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The half-bridge converter series Y-connection microgrid (HCSY-MG) is a new type of series microgrid. In order to reduce the
harmonic content in HCSY-MG grid-connected current and at the same time simplify the parameter design process of the LCL
filter, this study proposed an LCL filter parameter design method based on an improved particle swarm optimization-least squares
support vector machine (PSO-LSSVM) by analyzing the harmonic characteristics of the HCSY-MG grid-connected current. In
addition, to enhance the convergence speed of PSO-LSSVM, the inertia factor during its parameters’ update is made to adjust
adaptively according to the direction of two consecutive parameter changes to constitute an improved PSO-LSSVM. Through
simulation and comparative analysis, it is demonstrated that the improved PSO-LSSVM can enhance the convergence speed; the
proposed filter parameter design method can effectively reduce the harmonic content in the HCSY-MG grid-connected current

and is simpler and more comprehensive than the existing design method.

1. Introduction

In the context of global environmental pollution and pri-
mary energy shortage, microgrid, which was proposed at the
beginning of the 2Ist century, has received unprecedented
attention [1, 2]. The microgrid structures that today can be
classified as AC, DC, and hybrid AC-DC are based on the
main bus supply [3]. Among them, the AC microgrids are
the most widely used and valuable for research because they
supply the same power as the electric system. However, the
parallel access method used by each grid-connected con-
verter in the AC microgrid generates a large amount of loop
current within the system, which makes the utilization of
renewable energy low, and also, the stability and power
quality of the system is poor [4, 5].

In order to solve the inherent problems in traditional AC
microgrids, some scholars have proposed series structured
microgrids with the topology, including series micropower
grids and modular multilevel converter microgrids [6, 7].
Due to the special topology of the series microgrid, its
harmonics are mainly distributed around integer multiples
of the equivalent carrier frequency, so most of the existing

parameter design methods for grid-connected filters will no
longer be applicable. This study will take a half-bridge
converter series Y-connection microgrid (HCSY-MG) as
the research object and propose a grid-connected LCL filter
parameter design method applicable to series-connected
microgrids to simplify the design process while reducing
the harmonic content in the grid-connected current. The
HCSY-MG system has the advantages of simple control, no
loop current, and higher utilization of renewable energy due
to the topology of Y-connection, so it is meaningful to study
the parameter design method of its grid-connected filter and
can provide some references for the grid-connected oper-
ation of the series microgrid.

In microgrids, active and passive power filters are
generally used to reduce the amplitude of harmonics in the
system. In the literature [8-10], corresponding active filter
optimization design methods are proposed for different
types of microgrids, which effectively improve the power
quality of the AC busbar. Compared to the active filter, the
passive filter is more suitable for scenarios with a higher
power. Because the HCSY-MG system already contains
a large number of electric power components, the use of an
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active filter will further increase the difficulty of controlling
the system; this study will use the passive LCL grid-
connected filter. The LCL filter is widely used as the in-
terface between a microgrid converter and power system
because of its better filtering effect. However, the topology
of its third-order system makes the design of component
parameters a research focus and difficulty [11]. Regarding
the parametric design methods of LCL filters, there are
mainly traditional design methods, graphical analysis
methods, optimized parameters methods, and multivariate
system of equations methods. Among them, the conven-
tional design method for LCL filter parameters is given by
literature [11], where the parameters of each element are
designed sequentially subjected to constraints. Through
theoretical analysis, literature [12, 13] proposed a graph
containing the LCL filter parameters with the filtering
effects and then used graphical analysis to obtain a pa-
rameter design and optimization method. In literature [14],
a method based on a multivariate system of equations is
given to obtain the design values of each element parameter
by solving the LCL filter parametric equation, which has
a strong generality. In addition to the abovementioned
three methods, the most commonly used LCL filter pa-
rameter design method is the parameter optimization
method. For example, there are minimization of energy
storage element values, minimization of damping re-
sistance losses, and minimization of total inductance values
[15-17]. The literature [18] proposed a design approach
based on multiobjective optimization, where the objectives
considered include a filter inductance ratio to minimize
total filter inductance and filter admittance to meet grid
regulation and characteristic impedance for low current
stress of switch stack. Regarding optimization algorithms,
the genetic algorithm and its improvements, adaptive
weight particle swarm algorithms, as well as adaptive
multipopulation-modified nondominated ranking genetic
algorithm combined with criteria importance in-
terrelationship and similarity ranking preference technique
have been successfully applied to the optimal design of
parameters for grid-connected LCL filters [19-21]. Besides,
a combination of the previous methods can be used to make
the designed LCL filter parameters better. For example,
based on the causes of harmonics generated by the con-
verter, literature [22] developed an estimation model of the
current total harmonic distortion (THD), and the values of
the parameters of each element of the LCL filter were
obtained with the current THD minimum as the optimi-
zation objective. Literature [23] based on the traditional
graphical method and using the Bode diagram of the main
transfer function as an entry point, the relationship be-
tween each component parameter of the filter and the
design requirement was analyzed to first determine the
approximate range of values for each parameter and then
determine the optimal values by the Gray wolf optimization
algorithm. Literature [24] analyzed the high-frequency
harmonics of inverter output voltage in detail and con-
structed multiobjective optimization function that in-
cluded five optimization objectives. Then, combined with
the particle swarm optimization, a screening method is
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proposed to realize the multiobjective optimization process
of designing LCL filter parameters.

