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A B S T R A C T

Modern batch processes develop toward higher levels, and devices usually work at normal conditions with
generally very few faults. Therefore, fewer fault data are collected than normal data, which makes the normal
and fault modes imbalanced, and the fault diagnosis model is incapable focusing on the minority of fault samples
as much as on most normal samples, consequently leading to insufficient generalization ability for the model. For
that, we propose an adaptive imbalance-robust graph embedding broad learning system (AI-RGEBLS) in this
paper. Firstly, it achieves adaptive correction of unbalanced samples by niche technique and synthetic minority
over-sampling technique (SMOTE) with improved Mahalanobis distance. Then, broad learning system (BLS) is
regularized by graph embedding, and further introduced the L2,1 norm constraint, which makes it possible to
enhance the robustness of the model while considering the local manifold information of the data in the feature
extraction process. Finally, the incremental learning approach is applied to the model to avoid the disastrous
forgetting problem caused by training the whole model from zero. The effectiveness of the proposed method is
verified by penicillin fermentation process and semiconductor etching process. It can effectively improve the
speed of model training and provide better fault diagnosis for imbalanced batch processes compared with the
existing methods.

1. Introduction

As the demand for multi-standard, refined, and individual products
increases, batch production processes are focusing the attention in in-
dustry and academics. It is essential for the safe and reliable process
requirements of the batch process (Arunthavanathan et al., 2021a;
Chang et al., 2023; Jiang and Ge, 2020; Khan et al., 2015; Qian et al.,
2022). Modern batch process the development was intelligent and
complex, which led once the equipment fault maintenance cost is very
high. And after the fault occurred, due to the equipment stopping caused
great economic losses for the enterprise, the heavy is very easy to
accompany the major casualty problem (Gu et al., 2023; Ji et al., 2023;
Khan and Yairi, 2018; Zhao et al., 2023). Therefore, it is very crucial for
the effective fault diagnosis for the batch process on the safe production.

The data driven approach is much appreciated because it does not
require precise modeling as well as empirical knowledge. Such methods
like multivariate statistics (Yoon and MacGregor, 2001), representation
learning (Fan et al., 2021), reinforcement learning (Zhang et al., 2023b),

and shallow learning (Cirrincione et al., 2020) have been applied to
industrial process fault diagnosis with favorable results. In many com-
plex scenes, the variety of fault categories and the complex properties
among the variables caused not to achieve satisfactory results. The deep
learning approach is recognized as the preferred fault diagnosis method
for its unique ability for data interpretation. Such networks include, Pan
et al., 2021 proposed a novel classification-driven neuron grouped
stacked autoencoder (CG-SAE) for hierarchical fault related feature
representation. Wang et al. (2020) proposed an extended deep belief
network (EDBN) to fully utilize the useful information in the original
data, and constructed a fault classifier based on the dynamic EDBN by
taking the dynamic characteristics of process data into full consider-
ation. Chen et al. (2022) proposed a fusion model (CS-IMLSTM) based
on convolutional neural network (CNN), squeeze excitation (SE) atten-
tion mechanism, and improved long short-term memory network
(IMLSTM) for chemical process fault diagnosis, which significantly
improved the fault accuracy. Arunthavanathan et al. (2021b) proposed a
combined CNN and LSTM approach for early potential fault detection.
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Zheng and Zhao (2020) proposed an unsupervised data mining method
based on convolutional stacked autoencoder (CSAE) of deep learning
that is used to isolate different states of chemical processes, which
include normal operation and malfunctions, and construct fault diag-
nostic models. Wang et al. (2024c) proposed a novel fault diagnosis
network based on a refined prototype and correlation weighting Man-
hattan distance (RPCMN). Wang et al. (2024b) proposed a multi-scale
cross feature extraction module (MSCM), which is constructed to mine
key classification information under noise interference to improve fault
identifiability. Wang et al. (2024a) proposed an innovative
Neural-Transformer to realize high-precision robust fault diagnosis with
low computational cost. Nonetheless, these deep learning networks
usually require frequent parameter tuning and multilayer stacking to
achieve the desired accuracy. However, such process can be extremely
time-consuming, which runs counter to the goal of building a model
with both efficiency and accuracy.

In view of the problem of training and updating time consuming for
deep learning, Chen and Liu (2017) proposed a network structure called
broad learning system (BLS). As alternative methods for learning deep
structures, BLS transforms the problem with finding complex nonlinear
relationships between the input and output layers of multilayer deep
networks into the problem of finding linear relationships between
two-layer-breadth stochastically mapped layers and the output layer,
which has gained significant research interest due to its unique appeal,
and led to the emergence of a numbers of improved methods based on
BLS. Pu and Li (2021) proposed an online semi-supervised broad
learning system (OSSBLS) for fault diagnosis in situations where data
labels are difficult to obtain. The proposed method not only efficiently
constructs and incrementally updates the model, but also improves the
diagnostic performance of the model by utilizing unlabeled data. Lu
et al. (2023) proposed an improved BLS fault diagnosis method based on
data enhancement and multidomain feature fusion, which improved BLS
effectively solves the problem of sample imbalance and greatly improves
diagnostic accuracy. Hu et al. (2024) proposed a multi-feature fault
diagnosis method based on a weighted temporal broad learning system,
which incorporates multiple features extracted from raw process data to
improve the fault diagnosis performance, and makes the diagnostic
model suitable for dynamic fault diagnosis problems by combining with
BLS.

Notably, from the perspective of global structure, BLS deals with the
data and seldom considers the geometric structure. Graph neural
network (Yin et al., 2024) shows great potential in dealing with complex
relationships and structured data. However, the main advantage of
graph embedding over graph neural network is that it is computationally
efficient and versatile, and a fixed representation of the nodes can be
generated through a single embedding, which can be quickly used in
subsequent tasks. Local metrics and neighborhood information can fully
reveal the intrinsic geometric features of the data, and with the above
analysis, scholars have proposed several graph embedding methods.
Such as, locality preserving projection (LPP) (Shah et al., 2022; Sobha-
ni-Tehrani et al., 2014) and neighborhood preserving embedding (NPE)
(He et al., 2019; Sobhani-Tehrani et al., 2014) and its extended models
which aim to transform data by preserving the local neighborhood
structure while preserving the intrinsic geometric properties of the
original data. With the advantage that NPE can maintain the local near
neighbor structure of data while prevents model overfitting. Many
scholars have improved the generalization ability and stability of
embedding by NPE regularization model. Liu et al. (2021) proposed a
novel Stacked Neighborhood Preserving Autoencoder (S-NPAE) to
extract hierarchical neighborhood preserving features, which regular-
izes the AE by NPE in to reconstruct the input data while preserving the
neighborhood structure of the input data. Zhang et al. (2023a) proposed
a dual-preserving integrated neighborhood localization projection
(DPNLP) algorithm for fault diagnosis. When solving the singular matrix
problem, that approach introduces regularization into the DPNLP to
preserve both the neighborhood similarity and the dual preservation

weights of local linear reconstruction, which enhances the ability of
dimensionality reduction. However, when it comes to modeling time
series with noise and outliers, only the above regularization may not be
sufficient to eliminate the adverse effects. Park and Jo (2016) proposed a
novel multilayer perceptron (MLP) regularization method that learns a
regression function in the presence of noise, regardless of how smooth
the function is, and fits nonsmoothed functions more accurately. In the
training process of neural networks, it is common to introduce noise to
enhance the generalization performance, and adding noise to the input
data is a common method to prevent overfitting in deep learning (Wang
and Chen, 2018). In addition, it regularizes the neural network by
adding noise to its hidden units, which accelerates the convergence
performance of the neural network and improves the model robustness
and diagnostic accuracy (Feng et al., 2019). Zhu et al. (2023) proposed a
new incremental learning method using classification and feature-level
information, which aimed to improve the robustness of the model
under noisy conditions.

