MNPE detect the fault at the 49th
sampling points in figure 5. As can be seen in figure 6, T2
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Figure 4. T2 and SPE monitoring charts of MPCA.

Figure 5. T2 and SPE monitoring charts of MNPE.

Figure 6. T2 and SPE monitoring charts of DNPE.

and SPE of MDNPE method detects the fault at the 52th and
46th sampling points. T2 and SPE fault detection results of
SPD-MGNPE method are shown in figure 7, where the faults
are detected at the 47th and 48th sampling points respectively,
which can detect the fault earlier because the statistical model
is established based on the partition phases and themultiplicity
information can be revealed. The monitoring results for the
proposed method are presented in figure 8, it can be seen that
T2 and SPE detect the faults earlier than other methods and
have lower false alarms, because the proposed method mainly

synchronizes batch trajectories, which can fully extract multi-
phase batch operation features and is more sensitive to a fault.

5.2. Penicillin fermentation process

The penicillin fermentation process is a typical batch pro-
cess with multiple operation phases, and it is widely used
to evaluate the monitoring and fault detection of a mul-
tiphase batch process. To facilitate the application of advanced
process modeling, monitoring, and control methods to the
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Figure 7. T2 and SPE monitoring charts of SPD-MGNPE.

Figure 8. T2 and SPE monitoring charts of the proposed algorithm.

Figure 9. Penicillin fermentation process.

complex reaction process of penicillin, the Illinois Institute
of Technology team developed the Pensim2.0 simulation plat-
form in 2002 [37], shown in figure 9.

This simulation platform can fully simulate batch processes
and reflect the characteristics of time-varying and multi-phase
batch processes. Therefore, this paper would use Pensim2.0

Table 1. Process variables for the penicillin fermentation.

Variable number Process variable Unit

1 Aeration rate l h−1

2 Agitator power r min−1

3 Substrate feed flow rate l h−1

4 Substrate feed temperature K
5 Substrate concentration g l−1

6 DO %
7 Culture volume l
8 CO2 g l−1

9 pH
10 Temperature K
11 Penicillin concentration g l−1

to generate penicillin fermentation process data to verify the
effectiveness of the proposed algorithm.

The running time of each batch is set to 395–505 h, and the
sampling time interval is set to 1 h. By setting different initial
conditions and parameters, the data of 20 normal conditions
are obtained. The initial conditions and parameters for all set-
tings are within normal limits. All variables have noise. Eleven
process variables (see table 1) are selected from 18 generated
process variables as monitoring variables to form the process

9
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Figure 10. The measure profiles of the selected 11 variables before synchronization.

Figure 11. The measure profiles of the selected 11 variables after synchronization.

dataset. In Pensim2.0, the variables 1, 2, 3 in table 1 are set
to the fault variables. Fault types include ramp fault and step
fault.

Figure 10 shows the measure profiles of the 11 variables
selected from the 20 normal batches before synchronization,
we can see that the variables of different batches have differ-
ent measure profiles and most of the process variables have
multiphase characteristic, but the phases have not happened
simultaneously, especially the differences between batches of
substrate feed flow rate, substrate concentration, O2, penicil-
lin concentration, CO2, PH, temperature, etc. Therefore, the
variables of different batches need to be synchronized.

In this paper, we use RGTW to synchronize the original
data of 20 normal batches with uneven lengths, and the results
of the synchronized data are shown in figure 11. As can be seen
from figure 11, RGTW synchronizes the uneven-length data
while retaining the features of the variables. The measure pro-
files of substrate feed flow rate, substrate concentration, O2,

penicillin concentration, CO2, PH, and temperature show the
same trend.

The obtained 20 batches of process dataset are synchron-
ized by RGTW. By analyzing the trajectories of process vari-
ables, each batch can be divided into several phases precisely,
and the results of phase partition based on local neighbor
features in time sequence are illustrated in figure 12. From
figure 12, we can see the penicillin process can be divided into
five phases by using the proposed algorithm, namely 0–22, 23–
42, 43–138, 139–256 and 257–400, respectively. The phase
division can not only highlight the local neighbor features, but
also enhance the process state understanding and analysis.

The performance of the proposed algorithm is verified by
setting different fault types and magnitudes. Six faulty batches
in table 2 are obtained by setting different fault variables and
fault signals.

Fault detection rate (FDR) and false alarm rate (FAR)
are usually used as evaluation indexes in the field of fault

10
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Figure 12. Phase partition results of the penicillin fermentation process.

Table 2. Fault batches in the penicillin fermentation process.

Fault No. Variable name Fault type Amplitude Occurrence time (h) End time (h)

1 Aeration rate Step 3 200 400
2 Aeration rate Ramp 0.4 200 400
3 Agitator rate Step 2 100 300
4 Agitator rate Ramp 0.1 200 400
5 Substrate feeding rate Step 1 200 400
6 Substrate feeding rate Ramp 0.005 200 400

Figure 13. T2 and SPE monitoring charts of the MPCA method under fault 2.

monitoring. FDR refers to the ratio of the number of cor-
rectly detected faults to the total number of faults, and FAR
refers to the ratio of the number of incorrectly detected faults
to the sum of the normal operating data, which are shown in
equation (24),

FDA=
J1
J2

× 100%

FAR=
J3
J4

× 100%
(24)

where J1 indicates the number of fault detected success-
fully; J2 indicates the total number of fault; J3 the number of
incorrectly detected faults; J4 represents the total number of
samples.

As shown in table 2, fault 2 is a ramp fault with an amplitude
of 0.4 added to the aeration rate from the 200th sampling point
to the end. The detection effects of the five methods under
fault 2 are shown in figures 13–17. Figure 13 shows the T2

and SPE detection results of the MPCA method, where we
can see that MPCA cannot detect fault 2 in time. Figure 14 is
the T2 and SPE monitoring charts of MNPE, where it can be
seen that T2 of MNPE cannot detect the fault, and SPE detects
the fault at the 331th sampling point. Figure 15 shows the T2

and SPE monitoring charts of MDNPE under fault 2, where
we can see that T2 and SPE of MDNPE detect the fault at the
299th and 337th sampling points, respectively, it can detect the
fault earlier than MPCA and MNPE. Figure 16 is the T2 and
SPE monitoring charts of the SPD-MGNPE method show that
T2 and SPE of SPD-MGNPE detect the fault at the 258th and
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Figure 14. T2 and SPE monitoring charts of the MNPE method under fault 2.

Figure 15. T2 and SPE monitoring charts of the MDNPE method under fault 2.

Figure 16. T2 and SPE monitoring charts of the SPD-MGNPE method under fault 2.