For the mentioned problems that require experience,
iterative trials, and optimization, machine learning models
can achieve better solutions through their ability to extract
deep and high-order information from the data. The least
square support vector machine (LSSVM) belonging to
machine learning has been successfully applied to short-
term load forecasting in the power system, photovoltaic
output power forecasting, and orbital circuit fault diagnosis
due to its ability to show superior modeling and prediction
in applications with small sample size, nonlinearity, and low
dimensionality and can be improved according to specific
objects [25-27].

In summary, most of the existing LCL filter parameter
design methods are proposed based on common two-level
converters, which are not necessarily applicable to the
HCSY-MG system or even to the series-connected micro-
grids, so an LCL filter parameter design method applicable to
the HCSY-MG system is studied in this article. Then, the
parameter design method of an HCSY-MG grid-connected
LCL filter based on improved PSO-LSSVM proposed in this
study is based on the analysis of the grid-connected current
characteristics of the HCSY-MG system, which utilized the
PSO-LSSVM algorithm in machine learning and made its
inertia factor adaptively adjusted during particle velocity
update to obtain an improved PSO-LSSVM model. The LCL
filter design method proposed in this study can flexibly
adjust the input vector to be more suitable for the target
system according to the actual application while avoiding the
iterative trial of relying on engineering experience, which
can make the design process more convenient. Through
simulation, it is verified that the LCL filter designed by this
method can effectively improve the power quality of grid-
connected current, reduce the harmonic content in grid-
connected current, and meet the corresponding constraint
requirements.

2. System Structure and Grid-Connected
Current Characteristics

2.1. Structure of the HCSY-MG System. The HCSY-MG
system is based on the existing series microgrid and uses
generation submodule (GM) as the basic unit, which is
connected in a series structure with Y-connection to form
a three-phase converter link and then connected to the AC
bus through the LCL grid-connected filter. The topology of
the GM is shown in Figure 1, and the topology of the
HCSY-MG is shown in Figure 2.

In Figure 1, ES is the energy storage, R is the energy
dissipation resistor, C is the voltage regulator capacitor, ug,
is the half-bridge converter DC side bus voltage, iy is the
half-bridge converter output current, and S, , is the power
switching device. In the GM topology, both the ES and C are
used to stabilize the bus voltage on the DC side of the
microsource, where the ES also provides some damping for
the system to ensure stable and safe operation of the
HCSY-MG system. When the microsource output power is
greater than the rated output power, the remaining energy
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FiGgure 1: Topology structure of GM. (a) Photovoltaic GM topology and (b) wind power GM topology.
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FIGURE 2: Topology structure of HCSY-MG.

can be stored in ES to avoid waste. When the microsource
output power is less than the rated output power, the energy
stored in ES can be released to compensate for the lack of
microsource output power. In addition, the C mitigates the
effect of small fluctuations in microsource output power on
the HCSY-MG system output and the effect of small fluc-
tuations in load or grid power on the microsource side. In
Figure 2, PCC is the point of common coupling.

From Figure 2, the HCSY-MG system consists of N GMs
per phase, and the three-phase converter link includes a total
of 3N GMs. This system can adjust the system output voltage
according to the actual application through adjusting the
number of converter link output levels by flexibly selecting
the number of GMs in each phase. By equating the N series
GMs of each phase as the controlled voltage source, the
equivalent circuit of the system in a grid-connected mode
can be obtained as shown in Figure 3.

In Figure 3, O is the connection point of the three-phase
series converter link, uy. is the output voltage of phase X
(X=A, B, and C) of the series converter link, respectively, R,
is the line equivalent resistance of each phase of the series
converter link, L_ is the converter-side filter inductor, R; is

the filter damping resistor, C; is the filter capacitor, L, is the
grid-side filter inductor, R, is the grid line equivalent re-
sistance, i,y is the grid current of each phase X, ey is the grid
voltage of each phase X, and N is the grid neutral point.

2.2. Analysis of Grid-Connected Current Characteristics.
When the HCSY-MG system is in stable operation, it is
known from the system topology that the double Fourier
expansion of the output voltage of the ith GM under the
carrier phase shifting Sine pulse width modulation (CPS-
SPWM) strategy for phase A, for example, can be given by
(28]

Ugdca (l) + Much (l)

uy (i) = 5 5 sin (wyt + @4)
O = 2uges (D) (an) A (m+n)n
+ mZ::l ,,:Zoo p— I 2 sin 5 cos

>

. [m<wct +({-1) %) +n(wot +¢,)
(1)

where u, (i) is the output voltage of the ith GM of phase A,
Ugca (1) is the DC chain voltage of the ith GM of phase A, M
denotes the modulation depth, w, is the modulating wave
angular frequency, ¢, is the initial phase angle of the phase A
modulated wave, m is the harmonic order of the carrier wave
(m=1,2,...), nis the harmonic order of the reference wave
(n=0, £1, +2, ...), ], (x) refers to the Bessel coefficient of
order n and argument x, w, is the angular frequency of the
triangular carriers, and N is the total number of micro-
sources per phase.

So, the output voltage of phase A, u,, can be expressed
as

N
u M- -u .
Upo = ZuA(z) :%+%sm (wot + ¢4)

i=1
Zuch]n<Mm”> sin( (m -; n)n)

00 00
) >
m=N,2N,--- n=—00 mrn

- cos [maw t +n(wyt + ¢,)]s

(2)



FIGURE 3: circuit of the HCSY-MG

System equivalent
grid-connected mode.

where ug., = YN 4.4 (i) is the equivalent DC bus voltage of
phase A on the converter-side of the system.