There are available fault diagnosis approaches which assume of
balanced distribution of data across different classes in the dataset. In
actual industrial production, systems are usually run under normal
operating conditions. Therefore, fault data is very limited when
compared to data from normal operation. How to eliminate data
imbalance for the establishment of accurate fault diagnosis model,
which is very important issue. Nowadays, there are two main ap-
proaches to solve the sample imbalance problem: algorithm and data-
based approach (Jing et al., 2019). Algorithm-based methods better
handle the classification of imbalanced data by adjusting the algorithm.
For example, cost-sensitive learning (Khan et al., 2017) and integration
learning (Razavi-Far et al., 2017). In contrast, data-based methods have
the advantage of dealing with imbalanced samples independently of the
data-driven model and without interfering with each other (Dong et al.,
2024c). Dong et al. (2024a) proposed a dynamic normalization super-
vised contrastive network (DNSCN) with a multiscale compound
attention mechanism to recognize imbalanced faults. Dong et al.
(2024b) proposed a multi-sensor data fusion-enabled lightweight con-
volutional double regularization contrast transformer for small samples
fault diagnosis. Tan et al. (2023) proposed a deep adversarial learning
system for fault diagnosis in the Fused deposition modeling (FDM)
process, based on captured upper layer images during the
manufacturing process. Conditional generative adversarial network is
adopted to augment the original dataset and solve the between-class
data imbalance problem. Compared to other methods, SMOTE directly
balances the data distribution by generating a small number of class
samples, which is simple and does not require the modification of the
model structure or training mechanism. Zhang et al. (2022) proposed a
sequence oversampling discriminative method for imbalanced batch
process fault detection, where the whole batch of sequences is trans-
formed into multiple fixed length sequences through sliding windows
and robust time varying dynamic features are extracted from each batch
of sequences. Moreover, oversampling neural network is used to balance
the sequences of the minority class and the majority class. Li et al.,
(2021) proposed a synthetic minority oversampling technique with
natural neighbors (NaNSMOTE). In NaNSMOTE, the random difference
between the selected base samples and their natural neighborhood
samples is used to generate synthetic samples to improve the general-
ization ability of the synthetic samples and reduce the error of the
synthetic samples. Men and Zhao, (2023) proposed an adaptive imbal-
anced data stream correction method for fault diagnosis under imbal-
anced chemical process data by combining the niche technique,
oversampling technique, and manifold regularization technique. How-
ever, in the above mentioned SMOTE-based oversampling algorithms,
clustering is usually performed by using the Euclidean distance, which
does not consider the possible coupling relationship between the fea-
tures, and thus the features cannot be recognized effectively.

Motivated here, we propose an adaptive imbalance robust graph
embedding broad learning system fault diagnosis. which dynamically
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corrects for imbalance diagnostic data and generates representative
samples. The construction of the AI-RGEBLS model involves both
manifold regularization and the model robustness for noise, while AI-
RGEBLS can train and update the fault diagnosis model efficiently in
an incremental manner.

The main contributions of this paper are as follows:

(1) The traditional SMOTE algorithm with Euclidean distance does
not consider the coupling relationship between the features. To
avoid this issue, the Mahalanobis distance is introduced, as it
does not depend on scale and improves the SMOTE algorithm by
eliminating the influence of different dimensions.

(2) It dynamically generates samples through niche technique and
continuously adjusts the oversampling process of SMOTE, thus
increasing the amount of information and realizing adaptive
modification of imbalanced samples. While enhancing the
representativeness of the data, it improves the performance and
stability of the model in dealing with imbalanced data.

(3) Broad learning system (BLS) is regularized by graph embedding,
so that the local structure information of the data can be
considered in the process of feature extraction. BLS can better
capture and utilize the local geometric relationship of the data to
improve the effect of feature extraction.

(4) To enhance the robustness of the model, introduce L2,1 norm
bounds to construct the robustness matrix. In addition, the in-
cremental learning method is utilized to gradually add
enhancement nodes in the incremental window, which avoid the
disastrous forgetful problem caused due to training whole model
since zero.

The rest of this paper is organized as follows. The overview of the
base model and problem description are illustrated in Section 2. The
proposed adaptive imbalance robust graph embedding broad learning
system modeling (AI-RGEBLS) is shown in Section 3. Fault diagnosis of
imbalanced batch processes based on AI-RGEBLS which is shown in
Section 4. The experiments of the proposed method based on the peni-
cillin fermentation process and the semiconductor etching process are
validated in Section 5. And Section 6 summarizes this paper.

2. Overview of the base model and problem description

In this section, we focus on introducing the theory of the basic model
BLS and descriptions of the class imbalance problem.

2.1. Problem description

In complex batch process fault diagnosis and quality prediction etc.
tasks, there is usually most normal state data and less data on faults or
abnormal states. It is because the production process is always working
in a normal state most of the time, and faults and abnormal conditions
are relatively rare. Meanwhile, data collection for abnormal states is not
timely or complete, which results in a severely insufficient number of

data samples. Illustration of class imbalanced problem is shown in Fig. 1.
In the Fig. 1, where different colors and shapes of points indicate

different classes of samples, the challenge of imbalanced classification is
demonstrated by the distribution and classification boundaries in the
figure. Normal samples (majority samples) occupy most of the area of
the graph, while abnormal samples (minority samples) are very few and
scattered in distribution. Due to the small number of abnormal samples,
the classification model tends to prefer normal samples, which results in
classification boundaries cannot accurately distinguish abnormal sam-
ples. Under extreme imbalanced data, the model may either overfit the
normal samples and not recognize the abnormal samples correctly, or it
may be underfitted because there are too few abnormal samples. In
addition, it can be seen from the Fig. 1 that a few samples are in different
subspaces, the densities of different subspaces are inconsistent and the
distribution density of a few samples is high.

For imbalanced samples, SMOTE is usually used for oversampling,
SMOTE makes use of the spatial relationships between samples to syn-
thesize new samples, which means it can be suitable for all sampling
schedules. Typically, SMOTE algorithm adopts Euclidean distance-based
clustering method for oversampling, but Euclidean distance does not
consider the coupled relationship between features. Therefore, it is
necessary to carry out the traditional SMOTE algorithm distance mea-
sure, and find a way that can make the SMOTE algorithm to consider
more feature relationships when oversampling. In addition, synthetic
oversampling methods are usually limited by information loss and
adaptivity. To fully consider the dynamic characteristics of the fault
modes by improving SMOTE technique to recognize the samples with
more information and adaptive modification of the number of samples
for the corresponding fault modes.

When the process data scales are large, the deep learning model will
encounter the problems of weight adjustment being time-consuming and
easy to fall into the local optimal solution. To solve these problems, BLS
came into being, which not only has a simple structure, fast training
speed and high accuracy, but also has the advantage of incremental
learning.