381th sampling points, respectively, the effect of fault detec-
tion is better than MPCA, MNPE andMDNPE. T2 and SPE of
the SPD-MSWNPE are shown in figure 17, we can see that T2

and SPE of SPD-MSWNPE detect the fault at the 220th and
214th sampling points, respectively. Compared with MPCA,
MNPE, MDNPE and SPD-MGNPE, SPD-MSWNPE has a
higher FDR and a lower FAR. This is because SPD-MSWNPE
can not only realize synchronization of multiple phase batches
but also maintain the local neighborhood structure of the pro-
cess for process monitoring.

Fault 3 is a step fault with an amplitude of 2 added to the
variable agitator rate from the 100th sampling point to the
300th sampling point. Figures 18–22 show the fault detec-
tion results of MPCA, MNPE, MDNPE, SPD-MGNPE, and
SPD-MSWNPE under fault 3. It can be seen that T2 and
SPE of MPCA in figure 18 cannot detect the fault effectively.
Figure 19 is the T2 and SPE monitoring charts of MNPE,
we can see that both T2 and SPE can detect the fault in time
when the fault occurs, but there are some false alarms before
the 50 sampling points. The T2 and SPE monitoring charts of
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Figure 17. T2 and SPE monitoring charts of the SPD-MSWNPE method under fault 2.

Figure 18. T2 and SPE monitoring charts of the MPCA method under fault 3.

Figure 19. T2 and SPE monitoring charts of the MNPE method under fault 3.

MDNPE are shown in figure 20, we can see that T2 cannot
detect the fault and SPE can detect the fault, but there are some
false alarms before the 50 sampling points. Figure 21 is the
T2 and SPE monitoring charts of the SPD-MGNPE method,
it can be seen that T2 can detect the fault in time; however,
there are some false alarms before the 100 sampling points,
and SPE cannot detect the fault effectively. The fault detec-
tion results of the proposed algorithm are shown in figure 22,

SPD-MSWNPE can detect the fault at the first time of occur-
rence and has the lowest FAR when the fault occurs.

Tables 3 and 4 show the comparison results of FDR and
FAR monitored by MPCA, MNPE, MDNPE, SPD-MGNPE,
and SPD-MSWNPE for six faults. The proposed algorithm
has the highest FDR and lowest FAR, the whole process is
divided into phases and a process model is built for each
phase, so that the operation characteristics of the process can
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Figure 20. T2 and SPE monitoring charts of the MDNPE method under fault 3.

Figure 21. T2 and SPE monitoring charts of the SPD-MGNPE method under fault 3.

Figure 22. T2 and SPE monitoring charts of the SPD-MSWNPE method under fault 3.

be effectively represented. Step faults can be detected by SPD-
MGNPE and SPD-MSWNPE immediately like fault 1 and
fault 3, but SPD-MSWNPE has a lower FAR. Because the
glucose substrate feed rate propagates slowly through the cor-
related variables, fault 5 cannot be detected effectively. In con-
trast to step faults, ramp faults 2, 4, 6 are more difficult to
detect due to their slow variation. In the detection of ramp
faults, SPD-MSWNPE detects the faults earlier than those
four methods, which first detects the faults with less FAR,

this is because SPD-MSWNPE can synchronize the batches
with several phases and extract the neighbor structure by con-
sidering the weighted distance value of the nearest neighbor
elements.

Figure 23 illustrates the average FDRs and average FARs
of five methods under six faults. The monitoring performance
is presented using a bar chart to explain the fault detection
effect of each method more intuitively. It can be seen from
figure 23(a) that FDR of the proposed method is higher than
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Table 3. Fault detection rates (FDRs).

Fault No.

MPCA MNPE MDNPE Multiphase–MGNPE SPD-MSWNPE

T2 SPE T2 SPE T2 SPE T2 SPE T2 SPE

1 0.5000 0.6800 0.3400 0.6100 0.6700 0.4200 1 1 1 1
2 0.4450 0.4650 0.3650 0.5800 0.6900 0.5700 0.7650 0.3450 0.9100 0.9500
3 0.1550 0.2700 1 1 0.1650 0.9550 1 0.4500 1 1
4 0.4950 0.5550 0.7850 0.0300 0.3250 0.6900 0.7450 0.7900 0.7750 0.8100
5 0.0300 0.0150 0.0050 0.0100 0.0250 0.0050 0.0100 0.0700 0.0700 0.0500
6 0.2590 0.7150 0.7050 0.5600 0.3000 0.7200 0.6150 0.6600 0.6950 0.9700

Table 4. False alarm rates (FARs).

Fault No.

MPCA MNPE MDNPE Multiphase–MGNPE SPD-MSWNPE

T2 SPE T2 SPE T2 SPE T2 SPE T2 SPE

1 0.1500 0.1650 0.1150 0.1650 0.1500 0.1850 0.0500 0.0400 0.0500 0.0350
2 0.1250 0.0450 0.1100 0.1250 0.0700 0.1550 0.0350 0.0350 0.0500 0.0450
3 0.2500 0.4200 0.2150 0.1850 0.2500 0.1200 0.0350 0.0350 0.0250 0.0450
4 0.1300 0.1350 0.0850 0.0550 0.0850 0.1150 0.0350 0.0450 0.050 0.0450
5 0.0500 0.0500 0.0450 0.0550 0.0600 0.0900 0.0650 0.0750 0.0450 0.0550
6 0.1000 0.1250 0.0950 0.0700 0.1100 0.1050 0.0550 0.0500 0.0500 0.0350

Figure 23. Comparison charts of (a) average FDR and (b) average FAR, under the 5 fault batches.

that of other methods. Figure 23(b) shows that FAR of SPD-
MSWNPE is lower than that of other methods. By comparing
the average FDR and average FAR under six faults, we can
conclude that SPD-MSWNPE is superior to MPCA, MNPE,
MDNPE, and SPD-MGNPE methods.

6. Conclusion

This paper proposes a process fault detection algorithm based
on SPD-MSWNPE. The batch process data of uneven length
are processed by RGTW method, and the sequential phase

partition method is used to effectively divide the phases.
Feature selection of different phases is achieved through SR,
thereby filtering out irrelevant information that affects pro-
cess data modeling, such as noise and outliers. For the prob-
lem of excessive calculation by using SR to find the global
optimal solution, the local sparse structure is established to
reduce the calculation amount and maintain the local mani-
fold structure. To maintain the data structure and accurately
reflect the operating characteristics of the process , the distance
weights between the neighboring points are introduced to con-
struct an enhanced objective function, and the optimal local
sparse structure is obtained. The effectiveness of the proposed
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algorithm is verified through a numerical simulation process
and the Penicillin fermentation process.
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A B S T R A C T   

The batch process has the characteristics of nonlinear and multiphase due to variation operation conditions. 
Nonlinear and multiphase modeling of the batch process is very important to understand the running state of a 
process and improve the monitoring effect. In this work, a multiphase multi-way concurrent locally weighted 
projection regression algorithm is proposed. Firstly, the entire process is partitioned into phases according to 
local quality-related characteristics and time sequence. Secondly, the nonlinear process is modeled with locally 
linear models in each partitioned phase, the global approximation results are obtained by weighting all the local 
models. Thirdly, the complete monitoring indices of quality-related and process related are built, and the quality 
variables are predicted while exploiting the regression structure for quality and process monitoring. Finally, a 
nonlinear numerical process and the penicillin fermentation process are used to verify the effectiveness of the 
proposed algorithm.   