Let 9, =0, ¢ = —271/3, and ¢ = 271/3, then the output
voltage u,p can be expressed as

u u u u
Upp = Upo — Upo :< dcA ch) + M( dcA + ch)
2 2 2 4

3 (o) (o8]
. sinw0t+TM‘uch- cos wyt + Z Z
m=N,2N,... n=—00

mmn 2 2

2Wa® +b* . /Mmm\ <(m+n)n> ]
. ]n( )sm sin
- (mwt + nwyt +v),

(3)

where a = uy sin (m0 — 27n/3); v = arctanb/a; b = ug ., —
Ugep cos (mB — 2mn/3); 6 is the carrier phase shift angle.

At this point, let Uy, = Ugp = Ugee = Uger 0 = 0°, then
the voltage u,p can be expressed as

\/g T 00 00
Upp = Upg — Upo :TMudcsin<w0t+g>+ Z Z
m=N,2N,... n=—00

. (_lrfjudcl,(M:m) sin( (rm J; n)n) sin(r;—n> sin

nm
. <mwct + nwyt — ?)

(4)

When the local load or parallel network adopts the
A-connection method, the connection point directly receives
the u,p, upe, and uc,. If the current follows the voltage, the
output current of phase A of the system can be expressed as

i
iy = I, sin (wot + r + <p> + ioahs (5)

where I,, is the amplitude of the fundamental component of
the output current, ¢ is the power factor angle, and 7y, is the
high-frequency harmonic component.
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When the local load or parallel network adopts the Y-
connection method, the connection point does not directly
receive the u,p, Upc, and Ue, . At this point, through the KVL
equation, the output voltage can be expressed as

_ 2upp —Uppg —Uco _ Uap ~ Uca
UpN = 3 = 3 >

_ 2Upg —Upo ~Uco _ Upc ~ Uap
Upn = = > (6)
3 3

_ - —Upo _ — Up
2uco —Upo ~Upo _ Uca ~ Upc
| Ycn = 3 = 3 >

where 1y is the voltage between the output point of phase X
(X=A, B, C) of the series converter link and the local load or
the neutral point of the power system.

Furthermore, continuing with the example of phase A,
the voltage u,y can be expressed as

1 (o] (o)
UaN = Uant + Uann = 5 Mg sin (0ot) + ). Y

dug.  (Mmm\ . ((m+n)n
.mﬂ]”( 2 >sm( 2 )

nmy .
: cos(;) sin (mwyt + nwt),

(7)

where u, s and u,y,;, are the fundamental and harmonic
components of u,y, respectively.

So, the fundamental component of the output voltage
U,y can be expressed as

1 . 1
Uant = 5 Mugc sin (wot) = tpor ~ Jhde (8)
where ¢ is the fundamental component of u,.
If the current follows the voltage, then the output current
of phase A of the system at this time can be expressed as

iy = I, sin (ot + @) + gy (9)

From the aforementioned mathematical expressions, the
characteristics of the grid-connected current of the
HCSY-MG system can be obtained as follows:

(1) The frequency of the grid-connected current har-
monics can be expressed as (mw, + nw,)t, i.e., the
harmonics mainly occur around integer multiples of
the equivalent carrier frequency

(2) When 7 is an even number, there are no harmonics
of an integer multiple of the equivalent carrier fre-
quency in the grid-connected current

(3) When the equivalent DC bus voltages of each phase
are not equal, the harmonics of the grid-connected
current will appear near the equivalent carrier fre-
quency multiple, and the amplitude of the harmonic
current is positively correlated with the difference of
the equivalent DC bus voltages
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(4) In the same spectrum, the harmonic component of
the grid-connected current decreases as the equiv-
alent carrier frequency increases

(5) The equivalent carrier frequency can be increased by
increasing the number of microsources N or by
increasing the carrier frequency f., thus reducing
the harmonic content in the grid-connected current

Regarding the harmonic content of grid-connected
current in a microgrid, the IEEE Std. 1547-2003 standard
requires that the current THD should be less than 1.5% [29].
Therefore, to make the grid-connected current THD of the
HCSY-MG system meet the requirement, the LCL filter
parameter will be designed using the improved PSO-LSSVM
algorithm in this study.

3. LCL Grid-Connected Filter Characteristics
and Constraints

3.1. LCL Grid-Connected Filter Characteristics. The LCL
grid-connected filter topology with a damping resistor is
shown in Figure 4.

In Figure 4, u; is the input voltage, i, is the output grid-
connected current, and u, is the output voltage. Its open-
loop transfer function can be obtained from Figure 4:

RfoS +1

Gls) = LCLngs3 +(Lc + Lg)Rfo52 +(Lc + Lg)s

> (10)

where s is the frequency domain variable.

Let Ry =0 in the previous equation to obtain the open-
loop transfer function of the LCL filter without the damping
resistor. The Bode diagram of the LCL grid-connected filter
is shown in Figure 5.

As can be seen from Figure 5, the LCL filter amplitude
response curve without the damping resistor has a spike at
the resonance point, while the phase response has a —180°
change, which can easily lead to the instability of the grid-
connected system and thus affect the safe and reliable op-
eration of the power system. The damping resistor can cut
the resonance spike in the amplitude response curve to
a certain extent and avoid the —180" change in the phase
response, i.e., avoid the instability of the grid-connected
system and guarantee the safe and reliable operation of the
power system.