2.2. Broad learning system (BLS)

BLS is an efficient incremental learning system. It is different from
traditional deep neural networks without constructing deep network
structure. The linear network structure of the BLS is shown in Fig. 2.

In BLS, firstly the original input data is converted into random fea-
tures in the feature nodes, secondly a series of enhancement nodes are
randomly generated through the feature nodes to extend the width of
the network, then all the feature nodes and enhancement nodes are
combined and imported into the output layer, finally the corresponding
output coefficients are obtained by computing the pseudo-inverse of the
linear system equations. The BLS model has an effective time perfor-
mance in training, and hence is more valid than the deep learning
methods in some occasions. The typical BLS modeling specific steps are
as follows:

(1) For given training data X, the input data is transformed into

Fig. 1. Illustration of class imbalanced problem. Fig. 2. The linear network structure of the BLS.
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random features on the feature nodes with linear mapping, and the
random feature is represented as shown in formula (1):

Zi = ϕi(XWei + βei) ∈ RN×k, i = 1,…, n (1)

where ϕ(⋅) is the activation function of the linear transformation,Weiand
βeiare the random weights and biases of the appropriate dimensions, N
denotes the number of samples, k is the number of feature nodes in each
group, and n is the number of feature node groups. For n groups of
feature nodes can be expressed: Zn≜[Z1,Z2,…,Zn].

(2) The enhancement nodes are transformed from the feature nodes,
which is obtained from formula (2):

Hj = ξj
(
ZWhj+ βhj

)
∈ RN×1, j = 1,…,m (2)

where ξj is the nonlinear activation function,Whj and βhj are the random
weights and biases of the appropriate dimensions, and m is the number
of enhancement nodes. The set of augmented nodes is denoted as: Hm≜
[H1,H2,…,Hm].

(3) All the feature nodes Zn and enhancement nodes Hm are com-
bined into A = [Zn|Hm] and fed into the output layer. The generalized
model output Yo of BLS is given by formula (3):

Yo = AW
= [Zn|Hm]W
= [Z1, Z2,…,Zn,H1,H2,⋯,Hm]W

(3)

where W is the output coefficient of the model. The coefficient W is
calculated by minimizing the sum of the squared losses of the prediction
errors shown in formula (4):

min
W

(
‖AW − Y‖2 + λ‖W‖

2) (4)

where Y denotes the true value of the target.
Formula (4) can be solved by calculating violation, as shown in

formula (5):

W =
(
λI + ATA

)− 1ATY (5)

where λ is the adjustment coefficient, I is the unit matrix.
In this study, we aim to design an imbalanced batch process fault

diagnosis method that involves combined SMOTE and BLS to identify
the type of faults accurately and quickly. As mentioned before, the main
problem is adaptive imbalance modification for process imbalance data
while generate infinite number of representative samples and make full
use of these sample features to construct the fault diagnosis model.

3. Adaptive imbalance robust graph embedding broad learning
system modeling (AI-RGEBLS)

In this section, we describe in detail for the modeling of the proposed
adaptive imbalance robust graph embedding broad learning system. The
structure of the proposed AI-RGEBLS model as shown in Fig. 3.

The structure contains two parts: (1) Adaptive modified for imbal-
anced samples: Representative samples are generated by improved
SMOTE based on Mahalanobis distance and niche technique; (2) Robust
graph embedding broad learning system modeling (RGEBLS): Based on
BLS, robust graph embedding is utilized to enhance the feature extrac-
tion capability of the model, while the incremental learning ability of
BLS is enhanced by adding enhancement nodes.

3.1. Adaptive modified for imbalanced samples

For the imbalance problem, we combine niche technique and the
Mahalanobis distance improved SMOTE algorithm to deal with it. The
specific steps of adaptive modified for imbalanced samples is as follows.
The historical training data Dhtd and new training data Dntd is merged
into dataset union X = Dhtd ∪ Dntd. For X = (x1,x2,…,xn) ∈ Rn×mwith the
mean value is μ = (μ1, μ2,…, μm)

T and the covariance matrix is Σ, where
n is the number of samples, and m is the dimension of the sample.

The niche account m(x) is defined as the sum of the similarities be-
tween sample x and other samples in the neighborhood. Calculate the
niche account as shown in formula (6):

m(x) =
∑

x́∈Nk ,x́∕=x
sf(x, x́ ) (6)

where, the neighborhood is defined as: ∀x́ ∈ Nk ∧ x́ ∕= x, The similarity
is measured by Mahalanobis distance instead of the traditional
Euclidean distance, and the Mahalanobis distance is calculated as shown
in formula (7):

Dm(x) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(x − μ)TΣ− 1(x − μ)
√

(7)

The niche account threshold χis shown in formula (8):

χ = 0.3×

∑

x∈Dhtd
m(x)

|Dhtd|
(8)

where, |Dhtd| is the size of historical training data.
The imbalance dataset was modified by niche account threshold χto

add the appropriate samples. When m(x) < χ, select the k nearest
neighbor samples and record them as xj, j = 1,2,…, k.The new sample
generated based on SMOTE is shown in formula (9):

xnew = xi+ rand(0,1) ×
(
xj − xi

)
(9)

When the training fault model output label is the same as the actual
label, m(x) is calculated as shown in formula (10):

m(x) = m(x)+ sf(x, xnew) (10)

The modified training data DId is obtained from generated new
samples xnew. Update fault diagnosis models with dataset union
DId ∪ Dntd. After one iteration of the model, historical training data were
updated: Dhtd = Dhtd ∪ Dntd.

3.2. Robust graph embedding broad learning system modeling (RGEBLS)

In industrial production system modeling, the samples collected by
sensors contain various noises and outliers. we use BLS does not consider
the influence of noise and has poor robustness. At the same time, simply
excluding outliers from modeling may lead to the neglect of critical
states. For this, we regularize the BLS by neighborhood preserving
embedding (NPE), which is a graph embedding approach that allows the
local structural information of the data to be considered in the feature

Fig. 3. The network structure of AI-RGEBLS.
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extraction process. Further L2,1 norm is introduced to enhance the
robustness of the model. At the same time, the incremental learning
pattern allows additional enhancement nodes to be quickly merged into
the incremental window of the model without the need to start the
training process from scratch, which enables timely adjustment of the
structure of the model and the accuracy of the fault diagnosis to achieve

the desired results.
Neighborhood preserving embedding (NPE): NPE represents the

local linear graph structure of the manifold by local linear reconstruc-
tion in the form of mean square error. The loss function of NPE is shown
in formula (11):

min
∑n

i=1
||yi −

∑

j∈Q(i)

Wijyj

⃒
⃒
⃒
⃒
⃒
|
2 (11)

where, Q(i) is the set of neighboring samples; yj ∈ RD×nis the local
manifold feature extracted from X, D is the dimension of the feature
vector, W ∈ Rn×n should satisfy the normalization constraint.