1. Introduction 

As one of the most important production modes in the modern pro
cess industry, batch process is widely used in many fields, such as bio
pharmaceutical, fine chemical, food processing, and semiconductor 
production due to its advantages of high-value, multi-variety, and low- 
volume production [1]. Unlike continuous process that runs in a steady 
state, the batch process has the characteristics of dynamic, diversity, 
uncertainty, and quality variables are difficult to be measured in 
real-time, which greatly increases the difficulty of fault detection and 
diagnosis for the batch process [2]. However, timely fault detection and 
accurate diagnosis of faults have become important parts of the safe and 
smooth operation of the production process [3]. Therefore, it is urgent to 
establish a process monitoring system. In the past few decades, many 
statistical methods, such as principal component analysis (PCA) and 
partial least squares (PLS), have been developed for process monitoring 
[4,5]. For the extensive multiphase characteristic of the batch process, if 
we build a global model, missing alarms and false alarms may occur 
inevitably. 

For the multiphase characteristic of the batch process, it is desirable 
to establish multiphase models that capture the inherent behaviors [6, 

7]. Each phase has specific local behaviors, multiphase modeling is 
beneficial to the representation of process characteristics and can 
improve the process monitoring effect. Lv et al. [8] proposed a multi
phase partition algorithm to monitor batch process online, in which 
Euclidean radius and k-means were used to determine the phase number 
and phase data set, however, the retained components could not be 
determined substantiated. To consider the varying multiphase charac
teristic of batch processes, Liu et al. [9]proposed a sequential 
local-based Gaussian mixture model, but the nonlinearity of the batch 
process could not be solved effectively. To characterize the dynamics of 
variable-wise and batch-wise batch processes, Zhu et al. [10] proposed a 
batch process monitoring method based on a multiphase 
two-dimensional time-slice dynamic system. However, the above 
methods still have the following problems: first, during the phase 
partition, there is need to identify the phases by clustering methods and 
complex post-processing is required. Second, each search for the optimal 
shard point requires to traversing all possible shard points, which have a 
high time complexity of order squared with sequence length. Third, the 
final product quality of batch process does not take into account when 
dividing the phases, because reasonable phase division can effectively 
improve the effect of batch process monitoring and product quality 
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prediction. 
In some cases, the appropriate fluctuations in process variables do 

not affect product quality, so it shouldn’t trigger the disturbance alarm. 
However, some unsupervised methods only consider the abnormal in the 
whole process space, the output variables are not used. The supervised 
methods utilize the quality data to extract the related information and it 
is suitable for quality-related process monitoring [11]. PLS is a typical 
supervised method that considers the quality variables when conducting 
information extraction. Zhang et al. [12] proposed a multi-scale Kernel 
PLS method in nonlinear process monitoring, this method could describe 
not only the global relations of the whole scale but also the local features 
within each scale. Botre et al. [13] proposed Kernel PLS-based GLRT 
method for quality-related process monitoring. However, the use of the 
kernel method to deal with nonlinearity would make the computational 
complexity rise sharply, especially for batch processes, it would lead to 
the deterioration of real-time process monitoring. For batch process 
monitoring, Luo et al. [14] proposed a multilinear PLS method, which 
avoided the batch data unfolding and had better modeling accuracy, but 
the determination of parameters needs further study. To detect the 
output unrelated and related faults, the total PLS was proposed to 
decompose the input space into four subspaces [15], but it could not 
monitor the portion of the quality variations unpredictable from inputs. 
To decompose the input data into the input-related and output-related 
spaces, Qin et al. [16] proposed a concurrent projection to latent 
structures for process-related and quality-related fault detection, how
ever, the nonlinear characteristic of the process was not considered. For 
the nonlinear and multiple subspace monitoring, Zhang et al. [17] 
proposed a nonlinear CPLS method. To consider the dynamic and 
nonlinear characteristics of the industrial processes, Zhang et al. [18] 
proposed the Recurrent Kalman Variational Autoencoder method for 
process modeling and fault detection, it showed a remarkable perfor
mance in many hard-to-detect faults. Considering the variable impor
tance in the projection, Yang et al. [19] proposed a new dynamic 
concurrent partial least square method for quality-related monitoring. 
However, For the nonlinear and multiphase quality-related process 
monitoring, it is desirable to divide the process phase reasonably ac
cording to the local quality-related characteristics and time sequence. 
Each phase has a specific local nonlinear characteristic, it needs to 
extract nonlinear features that capture the inherent behaviors. The 
statistics that can effectively improve the effect of batch process moni
toring should be established. 

In this work, a quality-related nonlinear multi-phase batch process 
monitoring and quality prediction algorithm is presented. To divide the 
multiphase reasonably, a step-wise sequential quality-related phase di
vision model is developed. Moreover, locally weighted projection 
regression is used to monitor each local model, the global approximation 
results are obtained by weighting all the local models in the divided 
phases. Then, the complete monitoring indices of quality-related and 
process related are built, and the process-related space is decomposed 
into quality-related and unrelated subspaces. Besides, the quality vari
ables are predicted while exploiting the regression structure for quality 
and process monitoring. 

The contributions of the proposed fault detection and quality pre
diction method are as follows.  

(1) It provides a step-wise sequential quality-related phase division 
model according to local quality-related characteristics and time 
sequence.  

(2) A nonlinear phase is modeled with global approximation 
weighted local models.  

(3) The complete monitoring indices of quality-related and process 
related are built, and the quality variables are predicted while 
exploiting the regression structure for quality and process 
monitoring. 

2. Partial least squares (PLS) 

PLS algorithm [20]gives a pair of input and output data matrices X 
and Y, where X represents the input variables and Y is the output vari
ables, respectively, the details are shown in equation (1). 

X=

⎡

⎢
⎢
⎣

xT
1

⋮
xT
N

⎤

⎥
⎥
⎦∈RN×m Y =

⎡

⎢
⎢
⎣

yT
1

⋮
yT
N

⎤

⎥
⎥
⎦ ∈ RN×l (1)  

where, N is the number of samples, m and l are the numbers of input 
variables and output variables respectively. The original variable space 
is projected into an uncorrelated latent factor space as equation (2). 