3.2. LCL Grid-Connected Filter Constraints. The current
flowing through the converter-side filter inductor L. gen-
erates a ripple current on the operation of the switch device,
which affects the effectiveness of the LCL filter. The ripple

current A, can be expressed as
u.

Aip, o =—"—, 11

e 4fequLc ( )

where fg, is the equivalent carrier frequency.

The introduction of the damping resistor also brings
some additional power losses. To ensure the filter perfor-
mance, the power loss of the whole filter needs to be less than

f
- O —l_ O -

FiGure 4: LCL grid-connected filter topology with a damping
resistor.
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FIGURE 5: Bode diagram of the LCL grid-connected filter.

5% of the rated active power. The power loss of the filter can
be given by [30]

2
u

P .. =R—2°——, 12
loss fR?+ 1w? C? (12)

equ

is the

where P, is the power loss of the filter and w,q,

equivalent carrier angular frequency.

The total inductance of the filter can effectively reduce
the harmonic current content of the grid, but too large
inductance will make the filter response to the current weak,
so the total inductance of the filter needs to be reasonably
selected. The constraint on the total filter inductance L can
be given by [31]

U ul  —ul3
— <L< | (13)
4\/§A1max : fequ Wequlmax

where L =L+ Ly, Uy, and iy, are the peak values of
output voltage and current, respectively.

4. Improved PSO-LSSVM Algorithm

4.1. The PSO-LSSVM Algorithm. In the analysis of existing
LCL filter parameter design methods and in the process of
obtaining training samples, it was found that the attenuation
of the harmonic amplitude of the gird-connected current by



the LC branch in the LCL filter is a nonlinear process. Also,
because the number of training samples obtained by the
simulation in this study is small and the LSSVM can obtain
better results in the field of modeling and prediction of
nonlinear data with a small sample size, LSSVM is used as
the basic algorithm in this study. In addition, the use of the
PSO algorithm to optimize the parameters affecting the anti-
interference and generalization of LSSVM models has been
widely used means. For these reasons, the PSO-LSSVM has
good compatibility with the problem discussed in this study,
so this algorithm is chosen as the core algorithm of
this study.

Given a sample set {(xj,y]-)},j =1,2,..,q, where x; is
the input vector, y; is the output vector, and q is the size of
the sample set, then the optimization model of LSSVM can
be given by [32]

q

min [J (@, )] = Sl + 3P Y &

= (14)

sty;= w</>(xj) +tb+&,j=12..q

where w is the weight vector, b is the bias, P is the error
penalty factor, &; is the relaxation variable, and ¢ (-) is the
nonlinear mapping function.

By solving the previous optimization model, the final
regression model of LSSVM can be expressed as

q
f) =Y LK (xx) +b, (15)
=

where A; is the Lagrange multiplier and K(x,x;) is the
kernel function.

To ensure the generalization of the regression model, the
radial basis function is chosen as the kernel function, which
can be expressed as

K(x,xj) = exp (—@), (16)

where ¢ is the kernel parameter.

From the above standard type of LSSVM, it can be seen
that the kernel parameter o and the error penalty factor P
will affect the anti-interference and generalization of the
model, so they need to be optimized. Currently, the PSO
algorithm is commonly used to optimize the previous two
parameters of LSSVM, namely, the PSO-LSSVM model. The
velocity and position of the particles in the PSO optimization
algorithm are updated in the following way:

Vi = av, + f3; - rand (0, 1) (pbest, — x,)
+ 8, - rand (0, 1) (gbest, — x,), (17)
Xer1 = X +Vp
where v, is the speed of the particle, « is the inertia factor, f3,
is the self-learning factor, rand (0,1) is a random number

between (0, 1), pbest, is the current optimal position of the
particle, x, is the current position of the particle, 3, is the
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global-learning factor, and gbest, is the current global op-
timal position of the particle.

4.2. The Inertia Factor Adaptive Adjustment Strategy of Im-
proved PSO-LSSVM. In this study, to balance the global-
search and self-search capability of PSO-LSSVM while
improving the model convergence speed, an inertia factor
adaptive adjustment strategy has been used to make the
inertia factor adjust its size according to the difference
between two consecutive update directions. The inertia
factor adaptive adjustment strategy can be expressed as

, D-a, Av>0,
o = (18)
d-a, Av<O,

where « is the inertia factor after updating, D is the rate of
inertia increase, and d is the rate of inertia decrease.

PSO-LSSVM is already a mature model in which the PSO
algorithm is widely used and can achieve the global opti-
mality. In addition, the adaptive adjustment of inertia can
give the improved PSO-LSSVM model the ability to flush out
the current optimal value and find the global optimal value.
Therefore, the proposed improved PSO-LSSVM in this study
can reach the global optimum.

In summary, when the maximum number of iterations is
maxgen, the flowchart of the PSO-LSSVM algorithm for
adaptive inertia is shown in Figure 6.