The modeling for formula (11) can be transformed into the form of
matrix as shown in formula (12):

Tr
(
Y(I − W)

T
(I − W)YT

)
(12)

where, Y ∈ RD×n is the matrix form of the local manifold features, I =

diag(1,…,1).
Transformation of the low-rank constant of the matrix rankW allows

the selection of the features most relevant to the low-dimensional
manifold. The L2,1 norm constraint is applied to improve the robust-
ness of the model, as shown in formula (13):

‖We‖2,1 =
∑u

i=1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑v

j=1
W2

ij

√
√
√
√ =

∑u

i=1

⃦
⃦Wi

⃦
⃦
2 (13)

Therefore, according to our main considerations, the overall objec-
tive function of RGEBLS is shown in formula (14):

where, α and β are balance parameters. The first term is the loss function
of the BLS model.WBLS and YBLS are the weights and outputs of the BLS
model. WNPE and YNPE are the weights and outputs of the NPE model.
The second is the L2,1 norm constraint on the transformation matrixWe,
which reduces the effect of noise on the modeling and improves the
robustness of the model. The third is the graph embedding regulariza-
tion, which is used to maintain the local manifold structure of the data.

When new samples or classes appear, it is necessary to retrain the
model to achieve better diagnostic results, and retraining is often time-
consuming. Therefore, we propose the incremental learning method
with AI-RGEBLS. When adding new samples or classes, the additional
enhancement nodes are quickly merged into the incremental window of
AI-RGEBLS, which eliminates the need to start the training process from
scratch.

By adding a new group of enhancement nodes, the AI-RGEBLS model
can be efficiently updated. When new samples Xnew appear, new training
samples can represent as follows:

X∗ =

[
X
Xnew

]

(15)

Then the output representation matrix of AI-RGEBLS is shown in the
formula (16):

Fig. 4. Flowchart of AI-RGEBLS based imbalanced batch process fault diagnosis.

min
W

( (
‖AWBLS − YBLS‖2 + λ‖WBLS‖

2)
+α‖We‖2,1 + βTr

(
YNPE(I − WNPE)

T
(I − WNPE)YTNPE

))
(14)
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Aamn =
[
Amn
Aa

]

(16)

where, Amn is the original BLS output representation matrix. Aa is
derived from formula (17):

Aa = [Za|ξ(ZaWh+ βh)] (17)

where, Za = XaW. The pseudo-inverse of Aamn is calculated from formula
(18):
(
Aamn

)+
=

[
(Amn)+ − BDT |B

]
(18)

where, for formula (18) is solved according to the pseudo-inverse update
from formula (19) to formula (21) which are obtained:

D =
((
Aamn

)T
)+

ATa (19)

B =

{
C+ifC ∕= 0

(
1+ DTD

)− 1DT(Amn)TifC = 0 (20)

C = ATa − (Amn)TD (21)

where, (⋅)+ is the pseudo-inverse of matrix. The updated output weight
is shown in formula (22):

Wa
mn =Wmn +B(Ynew − AaWmn) (22)

where, Ynew is the label of the new sample Xnew.

4. Fault diagnosis of imbalanced batch processes based on AI-
RGEBLS

In this section, we perform fault diagnosis based on the AI-RGEBLS
model for imbalanced batch process and give specific steps. The fault
diagnosis flowchart of the imbalanced batch process based on AI-
RGEBLS is shown in Fig. 4.

The fault diagnosis of batch process based on AI-RGEBLS consists of
two parts: model training and fault diagnosis. In the model training,
samples collected from the batch process industrial system are pre-
processed. The initial AI-RGEBLS model is trained by processing the
collected imbalanced samples to generate balanced samples through the
SMOTE algorithm with improved Mahalanobis distance. The new sam-
ple data dynamically adjust the oversampling process of the improved
smote through the niche technique to realize the adaptive modification
of the imbalanced samples, and get the modified new training data to
update the AI-RGEBLS model. In fault diagnosis, the new collected test
samples are input into the updated AI-RGEBLS model to obtain the fault
diagnosis results.

To further evaluate the effectiveness of the model for fault diagnosis,
we measure the effectiveness of fault diagnosis with relevant evaluation
indicators. This study mainly involves a strongly imbalanced proportion
of samples from different classes, so that the class with a large propor-
tion tends to be the most important factor that affects the accuracy rate.
We adopt the F1 − score and G − mean indicators to evaluate the fault
diagnosis performance of the model, which considers the effect of the
imbalance rate of the data. The indicators are calculated as shown in
formula (23) and formula (24):

F1 − score = 2×
Precision× Recall
Precision+ Recall

(23)

G − mean =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
TP

TP+ FN
+

TN
TN+ FP

√

(24)

where, TP denotes the number of positive classes predicted to be posi-
tive, TN denotes the number of negative classes predicted to be negative,
FP denotes the number of negative classes predicted to be positive, i.e.,

false positives, and FN denotes the number of positive classes predicted
to be negative, i.e., false negatives. Precision and Recall are computed as
shown in formula (25) and formula (26):

Precision =
TP

TP+ FP
(25)

Recall =
TP

TP+ FN
(26)

5. Case Studies

In this section, we evaluate the performance of the proposed model
for imbalanced data fault diagnosis by two typical batch processes,
penicillin fermentation process (Case 1) and semiconductor etching
process (Case 2). We compared AI-RGEBLS with seven models including
Neighborhood preserving embedding (NPE), Deep Neural Networks
(DNN), BLS, Dynamic Sparse Stacked Auto-encoders (DSSAE) (Jiang
et al., 2017), Spiking Neural Network (SNN) (Zuo et al., 2021),
Multi-View Learning Data Proliferator (MV-LEAP) (Graa and Rekik,
2019) and Class probability and Generalized Fuzzy Twin SVM
(CGFTSVM) (Kumari et al., 2024) at five different balance ratios.

Meanwhile, we designed ablation experiments by with Adaptive
Imbalance-Broad Learning System (AI-BLS), AI-GEBLS, SMOTE-Robust
Graph Embedding Broad Learning System (S-RGEBLS) and Mahalanobis
SMOTE-Robust Graph Embedding Broad Learning System (MS-
RGEBLS), and demonstrate the effectiveness and superiority of the
proposed AI-RGEBLS model. BLS is performed using the BLS toolkit
provided in the literature (Chen and Liu, 2017) with 20 feature nodes
and 2000 augmentation nodes. NPE (Mou and Zhao, 2022) use typical
structures. DNN are implemented by the Deep Learning toolbox in
MATLAB 2023b.

For the case studies that mentioned the imbalance ratio means the
ratio of normal samples to fault samples, we set the same number of
samples for different fault samples to better illustrate the problem. A
description of the parameters for the different models is shown in
Table 1. In Table 1, labeled (1) indicates the model parameter details for
Case 1 and labeled (2) indicates the model parameter details for Case 2.
The unlabeled cases (1) and (2) indicate that the same parameters were
used for Case 1 and Case 2.

5.1. Penicillin fermentation process (PFP)

Penicillin is widely used and highly valuable antibiotic in clinical
medicine. Its production process involves complex biochemical re-
actions and usually operates in batch mode. In this case, the penicillin
fermentation process data were obtained from the pensim2.0 platform
developed by the Illinois Institute of Technology (Birol et al., 2002). A
schematic diagram of the penicillin fermentation process is shown in
Fig. 5.

Table 1
Parametric description of different comparison models.