T = [t1⋯tA] ∈ RN×A (2)  

where, T is the score matrix, because the score matrix T cannot be ob
tained from the input X, there need to introduce the weight H =

W(PTW)
− 1, T can be expressed by equation (3). 

T =XH (3) 

Based on the above transformation, the original variable X can be 
divided into principal subspace X̂ and residual subspace X̃. Y is divided 
into predictable parts Ŷ and unpredictable parts Ỹ. They can be 
expressed by equation (4). 
{
X = X̂ + X̃ = TPT + X̃
Y = Ŷ + Ỹ = TQT + Ỹ

(4)  

where, P ∈ Rm×A and Q ∈ Rl×A are the loading matrixes of X and Y. A is 
the number of principles, it can be obtained by cross-validation. The 
nonlinear iterative partial least squares (NIPALS) algorithm is used to 
calculate each parameter of PLS. In NIPALS iteration process, the ei
genvectors of Y are used to regression the eigenvectors of X. And the 
eigenvectors of X are used to regress Y. Finally, the algorithm gradually 
increases the high correlation convergence by rotating the eigenvectors 
to obtain the model parameters. Although the method of solving model 
parameters by standard PLS has the problem of a large amount of 
calculation, its biggest disadvantage is that it uses skew decomposition 
for process variable X, which leads to the loss of quality-related infor
mation, thus resulting in a low-quality-related fault detection rate and 
affecting the performance of its process monitoring. 

3 Multiphase Multiway Concurrent Locally Weighted Projection 
Regression (Multiphase-MCLWPR) for process monitoring and quality 
prediction. 

For the nonlinear and multiphase characteristics of the batch pro
cess, the entire process is divided into the phases according to the local 
quality-related characteristic and time sequence. Then, for the specific 
local nonlinear characteristic in each phase, the nonlinear models are 
established to capture the inherent behaviors. Monitoring space is 
decomposed into quality-related and process related, and obtained 
complete monitoring scheme. 

2.1. Data preprocessing and step-wise sequential quality-related phase 
division 

To describe the time sequence multiphase characteristic and high
light the local quality-related features, the entire process is partitioned 
into several phases according to local quality-related characteristics and 
time sequences [21,22]. 

The batch process three-dimensional data matrix X(I×J×K) is 
unfolded as X(I×JK) along the batch direction. Then, the time slice 
matrix Xk(I×J) is normalized by equation (5). 

Xk =
Xk(I × J) − mean(Xk(I × J))

std(Xk(I × J))
(5) 
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where, mean(Xk(I×J)) and std(Xk(I×J)) are the mean and standard 
deviations of Xk(I × J). 

For the normalized time slice matrix Xk(I × J), PLS is used to extract 
the quality-related features and get the initial time slice model as 
equation (6). 

Gk =QkX
T
k (6)  

where, Qk is the loading matrix of Y that can be obtained by equation 
(4). 

The first h consecutive time slices constitute the matrix Xc(Ih × J), 
PLS is used to calculate the loading matrix Q̃c based on Xc(Ih × J), the 
phase model shown in equation (7). 

Gc= Q̃cX
T
c (7)  

Then, the similarity between the kth (k = h+ 1, h+ 2, ⋯) time slice 
model Qk and the phase mode Q̃c can be evaluated by equation (8). 

Mk,c = exp
(

−
‖Qk − Q̃c‖

2J

)

(8)  

Where, J is the number of variables, h is the shortest duration time of the 
phase. 

When the successive d time slice from time kc that Mk,c lower than 
control limit γ, it is considered that a phase is formed. If d consecutive 
Mk,c are higher than the control limit γ, it means that the quality-related 
features are changed and move on to the next phase. When the first 
phase is determined, the remaining time slice data are updated and used 
as the new input in equation (7), then equations (7) and (8) are repeated 
to find the following phases. For the divided phases, it is necessary to 
extract the key information reflecting the running state of the process for 
process monitoring and quality variable prediction. The flow chart of 
data preprocessing and step-wise sequential quality-related phase divi
sion is shown in Fig. 1. 

2.2. Concurrent locally weighted projection regression algorithm 

In each divided phase, the phase-related data generally covers high 
nonlinearity. For nonlinear function approximation problems, Vijaya
kumar et al. [23] proposed a locally weighted projections regression 
(LWPR) algorithm. To ensure the high efficiency of the algorithm, LWPR 
uses a univariate PLS regression model in each phase, and the global 
approximation results are obtained by the weight of all local models. 

For the nonlinear function yi = f(xi)+ e, f is a nonlinear function, xi 
and yi are the input and output respectively, and e is the noise of zero 
means. LWPR approximates the nonlinear function f by using several 
local linear models. To measure the locality of the data point, a Gaussian 
kernel is used to calculate the weight w, as shown in equation (9). 

wi=exp
(

−
(xi − xc)TD(xi − xc)

2

)

(9)  

where, x is the data point, xc is the data center of the local model, D is a 
positive semidefinite matrix used to determine the size and shape of 
local model. Then, the weighted mean of the current local model is: 

x=
∑N

i=1
wixi

/
∑N

i=1
wi, y =

∑N

i=1
wiyi

/
∑N

i=1
wi (10) 

The main task of LWPR in nonlinear function approximation is to 
determine the number of local models, the regression model is calcu
lated for each local model and the local model’s receptive field (RF) is 
adjusted automatically. The predicted output ŷq of LWPR is normalized 
as the weighted mean of all the predicted outputs ŷk, as shown in 
equation (11). 

ŷq=
∑K

k=1
wk ŷk

/
∑K

k=1
wk (11) 

For each local model, locally weighted PLS is used to determine the 
parameters. The details of LWPR can be found in literature [23,24]. 
When the first training data sample (x1, y1) is entered, the new RF would 
be created. Then, the Gaussian kernel weights would be calculated for all 

Fig. 1. The flow chart of data preprocessing and step-wise sequential quality-related phase division.  
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the existing RFs. Afterward, each local model is updated by the sample 
with its weight. LWPR algorithm with locally linear models is obtained. 

A complex nonlinear problem is turned into a weighted combination 
of a few simple linear problems. After the normal sample 
(xn, yn)(n= 1,⋯,N) is trained by LWPR, the LWPR model has K local 
linear models RFk (k = 1,⋯,K). To ensure the inputs and outputs have 
zero means, the weighted mean xk, yk from equation (10) should be 
subtracted from the training data samples (xn,yn), as shown in equation 
(12). 

xmz,n = xn − xk
ymz,n = yn − yk

(12)  

Thus, the input and output matrices are Xk = [xmz,1,⋯, xmz,Nk ]
T and Yk =

[ymz,1,⋯, ymz,Nk ]
T, respectively. The load vectors are pr and qr, weight 

vector ur denotes the projection from the deflated input matrix to the 
latent score vector and would be updated from each training sample. 
After training, the loading matrix and weight matrix can be expressed as 
Pk = [p1,⋯,pA], Qk = [q1,⋯, qA] and Uk = [u1,⋯,uA]. 