5. Parameter Design of the LCL Grid-Connected
Filter Based on Improved PSO-LSSVM

The steps for the design of LCL grid-connected filter pa-
rameters based on the improved PSO-LSSVM are as follows:

(1) Based on the constraint related to the ripple current,
the design value of the converter-side filter inductor
is found

(2) According to the improved PSO-LSSVM, the design
values of the filter capacitor and grid-side filter in-
ductor are obtained

(3) According to the power loss constraints of the LCL
filter, the design value of the damping resistor
is found

(4) The other constraints are checked for the designed
LCL filter

(5) If the constraint is satisfied, the designed LCL filter is
the desired one; if the constraint is not satisfied, we
return to step (1) and redesign

5.1. Converter-Side Filter Inductor Design. The character-
istics of the LCL filter show that the ripple current
flowing through the filter inductor on the converter-side
affects the performance of the filter. The expression of the
ripple current is shown in (11), which contains the
relevant parameter for the converter-side filter inductor.
Then, the converter-side filter inductor can be expressed
as
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Let the equivalent DC chain voltage wuy,; =80V,

microsource number N =4, and the carrier frequency f =

1kHz of the HCSY-MG system. Then, according to (19), the

converter-side filter inductance can be calculated as L. =
1mH, so the design value of L_ is chosen as ImH.

5.2. Parameter Design Based on Improved PSO-LSSVM

5.2.1. Determination of Model Input and Output Vectors.
Combining the analysis of the LCL grid-connected filter
characteristics in Section 3 and the analysis of harmonic
characteristics of the grid-connected current of the HCSY-MG
system in Section 2.2, the input vectors of the filter parameter
design model based on improved PSO-LSSVM are chosen as
the equivalent DC chain voltage, converter output voltage,
equivalent carrier frequency, high-frequency harmonic current
content (mcludmg fequ - an’ fequ - 3fn’ fequ - fn> fequ +
S fequt3fmwand feq, +5f,), current THD allowable value,
and desired resonant frequency, in 11 groups. The output
vectors are selected as the grid-side filter inductor value and
filter capacitor value, in 2 groups. Here, f,,, and f, are the

equivalent carrier frequency and fundamental frequency,
respectively.

5.2.2. Data Preprocessing and Model Evaluation Metrics.
From the correlation analysis in Section 3, it is clear that the
variables in the input and output vectors have large order-of-
magnitude differences. To ensure the accuracy of model
building and the homogeneity of the data, the data need to be
normalized using a linear transformation.

To measure the effectiveness of the improved PSO-
LSSVM algorithm and the feasibility and effectiveness of the
filter parameter design method based on the improved PSO-
LSSVM, the fitness function is selected as

g= %(f (x;) - y:)’. (20)

In addition, the root mean square error (RMSE) and the
mean relative error (MRE) were selected as the network
evaluation criteria.

5.2.3. Validation of Improved Strategies. Based on the
designed converter-side filter inductor, the feasibility and
effectiveness of the improved PSO-LSSVM are verified by
obtaining training sample sets through simulation.

According to the description related to the improved
PSO-LSSVM model in Section 4, the basic parameters are
selected as the self-learning factor 3, = 1.5 and the global-
learning factor 8, = 1.7, and the maximum number of it-
erations is set to 60.

The effectiveness of the proposed improved PSO-LSSVM
model in improving the convergence speed is first verified by
comparison. Under the same model parameters and training
sample set, the PSO-LSSVM fitness function curves using
the inertia factor adaptive adjustment strategy and the
common strategy are shown in Figure 7. The corresponding
network evaluation metrics are shown in Table 1.

From the change curve of the fitness function in Figure 7,
it can be seen that when the inertia factor in the particle
velocity update formula adopts an adaptive adjustment
strategy, the value of the fitness function can be stabilized at
a smaller value sooner and the convergence of the model can
be accelerated, which in turn ensures the applicability of the
model in the case of a small training sample set.

As can be seen from the data in Table 1, when the inertia
factor is adjusted with the adaptive adjustment strategy, it
does not have a large impact on the error of the model, but
it can slightly improve the accuracy of the model. In ad-
dition, since the adaptive inertia factor adjustment strategy
adjusts the inertia of the particle velocity update after each
iteration, there is a certain extension of the model
training time.

5.2.4. Filter Capacitor and Grid-Side Filter Inductor Design.
Based on the previous improved PSO-LSSVM model, the
input vectors are set as shown in Table 2.

Then, the corresponding output vectors are obtained by
the improved PSO-LSSVM as shown in Table 3.
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TaBLE 1: PSO-LSSVM network evaluation metrics before and after
improvement.

Models RMSE MRE (%) Training time (s)
PSO-LSSVM 0.1725 5.9145 3.81
Improvement PSO-LSSVM 0.1703  5.8169 4.27

TaBLE 2: Improved PSO-LSSVM model input vector.

Numbers Input vector name Input vector value
1 Equivalent DC chain voltage 320V
2 Converter output voltage 160V
3 Equivalent carrier frequency 4kHz
4 fequ = 5f, harmonic content 1%
5 fequ — 3f, harmonic content 0.5%
6 fequ — f» harmonic content 1%
7 fequ t f» harmonic content 1%
8 fequ+3f, harmonic content 0.5%
9 fequ+5f, harmonic content 1%
10 THD of current 1.5%
11 Desired resonant frequency 3kHz

TaBLE 3: Improved PSO-LSSVM model output vector.

Numbers Output vector name Output vector value
1 Grid-side filter inductor value 0.124mH
2 Filter capacitor value 18.426 uF

Considering the actual component values, the design
value of the grid-side filter inductor designed value is 0.1 mH
and the capacitor designed value is 20 uF.