Model Description

NPE Nearest neighbors: 10, Dimensionality reduction: 2
DNN (1) 1024–600–200–50–7 with learning rate: 0.05
DNN (2) 2000–500–150–50–8 with learning rate: 0.05
BLS Feature nodes: n=7, Enhancement nodes: Km=2000,

Mapped feature nodes: m=1
DSSAE (1) Layer 1: 80, Layer 2: 40, MaxEpochs:50, Sparsity Proportion: 0.1
DSSAE (2) Layer 1: 100, Layer 2: 50, MaxEpochs:50, Sparsity Proportion: 0.1
SNN (1) Spike Duration: 2 ms, Time Step: 1 ms, Learning rate: 0.01
SNN (2) Spike Duration: 1 ms, Time Step: 1 ms, Learning rate: 0.03
MV-LEAP Data view of size: n*m=100*200, Number of views: Nv=4
CGFTSVM Kernel type: RBF kernel, Learning rate: 0.03
AI-
RGEBLS

Random state: R=42, k_neighbors-SMOTE:5, k_neighbors-NPE:10,
Feature nodes: n=7, Enhancement nodes: Km=2000, Mapped feature
nodes: m=1

K. Liu et al. Process Safety and Environmental Protection 192 (2024) 694–706 

699 



The main equipment of the fermentation system consists of fer-
menters, agitation motors and aeration equipment, in addition to sec-
tions for the addition of reactants such as acids, bases, hot water, cold
water and substrates, with corresponding temperature and pH control-
lers. In penicillin fermentation, specific production bacteria grow and
multiply under suitable conditions, and after reaching a certain con-
centration, it starts to produce penicillin as metabolite, which needs to
be constantly supplemented with nitrogen, sugar and other nutrients to
ensure the continuous production of penicillin.

To validate the proposed model, we use the penicillin fermentation
process simulation platform Pensim 2.0 to generate 50 batches of
normal samples and 6 batches of different types faults for model
training. In this case, the different fault types are set to have 2400
samples, ensuring the same number of samples for each type of fault.

Based on the imbalance rate, we choose the number of normal samples
for training the model at different imbalance rates. During model
training, we use a grid search method to adjust the parameters. We focus
on the training data imbalance, so we select for testing with 6 types of
Faults and Normal samples totally 2800 samples for testing. For each
batch samples, the reaction time is 400 h and the sampling time is 1 h,
the faults are introduced from the moment of the reaction start to end,
the details of the fault batch are shown in Table2.

The optimization problem shown in formula (14) in AI-RGEBLS ex-
ists, and the balanced parameters α and β are taken to be found by grid
search. The variation between the balanced parameters α and β chosen

Fig. 5. Schematic of the Penicillin fermentation process.

Table 2
Penicillin fermentation process fault information.

No. Fault variable Fault amplitude Fault signal type Fault time

1 Aeration rate +1 % Step Signal 0–400 h
2 Aeration rate − 0.5 Ramp Signal 0–400 h
3 Agitator power +1.5 % Step Signal 0–400 h
4 Agitator power − 1 Ramp Signal 0–400 h
5 Substrate feeding rate +2 % Step Signal 0–400 h
6 Substrate feeding rate − 0.01 Ramp Signal 0–400 h

Fig. 6. The F1-score and G-mean diagrams for the balanced parameters α and β in the PFP.

Table 3
The comparison of F1-score.

Imbalance
ratio

2:1 5:1 10:1 20:1 50:1 SD

NPE 87.9963 86.4695 84.9291 82.3398 79.0365 3.5428
DNN 88.4487 86.6985 85.2535 83.2698 79.0259 3.6216
BLS 89.0029 87.2598 86.0032 84.2569 80.9965 3.0597
DSSAE 89.2203 88.6889 86.2954 85.0533 83.2264 2.5021
SNN 90.2364 88.9039 87.0282 86.8625 84.7796 2.0898
MV-LEAP 93.4904 93.0069 92.8642 91.0089 89.2658 1.7617
CGFTSVM 93.6889 93.0568 92.8647 91.5987 90.0269 1.4548
AI-RGEBLS 94.6691 94.0058 93.8858 93.5356 93.0859 0.8570
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to correspond F1-score and G-mean is shown in Fig. 6. It is illustrated by
Fig. 6(a) that higher F1-scores (more than 0.9) are distributed in specific
regions, indicated by the red and dark orange colors. where α = 0.4 and
β = 0.2, or α = 0.2 and β = 0.3 provide higher F1-scores. It is illustrated
by Fig. 6(b) that higher G-mean (more than 0.85) are distributed in
specific regions, indicated by the red and dark orange colors. where α =

0.7 and β = 0.6, or α = 0.2 and β = 0.3 provide higher G-mean. The
combined Fig. 6(a) and Fig. 6(b) for the balanced parameter choices α =

0.2 and β = 0.3 gives higher diagnostic performance for the overall
model.

To validate the effectiveness of the method proposed in this paper,
multiple imbalance rates of normal samples and fault samples were set
on the training set of the penicillin fermentation process dataset, and
then based on the different classification models mentioned above on
the test set, F1-score and G-mean results are shown in Table 3 and
Table 4, respectively, where, SD denotes the standard deviation.

From Table 3 and Table 4, when the imbalance rate is increasing, the
proposedmethod in this paper shows a decreasing trend in both F1-score
and G-mean values, which is due to the extreme sample imbalance.
Compared with other comparative methods, the accuracy of the pro-
posed method varies less and more stable within a certain range. Even
though the imbalance ratio between normal and fault samples reaches
50:1, that accuracy of the fault classification of penicillin fermentation
process stays within a small range of variation after utilizing the sample
balanced dataset generated by the proposed method in this paper.
Meanwhile, more accuracy is achieved for MV-LEAP and CGFTSVM
methods for imbalanced samples than other methods. The SD value re-
flects the dispersion degree of the fault diagnosis rate for a fault diag-
nosis method at different imbalance rates, i.e., it reflects the robustness
of the fault diagnosis method. The proposed AI-RGEBLS has higher fault
accuracy than other methods and is much more robust under different
imbalance rates.

To further validate the effectiveness of AI-RGEBLS in improving the
accuracy of model fault diagnosis during penicillin fermentation,
abscission experiments were conducted on AI-RGEBLS. The fault diag-
nosis accuracy of the model was compared with AI-BLS, AI-GEBLS, S-
RGEBLS and MS-RGEBLS. The results are shown in Table 5 and Table 6.
MS-RGEBLS achieves higher fault diagnosis accuracy than S-RGEBLS,
thanks to the enhancement of SMOTE using Mahalanobis Distance. The
results show that the fault diagnosis accuracy of AI-RGEBLS is signifi-
cantly improved compared to other comparative methods under five
imbalance ratios. AI-RGEBLS combines the adaptive correction of
imbalance data and robust graph embedding to achieve the best fault
diagnosis accuracy, which means that the proposed model is effective.

Confusion matrix for the eight model diagnostics in the PFP is shown
in Fig. 7 for when imbalance ratio is 5:1. The rows of the matrix
represent the predicted labels, the columns represent the actual labels,
and the diagonal elements correspond to the classification performance
for each category. The fault diagnosis performance is evaluated using
accuracy, which measures the proportion of correctly predicted labels
out of all predictions made. From Fig. 7, it is evident that the proposed
method performs better in terms of accurately diagnosing faults across
all categories, despite the class imbalance. This suggests that the method
effectively handles imbalanced datasets and ensures reliable fault
diagnosis even for underrepresented fault categories.