The score matrix Tk cannot be directly calculated from Xk, there 
constructed intermediate matrix Rj, as shown in (13). 

r1 = u1

r2 =
(
I − u1pT1

)
u2

⋮
rA =

(
I − u1pT1

)(
I − u2pT2

)
⋯
(
I − uA− 1pTA− 1

)
uA

(13) 

We can obtain the matrix Rk = [r1, r2, ⋯, rA], Tk is calculated by 
equation (14). 

Tk =XkRk (14) 

To further refine the statistical analysis space, and achieve a com
plete monitoring scheme of quality-related data and process-related 
data, the monitoring statistics are defined as predictable output sub
space, unpredictable output residual subspace and unpredictable output 
principle subspace, output irrelevant principal subspace and output 
irrelevant residual subspace [16]. 

From equation (14) and the PLS model, we can obtain Ŷk = TkQk and 
perform singular value decomposition (SVD). 

Ŷ k = TkQk =UckD
c
k

(
Vck

)T
=Uck

(
Qck

)T (15)  

where, Qc
k = Vc

kDc
k, Vc

k is orthonormal, Uc
k can be expressed as: 

Uck = Ŷ kV
c
k

(
Dck

)− 1
=XkRkQkVck

(
Dck

)− 1
=XkRck (16) 

Fig. 2. MCLWPR process monitoring flow chart.  

Fig. 3. Trajectories of six numerical process variables under a normal batch.  
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where, Rc
k = RkQkVc

k(D
c
k)

− 1,the unpredictable output Ỹ
c
k = Yk− Uc

k(Q
c
k)

T 

and PCA with ly principle components are performed. 

Ỹ
c
k = T

y
k (P

y
k)

T
+ Ỹk (17)  

where, Ty
k is unpredictable output principle score, Ỹk is unpredictable 

output residual. 
The output-irrelevant subspace is represented as X̃

c
k = Xk − Uc

kM
c
k, 

Mc
k = ((Rc

k)
TRc

k)
− 1
(Rc

k)
T and PCA with lx principle components is per

formed, as shown in equation (18). 

X̃
c
k = T

x
k

(
Pxk
)T

+ X̃k (18)  

where, Tx
k is the input principal score, ̃Xk is input residual. The input data 

matrix Xk and output data matrix Y can be decomposed as equation (19) 
by the MCLWPR model. 

Fig. 4. Numerical phase partition result.  

Fig. 5. Monitoring chart of MPLS.  
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Fig. 6. Monitoring chart of MTPCR.  
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Xk = UckM
c
k + T

x
k

(
Pxk
)T

+ X̃k
Yk = UckQ

c
k + T

y
k (P

y
k)

T
+ Ỹk

(19)  

In MCLWPR model, Mc
k, P

x
k, Qc

k and Py
k are the loading matrixes, Uc

k is the 
scores matrix that denotes the covariations in Xk associated with the 
predictable part Ŷ. Tx

k denotes the variations in Xk that is not relevant to 
predicting Yk, and Ty

k represents the variations in Yk that Xk cannot 
predict. 

2.3. MCLWPR for process monitoring 

From the MCLWPR model, it needs to design the monitoring statistics 
based on equations 15–19. The output-related scores are ortho
normalized, hence, the monitoring statistics of predictable output sub
space can be followed T2 statistic, as shown in equation (20). 
(
Tck
)2

=(n − 1)
(
uck
)Tuck =(n − 1)xT

mzR
c
k

(
Rck
)Txmz (20)  

where, xmz is the zero mean of input x, which can be obtained by 
equation (12). 

The monitoring statistics of output-irrelevant principal subspace and 
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Fig. 7. Monitoring chart of MMPLS.  
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Fig. 8. Monitoring chart of multiphase-MEMPRM.  

Fig. 9. Monitoring chart of multiphase-MCLWPR.  
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output-irrelevant residual subspace can be followed T2 statistics and SPE 
statistics, as shown in equations 21 and 22. 
(
Txk
)2

=
(
txk
)T( Λx

k

)− 1txk =
(
x̃ck
)TPxk

(
Λx
k

)− 1( Pxk
)Tx̃ck (21)  

SPExk =‖x̃k‖2
=
(
x̃ck
)T( I − Pxk

(
Pxk
)T
)
x̃ck (22)  

where, tx
k is the row vector of Tx

k , ̃xc
k = xmz − Mc

kuc
k, uc

k is the row vector of 

Uc
k, Λ

x
k = 1

n− 1(T
x
k)

TTx
k . 

The monitoring statistics of unpredictable output principal subspace 
and unpredictable output residual subspace can be followed T2 statistics 
and SPE statistics, as shown in equations 23 and 24. 

(Tyk )
2
=(tyk)

T
(Λy

k)
− 1tyk =

(
ỹck
)TPxk

(
Λx
k

)− 1( Pxk
)Tỹck (23)  

SPEyk =‖ỹk‖
2
=
(
ỹck
)T( I − Pxk

(
Pxk
)T
)
ỹck (24)  

where, ty
k is the row vector of Ty

k, ̃yc
k = ymz − Qc

kuc
k, Λy

k = 1
n− 1(T

y
k)

TTy
k , ymz is 

the zero mean of input y that can be obtained by equation (12). 
The global statistics of MCLWPR for each data point (xk, yk) can be 

calculated as equations 25–29. 

Fig. 10. The quality variable prediction results: (a) MPLS, (b)MTPCR, (c)multiphase-MEMPRE, (d)multiphase-MCLWPR.  

Fig. 11. The scatters of prediction.  

Table 1 
RMSE of different methods.  

Methods MPLS MTPCR Multiphase–MEMPRM Multiphase-MCLWPR 

RMSE 0.1637 0.2360 0.0730 0.0466  

Fig. 12. Penicillin fermentation process.  
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T2
c =

∑K

k=1
wk

(
Tck
)2

/
∑K

k=1
wk (25)  

T2
x =

∑K

k=1
wk

(
Txk
)2

/
∑K

k=1
wk (26)  

SPEx=
∑K

k=1
wkSPExk

/
∑K

k=1
wk (27)  

T2
y =

∑K

k=1
wk(Tyk )

2

/
∑K

k=1
wk (28)  

SPEy=
∑K

k=1
wkSPEyk

/
∑K

k=1
wk (29) 

To monitor the above indexes, the control limits of corresponding 
statistics should be calculated from the statistics of the normal data. 
Kernel density estimation (KDE) [25] is used to evaluate the corre
sponding control limit. KDE is a non-parametric method that estimates 
the probability density function of a random variable, it does not need to 

Table 2 
Process variables.  