5.3. Design of the Damping Resistor. The designed value of
the damping resistor can be obtained from Subsection 3.2 by
the filter power loss, i.e., equation (12). Let the P, = 5%P,
then the value of the damping resistor is calculated to be
R¢ = 0.48Q). Therefore, the design value of the damping
resistor is chosen as 0.5 Q.

The verification of whether the designed LCL filter
satisfies the relevant constraints will be performed later.

International Transactions on Electrical Energy Systems

6. Simulation Verification

Based on the abovementioned method, a grid-connected
simulation model is built based on the obtained HCSY-MG
system parameters and the parameters of each element of the
LCL grid-connected filter, to validate the results and
conclusions drawn.

6.1. Verification of Grid-Connected Current Characteristics.
First, the grid-connected current characteristics of the
HCSY-MG system are verified. The grid-connected current
waveform and its spectrum when the LCL filter is not added
to the HCSY-MG grid-connected system are shown in
Figure 8.

From Figure 8(a), it can be seen that the grid-connected
current has some sinusoidal characteristics, but the overall
quality is poor. Figure 8(b) can reflect the following char-
acteristics: (i) the grid-connected current does not contain
harmonics at an integer multiple of the equivalent carrier
frequency; (ii) the harmonic currents are mainly distributed
near the equivalent carrier frequency multiple; (iii) the
harmonic content decreases with the increase of the
equivalent carrier frequency. This proves the correctness of
the analysis of the harmonic characteristics of the grid-
connected current of the HCSY-MG system in Section
2.2. In addition, the grid-connected current THD = 13.11%,
which is greater than the 1.5% required by IEEE Std. 1547-
2003 standard, so it cannot be directly connected to the grid.

6.2. LCL Filter Performance Verification. Then, the feasibility
of the proposed filter parameter design method based on
improved PSO-LSSVM is verified.

We set the LCL grid-connected filter with each element
parameter as described in Section 5.2, i.e, L. = ImH, L, =
0.1mH, C; =20uF, and R; = 0.5Q), to obtain the corre-
sponding filter transfer function as

RfoS +1

G = L.L,Css’ +(L,+Ly)R;Cps” +(L, + L,)s

(21)

~ 10x 10 %s + 1
2x 10282 +11x107°* + 1.1 x 10 %5

The Bode diagram corresponding to the transfer func-
tion G(s) is shown in Figure 9.

From the LCL filter Bode plot magnitude response curve
in Figure 9, it can be seen that the LCL filter designed based
on the improved PSO-LSSVM algorithm can effectively
suppress high-frequency harmonics. From the phase re-
sponse curve, it can be seen that the designed filter has
a phase change of —135" at the resonant frequency and does
not have a change of —180° which can easily lead to system
instability, so the design of each element parameter of the
filter is reasonable and does not make the gird-connected
system unstable.

The LCL filter was connected to the HCSY-MG grid-
connected system, and the waveforms of the grid-connected
current and its spectrum are obtained as shown in Figure 10.
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FIGURE 8: Waveform of the grid-connected current without a filter and its frequency spectrum. (a) Waveform of the grid-connected current
and (b) frequency spectrum of the grid-connected current.

-50

-100 =

Magnitude (dB)

-150
-90

-135

-180 \

-225 \ //

-270
10° 10 10° 10° 107
Frequency (Hz)

Phase (deg)

Ficure 9: LCL filter diagram after parameter design.

Fundamental (50 Hz) = 10.42, THD=1.13%
T T T T 0.7 T T T T T T T T T

0.6 +
0.5}
0.4t
03+

0.2 F

Mag (% of Fundamental)

, , : P\ 0 1
; ; ; ; 0 _MJNM i i T T

0 0.02 0.04 0.06 0.08 0.1 0 1 2 3 4 5 6 7 8 9 10

t(s) Frequency (kHz)

(a) (b)

FIGURE 10: The waveform of the grid-connected current with a filter and its spectrum. (a) Waveform of the grid-connected current
and (b) frequency spectrum of the grid-connected current.
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TaBLE 4: The LCL filter parameter designed by different methods and the corresponding parameter HCSY-MG system grid-connected

current.

L, (mH) Lg (mH) Cs (uF) Fundamental THD (%) f, (Hz)
Design method in this paper 1 0.1 20 10.42 1.13 3734
Traditional design method 1 0.5 10 10.4 1.7 2758
Graphical analysis method 1 0.4 6 10.42 1.75 3845
Optimized parameter method 1 0.5 5 10.4 1.83 3900
Multivariate system of equation method 1.2 0.6 10 9.8 1.38 2517

From Figure 10(a), it can be seen that the power quality
of the grid-connected current is better. Figure 10(b) shows
that the current THD is reduced to 1.13%, which meets the
conditions required in IEEE Std. 1547-2003 standard, the
harmonic current content near 4 kHz is less than 1%, and the
harmonic current content near 8kHz is extremely low,
reaching a negligible level. Therefore, by comparing Fig-
ures 8 and 10, it can be seen that the LCL filter designed
based on the method proposed in this study can effectively
improve the power quality of the grid-connected current and
reduce the harmonic content in the grid-connected current.

6.3. LCL Filter Constraint Verification. According to the
design steps in Section 5, it is necessary to verify whether the
designed LCL filter satisfies the corresponding constraints.
In addition to the constraints already verified in the previous
section, the remaining conditions are to be verified as
follows.