Fig. 8 shows the training and fault diagnosis times for different
models with samples added in the PFP. According to Fig. 8(a), the
proposed method takes less time compared to other algorithms as the
number of training samples increases. Because the proposed method is
an extension of BLS, the training time is a little bit longer compared to
BLS, but the additional time consumed is negligible in terms of the
overall fault diagnostic performance. In Fig. 8(b), the proposed method
is still less time consuming compared to the other methods in overall
view due to the small difference in fault diagnosis time. As a result, AI-
RGEBLS has a very short training time in achieving better fault diagnosis
accuracy compared to other methods. AI-RGEBLS (1) refers to the
version of AI-RGEBLS that does not incorporate incremental learning. It
is evident that without incremental learning, AI-RGEBLS (1) requires
more time to complete the task.

5.2. Semiconductor etching process (SEP)

Semiconductor etching is one of the essential steps in the semi-
conductor manufacturing process and usually performed in batch pro-
duction. The most popular semiconductor etching method is plasma
etching, which utilizes coils or electrodes to ionize gas into plasma, and
achieves etching by taking advantage of the physical impact and
chemical reaction that occurs between the plasma and the surface of the
wafer(Hirai and Kano, 2015). Schematic of the semiconductor etching
process is shown in Fig. 9.

In this case, it was performed on a Lam9600 plasma etching tool,
which utilizes inductively coupled Bl3/Cl2 plasma to etch TiN/Al-0.5 %
Cu/TiN/oxide stacks. The key parameters include the line width of the
etched Al line, uniformity on the wafer, and oxide loss. The metal etcher
was equipped with three sensor systems during the experiment: device
status sensor, RF monitor, and optical emission spectrometer. In this
case, the device status sensor was used to collect data for experimental
validation. The device status sensor collects device data during wafer
processing, including 40 process setpoints sampled once per second,
such as gas flow, chamber pressure, and RF power.

We use 50 batches normal samples and 8 batches with different types
of faults in the semiconductor etching process. In this case, the different
fault data are set to be 7200 samples and the same number of samples for
each type of faults. Based on the imbalance rate, we choose the number
of normal samples for training the model at different imbalance rates.
During model training, we use a grid search method to adjust the pa-
rameters. We select for testing with 8 types of Fault and Normal samples
totally 8100 samples for testing. Each batch sample reaction time is 90 h

Table 4
The comparison of G-mean.

Imbalance
ratio

2:1 5:1 10:1 20:1 50:1 SD

NPE 85.6325 83.2665 81.2956 80.0026 77.2658 3.1785
DNN 85.2658 83.9964 80.9569 79.6559 76.2658 3.5755
BLS 89.1944 87.5529 85.2658 83.0021 80.2952 3.5457
DSSAE 89.4582 87.5951 85.1944 83.0658 80.9963 3.3939
SNN 90.9361 86.9964 84.2691 83.4583 81.2265 3.7303
MV-LEAP 92.2083 91.3677 91.0024 90.2658 89.1068 1.1724
CGFTSVM 92.9917 91.6658 91.1257 89.9965 89.0026 1.5340
AI-RGEBLS 93.2256 93.0013 92.8569 92.0258 91.8659 0.6096

Table 5
The comparison of F1-score.

Imbalance
ratio

2:1 5:1 10:1 20:1 50:1 SD

AI-BLS 85.9375 85.2554 83.5214 81.6639 78.2698 3.0872
AI-GEBLS 91.2569 90.8561 89.3691 89.6658 89.0036 0.9760
S-RGEBLS 87.4545 86.9663 85.2658 84.2658 82.2528 2.1069
MS-RGEBLS 91.7115 91.0036 90.3329 91.0258 90.2338 0.6006
AI-RGEBLS 94.6691 94.0058 93.8858 93.5356 93.0859 0.8570

Table 6
The comparison of G-mean.

Imbalance
ratio

2:1 5:1 10:1 20:1 50:1 SD

AI-BLS 84.2569 83.2269 81.0025 80.221 79.9919 1.9008
AI-GEBLS 91.0258 89.9963 89.6621 88.2569 89.2214 1.0168
S-RGEBLS 88.2589 87.2698 87.2658 85.2698 83.2598 2.0005
MS-RGEBLS 91.2236 90.3552 89.9881 89.7715 89.3698 0.7022
AI-RGEBLS 93.2256 93.0013 92.8569 92.0258 91.8659 0.6096
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Fig. 7. Confusion matrix for different model diagnostic results in the PFP.
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and sampling time is 1 h, the faults are introduced from the reaction
beginning to the end, the details of the fault batches are shown in
Table 7.

In similar manner to the penicillin fermentation process, the opti-
mization problem shown in formula (14) exists for AI-RGEBLS in the
semiconductor etching process, where the equilibrium parameters α =

0.5 and β = 0.4 are found through a grid search.
The F1-score and G-mean results of different methods for

semiconductor etching process are shown in Table 8 and Table 9.
Through comparing the performance of the algorithms under

different imbalance ratios, it is obvious that AI-RGEBLS has the best F1-
score and G-mean under all imbalance ratios, which indicates that the
method exhibits excellent stability and classification performance in
dealing with the category imbalance problem. AI-RGEBLS can classify
efficiently under various imbalance ratios, which not only performs well
at low imbalance ratios, but also maintains excellent classification per-
formance at very high imbalance ratios. In contrast, other algorithms
have significantly lower performance when faced with high imbalance
ratios, which makes it difficult to maintain an efficient classification
capability.

Overall, AI-RGEBLS performs well in handling imbalanced data, no
matter how the imbalance ratio changes, its F1-score and G-mean are

Fig. 8. Training and fault diagnosis times for different models with added samples in PFP.

Fig. 9. Schematic of the semiconductor etching process.

Table 7
Semiconductor etching process fault information.

No. Fault variable Fault amplitude Fault time

1 Radio frequency power − 12 W 0–90 h
2 Radio frequency power +10 W 0–90 h
3 He chuck pressure +3 Pa 0–90 h
4 Transformer coupled plasma power +10 W 0–90 h
5 BCl3 flow rate +5 sccm 0–90 h
6 He chuck pressure − 2 Pa 0–90 h
7 Cl2 flow rate − 5 sccm 0–90 h
8 Transformer coupled plasma power − 15 W 0–90 h

Table 8
The comparison of F1-score.

Imbalance
ratio

2:1 5:1 10:1 20:1 50:1 SD

NPE 73.1258 69.2631 67.2589 65.2665 60.1114 4.8263
DNN 75.2269 71.0023 69.3229 64.4545 61.5598 5.3979
BLS 80.2356 79.2145 77.9865 77.1029 74.2690 2.2866
DSSAE 81.1257 81.1025 79.2154 78.2365 76.2368 2.0637
SNN 82.2568 80.1256 79.6912 77.2369 75.1502 2.7488
MV-LEAP 86.2356 86.0012 85.0015 83.9569 83.1257 1.3265
CGFTSVM 86.6587 85.3256 85.0125 84.1588 82.9636 1.3745
AI-RGEBLS 87.3438 86.7256 86.2351 85.8694 85.2568 0.7981

Table 9
The comparison of G-mean.