Variable number Process 
Variable 

Unit 

1 Aeration L/h 
2 Agitator W 
3 Substrate feed flow rate L/h 
4 Substrate feed temperature K 
5 Substrate concentration g/L 
6 O2 % 
7 Penicillin concentration % 
8 Culture volume L 
9 CO2 g/L 
10 PH 1 
11 Temperature K  

Fig. 13. Trajectories of 11 penicillin fermentation process variables under a normal batch.  

Fig. 14. Penicillin fermentation process phase partition results.  

Table 3 
Fault batches in the penicillin fermentation process.  

Fault 
No. 

Variable name Fault 
type 

Amplitude Occurrence 
time/h 

End 
time/h 

1 Aeration rate step 4 100 400 
2 Aeration rate ramp 0.5 100 400 
3 Agitator rate step 5 100 300 
4 Agitator rate ramp 0.7 200 400 
5 Substrate 

feeding rate 
step 1.8 200 400 

6 Substrate 
feeding rate 

ramp 0.007 200 400  
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Table 4 
Fault detection rate (FDR).  

Fault 
No. 

MPLS MTPCR MMPLS Multiphase-MEMPRM Multiphase-MCLWPR 

T2 SPE Ty
2 To

2 Th
2 Tt

2 Th
2 Tt

2 Tc
2 Tx

2 Ty
2 Qx 

1 0.6412 0.0266 0.0365 0.7176 0.9535 0.1728 0.5482 1 0 1 0.0664 0.9900 
2 0.6080 0.6445 0.5349 0.6844 0.8040 0.6977 0.0764 0.4452 0 0.9900 0.0299 0.7608 
3 1 1 0.0149 1 0.4023 1 0.6020 1 0.0746 1 0.8010 0.4826 
4 0.4328 0.5423 0.5224 0.5771 0.6219 0.6517 0.7413 0.2388 0.1791 0.8955 0.7363 0.2338 
5 0.0050 0 0.0050 0.0050 0.0945 0.0199 0.3035 0 0.0398 0.6119 0.2438 0.5572 
6 0.4229 0.5970 0.4627 0.5473 0.4726 0.5970 0.6219 0.2935 0.1244 0.9403 0.8806 0.8458  

Table 5 
False alarm rate (FAR).  

Fault 
No. 

MPLS MTPCR MMPLS Multiphase-MEMPRM Multiphase-MCLWPR 

T2 SPE Ty
2 To

2 Th
2 Tt

2 Th
2 Tt

2 Tc
2 Tx

2 Ty
2 Qx 

1 0.1100 0.0100 0.0400 0.0900 0 0.1200 0.0200 0.0400 0.0300 0 0.0200 0.0560 
2 0 0.0600 0.0200 0.0300 0.0800 0.0600 0 0.0450 0.0200 0.0100 0.0200 0.0330 
3 0.0250 0.0100 0.0050 0.0250 0.0350 0.0350 0.0050 0 0.0050 0.0350 0.0400 0 
4 0.0350 0.0150 0.0350 0.0450 0.0700 0.1050 0.3250 0.0050 0.0100 0.0200 0.0600 0 
5 0.0400 0.0350 0.1100 0.0250 0.0850 0.0650 0.2750 0.0050 0.0100 0.0300 0.0650 0.0400 
6 0.0150 0.0850 0.0050 0.0550 0.0200 0.1150 0.2050 0 0.0100 0.0300 0.0650 0.0400  
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Fig. 15. Monitoring chart of MPLS under Fault 1.  
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Fig. 16. Monitoring chart of MTPCR under Fault 1.  
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Fig. 17. Monitoring chart of MMPLS under Fault 1.  
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follow Gaussian distribution. The MCLWPR process monitoring flow 
chart is shown in Fig. 2. 

2.4. Quality prediction 

Because multiphase MCLWPR has a strong capacity to extract the 
multiphase batch process nonlinear complex features, it can integrate 
the phase features and predict the quality variables. For the K local 
linear models RFk (k= 1,⋯,K) of MCLWPR, the test sample 
(xt

n, yt
n)(n= 1,⋯,N) should be normalized as (xt

mz,n, yt
mz,n)(n= 1,⋯,N)

by equation (10), then, the predicted value can be obtained by equation 
(30). 

ŷk = tkqk = xtmz,nrkqk (30) 

The global predicted value of MCLWPR is the normalized weighted 
mean of all the predicted outputs in equation (31). 

ŷ=
∑K

k=1
wk ŷk

/
∑K

k=1
wk (31) 

The prediction accuracy is used to evaluate the performance of the 
method. Root mean squared error (RMSE) is usually used to evaluate the 
prediction accuracy. A smaller RMSE value indicates that the prediction 
accuracy is higher. RMSE is defined as: 
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Fig. 18. Monitoring chart of Multiphase-MEMPRM under Fault 1.  
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Fig. 19. Monitoring chart of Multiphase-MCLWPR under Fault 1.  
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Fig. 20. Monitoring charts of MPLS under Fault 4.  
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RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
Nt

∑Nt

i=1
(yi − ŷi)

2

√
√
√
√ (32)  

where, yi and ŷi are the actual value and predicted value. y is the mean 
value of actual value yi, Nt is the length of testing sample. 

3. Monitoring and quality prediction steps 

3.1. Offline modeling 

Step 1: Collect the normal batch process data and normalize the 
data. 
Step 2: Step-wise sequential quality-related phase division. 
Step 3: Unfold the three-dimension data in each phase and build the 
MCLWPR model. 
Step 4: Refine the monitoring statistics and provide complete 
monitoring of the output variations. 
Step 5: Calculate Tc

2, Tx
2, Ty

2 and Qx statistics. 
Step 6: Compute the control limits of normal data by kernel density 
estimation. 

3.2. Online monitoring 

Step 1: Standardize new batch data. 
Step 2: Divide the new batch as offline phase division. 
Step 3: Calculate Tc

2, Tx
2, Tx

2 and Qx statistics for the new samples. 
Step 4: Judge if Tc

2, Tx
2, Tx

2 and Tx
2 statistics exceed the control 

limits. If there exceeds the control limit, it indicates a fault occurs; 
Otherwise, return to Step 1 for the next monitoring. 

3.3. Quality prediction 

The quality variables can be predicted by equation (31), and then the 
prediction accuracy is evaluated by equation (32). 