6.3.1. Resonant Frequency. According to the design of each
element parameter of the LCL filter in Section 5, the corre-
sponding resonant frequency of the filter can be calculated as

1 LC+Lg

2 LchCf

Fres = = 3734Hz. (22)

For the resonant frequency f .., the general constraint
can be expressed as

IOfO < fres < fequ' (23)

Comparing equations (22) and (23), it is found that the
designed filter satisfies the constraint of the resonant
frequency.

6.3.2. Total Inductance. According to the constraint of (13)
for the total inductance value, it can be calculated as
0.58mH <L = 1.1mH <346mH. Therefore, the total in-
ductance value L =1.1 mH satisfies the relevant constraint.

Simulation and verification results show that the LCL
grid-connected filter design method based on the improved
PSO-LSSVM algorithm proposed in this study can effectively
reduce the harmonic content in the grid-connected current
without destabilizing the HCSY-MG grid-connected system
and meet the corresponding constraint requirements.

6.4. LCL Filter Contrast Analysis. To illustrate the advantages
of the proposed LCL grid-connected filter parameter design
method for the HCSY-MG system over the existing methods

and its applicability to the HCSY-MG system, the com-
parative analysis of the previous methods is necessary. The
LCL filter parameters designed by different methods and the
corresponding parameters of the HCSY-MG system grid-
connected current are shown in Table 4, where the target of
optimized parameter method is the minimization of energy
storage element values of the literature [19].

Compared with the traditional design method, the de-
sign method proposed in this study does not need to rely on
the iterative trial of engineering experience. Compared with
the graphical analysis method, the design method proposed
in this study also avoids iterative trial and does not require
a complicated graphing process to obtain the desired filter
parameters. The optimized parameter method can only
consider one or more objectives and cannot comprehen-
sively consider the requirements of the whole system, while
the method proposed in this study can measure the char-
acteristics of the whole system comprehensively with the
help of the machine learning model, i.e., the improved PSO-
LSSVM, and thus derive more reasonable filter parameters.
Although the multivariate system of the equations’ method
represents the system characteristics by a system of equa-
tions, the resulting system of equations is difficult to solve,
while the method proposed in this study only requires the
data obtained from the HCSY-MG system operation to
design reasonable filter parameters easily.

Comparing the design results, it can be seen that the total
inductance of the LCL filter designed based on the method
proposed in this study is the smallest, and the grid-
connected current THD is also smaller; although the filter
capacitance is larger, it still meets the corresponding con-
straint requirements. In addition, the method proposed in
this study is more applicable to the HCSY-MG system, and
also, the input and output vector of the improved PSO-
LSSVM can be flexibly adjusted according to the actual
application objects.

6.5. Sensitivity Analysis. When the parameters of the
HCSY-MG system change, the power quality parameters of
its grid-connected current will also change. The LCL filter
parameter design method for the HCSY-MG system used in
this study uses the grid-connected current characteristics of
the HCSY-MG system as the training samples for the im-
proved PSO-LSSVM model, and even the parameters of the
HCSY-MG system change, the corresponding training
samples will also change. Therefore, when the parameters of
the HCSY-MG system change, with the modeling and
prediction capability of the improved PSO-LSSVM model,
the results of the LCL grid-connected filter parameters
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designed based on the method proposed in this study will
also be designed in accordance with the system
requirements.

The improved PSO-LSSVM used in the LCL filter pa-
rameters design method proposed in this study consists of
three core components, which are the PSO optimization
algorithm, the LSSVM model, and the inertia factor adaptive
algorithm. Among them, the inertia factor adaptive algo-
rithm is an innovation in this study. Many analyses of the
sensitivity of the parameters of the PSO optimization al-
gorithm have been made in the existing literature, as well as
a sensitivity analysis of the LSSVM model has been given in
the literature [32]. So, a corresponding sensitivity analysis of
the inertia factor adaptive algorithm will be given as follows.

The description of increasing rate D and decreasing rate
d in Subsection 4.2 shows that these two parameters only
affect the convergence speed of the improved PSO-LSSVM
when they are varied within a reasonable range of values and
do not have a large impact on the design results and training
time. To verify this conjecture, the improved PSO-LSSVM
network evaluation metrics and training time, the corre-
sponding filter design values, and the HCSY-MG grid-
connected current power quality parameters for different
values of D and d are summarized in Table 5. The results for
the fundamental component and THD are obtained
according to the inductance and capacitance values that
match the actual situation.

As can be seen from the table, too large or too small rates
may cause large errors in the improved PSO-LSSVM
modeling and prediction results, but they do not have
a large impact on the training time. The previous validation
results are the same as the theoretical analysis. The reason
that too large or too small rates make the improved PSO-
LSSVM modeling and prediction results to have large errors
may be the inability to converge to the global optimal so-
lution with a finite number of iterations constraint. When
the global optimal solution cannot be obtained by the im-
proved PSO-LSSVM, it will make the designed LCL filter fail
to meet the requirements of the HCSY-MG grid-connected
operation. Therefore, the values of D and d chosen in this
study are the values for the minimum case of RMSE and
MRE, i.e., D=1.5 and d=0.6.