Imbalance
ratio

2:1 5:1 10:1 20:1 50:1 SD

NPE 74.2658 72.9963 70.2653 68.7356 65.2213 3.5791
DNN 75.1741 73.2569 72.1543 70.2563 67.8596 2.8073
BLS 77.2569 75.9946 74.2261 72.1654 70.5596 2.7309
DSSAE 81.5866 80.1254 79.2641 77.9687 76.9912 1.7993
SNN 81.9965 80.2655 79.2254 78.3691 77.0021 1.8928
MV-LEAP 85.9014 85.0124 84.7115 83.9375 80.3125 2.1648
CGFTSVM 86.2673 85.2250 84.9691 84.0010 82.3125 1.4906
AI-RGEBLS 87.9938 87.3125 86.5564 85.9994 85.0028 1.1576

Table 10
The comparison of F1-score.

Imbalance
ratio

2:1 5:1 10:1 20:1 50:1 SD

AI-BLS 81.3654 79.9658 77.2658 76.0254 73.2650 3.2076
AI-GEBLS 85.2655 84.2569 83.2561 82.9658 81.0089 1.5913
S-RGEBLS 85.9658 84.0257 83.2685 81.9963 80.2658 2.1418
MS-RGEBLS 86.0254 85.2654 84.5269 83.9568 81.9587 1.5451
AI-RGEBLS 87.3438 86.7256 86.2351 85.8694 85.2568 0.7981

Table 11
The comparison of G-mean.

Imbalance
ratio

2:1 5:1 10:1 20:1 50:1 SD

AI-BLS 81.2631 80.8859 78.9637 76.9931 76.0012 2.3206
AI-GEBLS 86.5896 86.0013 85.6587 84.2654 82.0215 1.8256
S-RGEBLS 85.0124 85.6998 85.0032 83.2651 82.0125 1.5177
MS-RGEBLS 86.9205 86.9993 85.2689 85.0029 83.6984 1.3948
AI-RGEBLS 87.9938 87.3125 86.5564 85.9994 85.0028 1.1576
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Fig. 10. T-SNE visualization plots of extracted features from different models in the SEP.
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always kept at a high level, which is significantly better than other al-
gorithms. The superior performance is attributed to the adaptive
correction of imbalanced data, which makes AI-RGEBLS better able to
cope with the challenges of imbalanced datasets.

The ablation experiments of the proposed method are shown in
Table 10 and Table 11. The experiment mainly compares the perfor-
mance of five methods, AI-RGEBLS, MS-RGEBLS, S-RGEBLS, AI-GEBLS,
and AI- BLS, in terms of F1-score and G-mean.

The results of the ablation experiment clearly show that AI-RGEBLS
performs well on imbalanced data, with both F1-score and G-mean
significantly higher than other methods. This shows that our improved
algorithm is very effective and significantly improves its classification
performance on imbalanced datasets. Specifically, the improved feature
selection method enables AI-RGEBLS to identify and utilize key features
more efficiently, thus improving the classification performance. The
optimized sample balancing processing method enables AI-RGEBLS to
maintain efficient classification performance even under extreme un-
balanced conditions. Since MS-RGEBLS has higher fault diagnosis ac-
curacy than S-RGEBLS due to the improvement of SMOTE by
Mahalanobis Distance. The classifier optimization significantly im-
proves the overall performance of AI-RGEBLS, so that it performs well
under all imbalance ratios.

The T-SNE visualization of the features extracted from the different
models is shown in Fig. 10. where 0 indicates normal samples, and 1–8
indicates different fault samples.

Fig. 10 (a) to (e) display the results for NPE, DNN, BLS, DSSAE, and
SNN respectively, it can be observed that while some of the faults are
distinguishable, the overall performance is limited. Consequently, their
abilities to provide reliable fault diagnosis across all categories are
compromised. Fig. 10 (f) and (g) illustrate the results for MV-LEAP and
CGFTSVM, the performance improves noticeably. The fault diagnosis
results are comparatively better, but there are still some limitations in
separating fault categories and achieving clear boundaries, especially
when a class overlap occurs. Moreover, AI-RGEBLS exhibits stronger
clustering of the imbalanced data, resulting in better fault diagnosis
accuracy across both majority and minority classes. This means that the
effectiveness of AI-RGEBLS in tackling the imbalance issue compared to
other models. By comparing all methods shown in Fig. 10, AI-RGEBLS
outperforms the others in diagnosing faults within imbalanced data
scenarios.

The training and fault diagnosis time for different models with added
samples in SEP is shown in Fig. 11. According to Fig. 11(a), the proposed
method requires less time than other algorithms as the number of
training samples increases. In Fig. 8(b), the proposed method still out-
performs other methods in terms of time consumption. In summary, AI-
RGEBLS not only has an advantage in training time, but also achieves
higher fault diagnosis accuracy. Since AI-RGEBLS (1) does not involve

incremental learning, its structure requires more time to train and fault
diagnosis.

6. Conclusion

In this paper, we proposed an adaptive imbalance robust graph
embedding broad learning system (AI-RGEBLS). AI-RGEBLS utilizes
SMOTE with improved Mahalanobis distance and niche technique to
adaptively correct imbalance samples. Meanwhile, the graph embedding
and L2,1 paradigm constraint enables the model to extract local manifold
information and enhance the robustness of the model. The model
simultaneously considers the accuracy and time consumption of fault
diagnosis results in imbalanced batch process data. In addition, AI-
RGEBLS model with incremental learning dynamically adds enhance-
ment nodes in an incremental window, which avoids the need to re-train
the whole AI-RGEBLS system from zero, and enables real time adjust-
ments to the network structure and updating parameters. It is confirmed
that the AI-RGEBLS model has significant advantages in terms of time
consumption and better accuracy for fault diagnosis of imbalanced batch
process data. Since the introduction of Mahalanobis distance increases
the computational cost, in future research, we will focus on how to
reduce the overhead of Mahalanobis distance computation through
improving or introducing efficient algorithms.
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Abstract
It is important for quality prediction and monitoring to ensure the safe operation of the process. When constructing a pre-
diction model, it is crucial to choose appropriate input variables to influence the online prediction performance and quality 
monitoring. Data-driven techniques have been widely used for prediction and monitoring of quality variables, but there 
are some difficulties in the application of batch processes, three-dimensional characteristics of data, different initial condi-
tions, and multi-stage characteristics within batches. Therefore, we propose a quality prediction model of multi-stage batch 
process based on integrated ConvBiGRU with attention mechanism (MI-ConvBiGRU-AM). Firstly, Firstly, the original 3D 
data are expanded into 2D time slices by the batch-variable expansion method. Secondly, the 2D time slices are clustered to 
complete stage identification using the improved affine propagation clustering method based on the design of the Markov 
chain similarity matrix. At each stage, we select product quality-related modeling variables using the Maximum Relevance 
Minimum Redundancy (mRMR). Then, the selected variables are used to train a convolutional bi-directional gated recurrent 
unit with an attention mechanism (ConvBiGRU-AM). Finally, ConvBiGRU-AM model for each stage is integrated together 
a whole prediction model for the entire process to accomplish quality prediction, and the prediction residuals are utilized 
for quality monitoring. The validity of the proposed method was verified by Industrial-scale fed-batch fermentation (IFBF) 
process and the Hot strip mill (HSM) process. For the IFBF process, the model achieved an FDR of 99.73%, FAR of 0.54%, 
MAE of 0.0043, RMSE of 0.0396, MAPE of 0.0121, and R2 of 0.9971. For the HSM process, the results were an FDR of 
99.95%, FAR of 0.25%, MAE of 0.0053, RMSE of 0.0111, MAPE of 0.1539, and R2 of 0.9990. These results demonstrate 
that the proposed method significantly improves prediction accuracy and achieves better quality monitoring compared to 
existing methods, highlighting its effectiveness for industrial applications.