4. Case study and discussion 

To verify the process monitoring and quality prediction effectiveness 
of the proposed algorithm, a nonlinear multiphase numerical process 
and penicillin fermentation process are selected to test. For comparative 
analysis, the performance of the proposed algorithm is compared with 
MPLS, MTPCR, MMPLS, and multiphase-MEMPRM algorithms. Qy is the 
unpredicted output residual statistic and it is null in most training re
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Fig. 21. Monitoring charts of MTPCR under Fault 4.  
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Fig. 22. Monitoring charts of MMPLS under Fault 4.  
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Fig. 23. Monitoring charts of Multiphase-MEMPRM under Fault 4.  
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sults. Therefore, four statistics Tc
2, Tx

2, Ty
2 and Qx are shown in process 

monitoring [16,19]. 

4.1. Numerical system 

A numerical example is generated to simulate a nonlinear dynamic 
multiphase batch process [26,27]. Six variables are used as monitored 
variables, where 300 sample points are collected for each batch (20 
batches in total). 

For the first 70 sample points, the training data of each sample point 
are generated as equations (33) and (34): 

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x11 = normrnd(0.3, 0.03) + e1
x12 = x1

4 + e2
x13 = log(x1) + e3
x14 = exp(x1) + e4
x15 = sinh(x1) + e5
y11 = x11 + 2x12x13 + x11x14 + x15

(33)  

Xtrain1 = [x11 x12 x13 x14 x15 y11] (34) 

From the 71st to 180th sampling points, the training data are 
generated as follows: 
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Fig. 24. Monitoring charts of Multiphase-MCLWPR under Fault 4.  

Fig. 25. Product concentration prediction results: (a) MPLS; (b) MTPCR; (c) multiphase-MEMPRE; (d) multiphase-MCLWPR.  
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x21 = normrnd(0.3 + 0.005 ∗ i, 0.01 ∗ (0.03 + 0.003 ∗ i) + e1
x22 = x21

4 + e2
x23 = log(x21) + e3
x24 = exp(x21) + e4
x25 = sinh(x21) + e5
y21 = x21 + 2x22x23 + x21x24 + x25

(35)  

Xtrain2 = [x21 x22 x23 x24 x25 y21] (36)  

where i = 1, 2,⋯,110, i represents the ith sample point. 
From the 181th to 300th sampling point, the training data can be 

obtained as follows: 
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x31 = normrnd(1, 0.1) + e1
x32 = x31

4 + e2
x33 = log(x31) + e3
x34 = exp(x31) + e4
x35 = sinh(x31) + e5
y21 = x31 + 2x32x33 + x31x34 + x35

(37)  

Xtrain3 = [x31 x32 x33 x34 x35 y31] (38)  

where, [e1, e2, e3, e4, e5] is white noise with a variance of 0.01. The initial 
values of the batches are different in the numerical process to simulate 
the stochastic variation between batches. The train data are Xtrain(20 ×

6 × 300). In addition, the variable x32 is added a 0.002× (k − 180) ramp 
fault from the 181th point to verify the effect of the proposed algorithm. 
A normal batch is selected to illustrate the multiphase and nonlinear 
characteristics of the numerical process, as shown in Fig. 3, the variables 
clearly exhibit the multiphase and nonlinear characteristics. Therefore, 
to realize effective process monitoring and quality prediction, it is 
necessary to divide the whole numerical process into multiphases and 
extract nonlinear features of the running process. 

For the obtained 20 normal batches, the step-wise sequential quality- 
related phase division method is used to divide the phases. The phase 
partition is shown in Fig. 4, we can see that the whole process is divided 
into four phases. The divided results are inconsistent with the numerical 
process, this is because step-wise sequential quality-related phase divi
sion method focuses on the local quality-related model to extract data 
features. 

The ramp fault is added in variable x32 from the 181th point to verify 
the effect of the proposed algorithm. The monitoring charts of MPLS, 
MTPCR, MMPLS, multiphase-MEMPRM, and the proposed algorithm for 
the fault batch are presented in Fig. 5-Fig. 9, respectively. In Fig. 5, the 
T2 and SPE monitoring charts of MPLS detect the fault at the 234th and 
263rd sample points, there is a large delay in fault detection. Fig. 6 is the 
monitoring chart of MTPCR, it shows that Ty

2 and To
2 detect the fault at 

the 242nd and 254th sample points, the performance is similar with 
MPLS. In Fig. 7, the Th

2 and Tt
2 monitoring charts of MMPLS detect the 

fault at the 222nd and 213rd sample points, it can detect the fault earlier 
than MPLS and MTPCR. Fig. 8 is the monitoring chart of multiphase- 
MEMPRM, Th

2 and Tt
2 detect the fault at the 218th and 206th sample 

points, the performance is better than MPLS, MTPCR and MMPLS. By 
contrast, the monitoring chart of multiphase-MCLWPR is shown in 
Fig. 9, Tx

2, Ty
2 and Qx can detect the fault when it occurs, this indicates 

that the fault is a potential output-relevant fault, and the detection effect 
is better than MPLS, MTPCR, MMPLS, and multiphase-MEMPRM. This is 
because multiphase-MCLWPR can extract the time sequence multiphase 
characteristic and the local quality-related features effectively. 

The quality variable y is used to evaluate the prediction performance. 
The prediction results of quality variables are shown in Fig. 10, where 
the red dotted line predicted by multiphase-MCLWPR coincides well 
with the actual value trajectory. To compare the prediction results 
visually, the scatters of prediction are shown in Fig. 11, we can see that 
the predictive values of multiphase-MCLWPR are closer to the reference 
line, that is to say, the proposed multiphase-MCLWPR shows a better 
performance than MPLS, MTPCR, and multiphase-MEMPRM. Also, 
RMSE values are listed in Table .1, it can be seen that the RMSE value of 
multiphase-MCLWPR is smaller than that of MPLS, MTPCR, and 
multiphase-MEMPRM. It indicates that the prediction accuracy of 
multiphase-MCLWPR is higher. 

4.2. Penicillin fermentation process 

As a typical multiphase batch process, the penicillin production 
process has been widely used in process monitoring and quality pre
diction [28]. Birol et al. [29] developed a simulation platform, which 
simulated the penicillin production mechanism and provided a series of 
process variables. Fig. 12 is the flow chart of the penicillin fermentation 
process. The durations of each batch are set to 400h. 20 batches under 
normal operating conditions are produced. We select 11 variables as 
monitoring variables (see Table .2). 