7. Conclusion

The LCL grid-connected filter parameter design method
proposed in this study is firstly for a new type of series
microgrid which is the HCSY-MG system. Then, a new
method is proposed to design the HCSY-MG grid-
connected filter parameters using the improved PSO-
LSSVM, in which the power quality of the grid-connected
current is used as the input vector of the improved PSO-
LSSVM, and the parameters of the LC in the filter are taken
as the output vector to obtain the LCL filter parameters that
meet the design requirements according to the HCSY-MG
system operating characteristics and relevant constraints.
The main work and innovations of this study are as
follows: (1) Based on the HCSY-MG mathematical model of
grid-connected operation, the characteristics of the grid-
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connected current of the system are analyzed and obtained.
(2) Combining with the application context, an improved
PSO-LSSVM is proposed by adaptively adjusting the size of
the inertia factor by (18) according to the direction of the two
consecutive particle velocity in the PSO-LSSVM. (3) Based
on the previous research work, a parameter design method
of the LCL grid-connected filter for the HCSY-MG system
based on the improved PSO-LSSVM is proposed.

The positive points of the proposed work are as follows:
(1) The grid-connected current characteristics of the
HCSY-MG system, a new type of series microgrid, are
analyzed to provide a reference for the subsequent grid-
connected operation and control of the system. (2) The LCL
grid-connected filter parameter design method based on the
improved PSO-LSSVM is proposed for the HCSY-MG
system, which reduces the THD of grid-connected current
from 13.11% to 1.13% and effectively improves the power
quality of the grid-connected current of the HCSY-MG
system. The proposed method provides a new idea and
method for the design of grid-connected filter parameters of
microgrids. (3) For the application context of this study, an
improved PSO-LSSVM with adaptive change of the inertia
factor is proposed, which improves the convergence speed of
the model and enriches the application of PSO-LSSVM.
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Abstract: In the grid-connected system of a half-bridge converter series Y-connection microgrid (HCSY-MG), fluc-
tuations in renewable energy power will introduce DC and fundamental frequency fluctuation components in the grid-
connected current. To address this specific issue in the HCSY-MG system, a grid-connected current model predictive
control strategy based on adaptive compensation of fluctuation components is proposed. Under the condition of stochas-
tic fluctuations in renewable energy, the grid-connected current expression of the HCSY-MG system is derived, and its
characteristics are analyzed. Based on these characteristics, the grid-connected current expression is utilized as the predic-
tive model, and the artemisnin optimization algorithm is improved using chaotic and adaptive mechanisms to enhance the
search speed in the rolling optimization process. This approach effectively reduces the fluctuation components in the grid-
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with existing methods verify the feasibility, effectiveness, and specificity of the proposed control strategy.
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Fig. 7 Characteristics of the grid-connected current under

operating condition 1 using the composite control strategy
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operating condition 1 using the MPC strategy
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Fig. 12 Characteristics of the grid-connected current under

operating condition 3 using the composite control strategy
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operating condition 3 under the MPC strategy
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(EMEIKRFEAIEERLTAEFR, 2/ 730050)
HE: H-FpoR-FA TR S &5 2 A 2408 & M (half-bridge converter series Y-connection microgrids, HCSY-MG)H# M & 4% #Uk i #
8, FRLEA AR R Z Aok S 5 R IR = A0-TA, $2 i —A BT sk 5% SR wk-#R 4L (proximal policy optimization, PPO) #9577 X
4&-fi% At (hybrid energy storage system, HESS) AL H] ok . 24 J& HCSY-MG # %t F w5 457 X HESS 451 89 X4+ TF, #2 T7 %
R CRGEERATE, AR HESS A RAMREIEI N, RBLESBRALNIEER, FoTh X HESS 89 A F AL A SRR
FRALE 5] b Markov 2 FLidAZ. RIBFAERT PPO Hiok v IR AR KA E e AFH 2 69 IF1AL, 42 s —Abedistad PPO ik, RBUT A7 RRARADICSME AR
Mo BB AR A A ALEAT IR A FA), BodE A T RAZF R R T AT M Aoy 200

KBER: BEAMCE M SR RXRAERE WIRREMAL; AR R, RERLFES]
Optimal Control of Distributed Hybrid Energy Storage Charge-discharge

for HCSY-MG Grid-connected System Based on Improved PPO

LI Jinjian, Student Member, CPSS, WANG Xinggui, DING Yingjie, Student Member, CPSS
(School of Electrical Engineering and Information Engineering, Lanzhou University of Technology, Lanzhou 730050, China)
Abstract: To mitigate fluctuations in the output of micro-sources within half-bridge converter series Y-connection microgrid (HCSY-MG)
grid-connected system and to ensure both the balance of the sum of DC-side voltages and the 3-phase grid-connected current, a distributed hybrid en-
ergy storage system (HESS) charge-discharge optimization control method based on the improved proximal policy optimization (PPO) is proposed.
Taking into account the grid-connected current of the HCSY-MG system and the characteristics of the distributed HESS, the key system variables
affecting the grid-connected current are identified, and the optimal topology for integrating the HESS into the system is determined. Subsequently,

considering the characteristics of the series-connected system, the charge-discharge problem of the distributed HESS is transformed into a Markov
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decision process within the framework of deep reinforcement learning. To address the challenge of determining the entropy loss weight in the PPO

method, an improved PPO approach is proposed, which balances the agent’s convergence and exploration capabilities. Finally, using typical operation-

al data from a renewable energy generation site as a case study, the proposed control strategy is validated as both feasible and effective in a se-

ries-connected microgrid.

Keywords: Series-connected microgrid; distributed hybrid energy storage; proximal policy optimization; charge-discharge power; deep rein-

forcement learning
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Fig. 1 Topology structure of HCSY-MG system
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Fig. 2 Equivalent circuit of the grid-connected HCSY-MG system
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Tab. 1 The flow of the improved PPO algorithm
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