The obtained 20 normal batches are composed the training data 
Xtrain(20 × 11 × 400).A normal batch is selected to illustrate the 
multiphase and nonlinear characteristics of the process. As shown in 
Fig. 13, the variables clearly exhibit phase and nonlinear characteristics. 
Therefore, to realize effective process monitoring and quality prediction, 
it is necessary to divide the whole process into multiphase and extract 
nonlinear features of the running process. 

The step-wise sequential quality-related phase division method is 
used to divide the process. The phase partition results are shown in 
Fig. 14, we can see that the whole process is divided into six phases. The 
divided results are inconsistent with the pensim process, this is because 
the step-wise sequential quality-related phase division method focuses 
on the local quality-related model to explain the data. It is more suitable 
for the statistical analysis of local processes. 

Pensim benchmark can produce fault batches caused by variable 
ramp or step changes, which include aeration rate, substrate feeding 
rate, and agitator rate. We introduce 6 different fault batches, as shown 
in Table .3. The effectiveness of the proposed algorithm is verified by 
setting different fault magnitudes and types. 

Fault Detection Rate (FDR) and False Alarm Rate (FAR) for all fault 
batches are quantitatively summarized in Table .4 and Table .5 to 
evaluate the effect of process monitoring. From Tables 4 and 5, we can 
see that Multiphase-MCLWPR has a higher FDR compared with MPLS, 

Fig. 26. The scatter chart of prediction.  

Table 6 
RMSEs of different methods.  

Methods MPLS MTPCR Multiphase-MEMPRM Multiphase-MCLWPR 

RMSE 0.1017 0.0508 0.0588 0.0074  
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MTPCR, MMPLS, and Multiphase-MEMPRM. The Multiphase-MCLWPR 
and Multiphase-MEMPRM can detect step Fault 1 without delay, but 
Multiphase-MCLWPR has a lower FAR. Step Fault 3 can be detected 
immediately by these five methods, this is because Fault 3 has a large 
fault amplitude, which is easy to detect. Step Fault 5 cannot be detected 
effectively because the glucose substrate feeding rate is diffused slowly 
through the correlated variables. In contrast to the step faults, ramp 
faults 2, 4, and 6 are more difficult to detect due to their slow variation. 
Compared with MPLS, MTPCR, MMPLS, and Multiphase-MEMPRM, 
Multiphase-MCLWPR detects a fault earlier than others, this is because 
Multiphase-MCLWPR considers the time sequence multiphase charac
teristic and extracts the local quality-related features effectively. By 
comprehensive analysis of FDR and FAR, Multiphase-MCLWPR can 
effectively distinguish abnormal and normal states. 

Fault 1 is the aeration rate step change from the 100th sample point 
to the end. Fig. 15 is the monitoring chart of MPLS, which shows T2 and 
SPE cannot detect the fault when the fault occurs, there is a serious 
delay. T2

y and T2
o of MTPCR are shown in Fig. 16, it also cannot detect the 

fault when the fault occurs. The monitoring chart of MMPLS in Fig. 17, 
T2

h can detect the fault timely, but there are several points under the 
control limit when the fault exists. Fig. 18 is the monitoring chart of 
Multiphase-MEMPRM, it shows that T2

t can detect the fault immediately, 
but there are false alarms between 30 to 80 sample points. The 
Multiphase-MCLWPR monitoring chart is Fig. 19, which shows that T2

x 
and Qx can detect the fault in time when the fault occurs, and there are 
no false alarms. It indicates that the fault is an output-irrelevant but 
input-relevant fault. We can conclude that Multiphase-MCLWPR is 
better than MPLS, MPTCR, MMPLS, and Multiphase-MEMPRM for 
output-irrelevant fault. 

Fault 4 is a ramp fault with a 0.7 increase in agitator rate, which is 
introduced from the 200th sample point to the end. The monitoring 
charts of MPLS, MTPCR, MMPLS, Multiphase-MEMPRM, and the pro
posed algorithm are presented in Fig. 20-Fig. 24, respectively. In Fig. 20, 
the T2 and SPE monitoring charts of MPLS detect the fault at the 307th 
and 286th sample points, there is a large delay in fault detection. Fig. 21 
is the monitoring chart of MTPCR, it shows that T2

y and T2
o detect the 

fault at the 335th and 285th sample points, the performance is similar 
with MPLS. In Fig. 22, the T2

h and T2
t monitoring charts of MMPLS detect 

the fault at the 288th and 279th sample points, it can detect the fault 
earlier than MPLS and MTPCR. Fig. 23 is the monitoring chart of 
multiphase-MEMPRM, T2

h and T2
t detect the fault at the 235th and 311th 

sample points, but there are false alarms between 0 to 200 sample 
points. The monitoring chart of multiphase-MCLWPR is in Fig. 24, Tc

2, 
Ty

2, T2
x and Qx can detect the fault, especially for T2

x , it detects the fault 
at the 211th sample point, Tc

2 detects the fault which delays a period of 
time, because when the ramp fault in agitator rate occurs, it propagates 
slowly for the quality variable under the closed-loop control. By 
contrast, the detection results of multiphase-MCLWPR are better than 
that of MPLS, MTPCR, MMPLS, and multiphase-MEMPRM. This is 
because multiphase-MCLWPR can describe the time sequence multi
phase characteristic and extract the local quality-related features 
effectively. 

In the simulation process of penicillin fermentation, the product 
concentration was selected to evaluate prediction performance. The 
quality prediction results are shown in Fig. 25, in which the predicted 
red dotted line of multiphase-MCLWPR tracks the real value line pretty 
well. To compare the prediction results visually, the scatters of predic
tion are shown in Fig. 26, we can see that the predicted values of 
multiphase-MCLWPR are closer to the reference line, that is to say, the 
proposed multiphase-MCLWPR shows a better performance than that of 
MPLS, MTPCR, and multiphase-MEMPRM. Also, RMSE values are listed 
in Table .6, it can be seen that the RMSE value of multiphase-MCLWPR is 
smaller than that of MPLS, MTPCR, and multiphase-MEMPRM. It in
dicates that the prediction accuracy of multiphase-MCLWPR is higher. 

5. Conclusion 

This paper proposes a multiphase concurrent locally weighted pro
jection regression algorithm to monitor the nonlinear multiphase batch 
process running state and predict the quality variables. This algorithm 
first divides the entire process into multi-phases according to local 
quality-related characteristics and time sequence. The statistical char
acteristics are similar in each phase, which is convenient to describe the 
nonlinear characteristics. Furthermore, the nonlinear process is modeled 
with locally linear models in each partitioned phase, it can effectively 
represent the running state of the process. The complete monitoring 
indices of quality-related and process-related are built, and the quality 
variable is predicted while exploiting the regression structure for quality 
and process monitoring. The feasibility and efficiency of the proposed 
algorithm are verified by a nonlinear numerical case and penicillin 
fermentation process. 
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