Keywords  Batch process · Quality prediction · Bidirectional gate recurrent unit (BiGRU) · Attention mechanism · Multi-
stage

1  Introduction

Batch processes are widely used in industrial production 
as they have the advantages of small batch sizes, variety, 
and flexibility in operating batches. In production, batch 

processes have a high priority and therefore product quality 
and process safety must be ensured [1, 2]. Due to variations 
in raw materials, equipment faults, and the complexity of the 
process, the quality of the product at the end of each batch 
varies considerably from the production requirements. The 
lack of measurement of quality variables during the process 
and the fact that quality measurements are usually obtained 
only at the end of a batch, which makes it difficult to meas-
ure quality indicators online [3, 4]. Therefore, it is critical to 
construct quality monitoring and prediction model not only 
to control the quality well, but also for the safe production 
of the batch [5–8].

The core of quality prediction is to build a prediction 
model with high accuracy, easy implementation, and steady 
performance. Regarding the prediction modeling mainly 
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consists of both the fundamental modeling and the data-
driven approaches. Due to the large scale and complexity 
of modern industrial processes, it is difficult to obtain all 
the process knowledge in a limited time, which limits its 
promotion and application in engineering practice. The 
data-driven based approach does not consider the process 
empirical knowledge and builds models based on process 
data to accomplish the goal of process monitoring. Tradi-
tional multivariate statistical analysis methods are widely 
used in industrial process quality prediction, such as least 
squares regression (LSR) [9], principal component regres-
sion (PCR) [10], and partial least squares regression (PLSR) 
[11]. Based on this derived multiway principal component 
regression (MPCR) [12] and multiway partial least squares 
regression (MPLSR) [13] are mostly used for batch pro-
cesses. Although the effectiveness of these linear methods 
has been demonstrated in a variety of applications, these 
methods may not be able to capture the nonlinear relation-
ship between process variables and quality variables in com-
plex processes. In contrast, artificial neural network methods 
are more nonlinear feature extraction than multivariate sta-
tistics methods. However, for most shallow artificial neural 
networks, it may be limited to strongly nonlinear representa-
tions of industrial processes.

To achieve better nonlinear representation performance, 
deep learning methods with multiple hidden layers are intro-
duced, such as deep belief networks (DBN) [14], convolu-
tional neural networks (CNN) [15], and deep auto-encoders 
(DAE) [16]. However, most of these methods assume that 
the production process is running in a steady state, which 
ignores the temporal nature of the production process, and 
thus it is crucial to build deep learning models with temporal 
order. Due to Long Short-Term Memory (LSTM) [17] and 
Gated Recurrent Units (GRU) [18] have excellent abilities 
to process complex dynamic time series. In addition, com-
pared to LSTM, there are fewer parameters in GRU than 
LSTM, which enables GRU to store and retrieve dynamic 
time information efficiently. Yao et al. [19] combined GRU 
with Granger Causality (GC) to extract causal relationships 
between process variables and construct a quality prediction 
model for industrial processes. Ma et al. [20] designed a 
BiGRU structure for dynamic nonlinear soft sensor mod-
eling that makes full use of historical and future information 
and related features within industrial time series for quality 
prediction. Li et al. [21] addressed the temporal mismatch 
between the input time step and the output target due to iner-
tia of the blast furnace ironmaking process by embedding 
an attention mechanism in the GRU model to accomplish 
quality prediction. Based on this, we use GRU as the basic 
quality prediction method.

In constructing neural net models for quality prediction, 
the selection of proper input variables or features for train-
ing the model is the primary issue. Proper variable selection 

can effectively eliminate redundant variables in modeling 
and significantly reduce the computational complexity of 
the model. In addition, it is possible to minimize the dam-
age to model performance caused by redundant variables 
or features. Traditional methods of variable selection that 
depend on process knowledge or operator experience are 
clearly less efficient for high-dimensional data and without 
sufficiently reliable empirical knowledge. Sun et al. [22] 
proposed a new variable selection method for soft sensor 
applications based on nonnegative garrote (NNG) and artifi-
cial neural networks (ANN). Fujiwara et al. [23] proposed a 
variable selection method that clusters variables into groups 
of variables based on the correlation between the variables 
through Nearest Correlation Spectral Clustering (NCSC) and 
examines whether each group of variables should be used 
as an input variable. Yao et al. [24] proposed two enhanced 
Binary Differential Evolution (BDE) algorithms to select 
variables for nonlinear process soft sensors. However, all 
these data-driven variable or feature selection methods are 
not from the perspective of causal relationships between pro-
cess and quality variables, which makes it difficult to further 
improve the performance of the model.

In addition, most of the batch process variables exhibit 
multi-stage relationships as the process moves forward. For 
the multi-stage characteristics of the batch process, it is nec-
essary to deal with it in The lack of measurement of quality 
variables during the process and the fact that quality meas-
urements are usually obtained only at the end of a batch, 
Zhao et al. [25] proposed a statistical modeling strategy for 
phase division of batch processes. Luo et al. [26] proposed 
a stage segmentation method based on the warped K-means 
(WKM) clustering algorithm which divides the whole batch 
into several operational stages by clustering the trajectory 
data of stage-sensitive process variables. Peng et al. [27] 
proposed a batch process quality related monitoring scheme 
using Gaussian mixture model (GMM) algorithm for stage 
division and fuzzy affiliation method for transfer identifica-
tion. Liu et al. [28] proposed a sequential local-based GMM 
approach to accomplish industrial process stage division. 
The above methods need to set parameters manually when 
segmenting time periods, and these parameters have a large 
impact on the segmentation results. For some complex batch 
processes which are difficult to determine the parameter val-
ues based on the available information, AP clustering can 
realize the automated division of stages without manually 
presetting the parameters. Chang et al. [29] considered that 
the different stages of the batch process have different pro-
duction characteristics, adopted affinity propagation (AP) 
to separate the different stages of the production process, 
and investigated a multi-stage process monitoring frame-
work with the fusion of AP and broad learning system. Zhao 
et al. [30] divided the batch process into multi-stages by AP 
algorithm and proposed a multi-stage optimized regularized 
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neighborhood preserving embedding (ORNPE) algorithm 
for process monitoring. However, AP clustering is obviously 
insufficient to measure similarity only by using Euclidean 
distance, which may affect the accuracy of stage segmen-
tation. Therefore, it is necessary to consider the temporal 
information of the samples and the neighborhood informa-
tion, etc., during AP stage segmentation. Furthermore, for 
each stage modeling should consider that the model input 
variables or features are different for each stage, while inte-
grate models for each stage as an overall model.

Regarding these issues, we propose a quality prediction 
model of multi-stage batch process based on integrated Con-
vBiGRU with attention mechanism (MI-ConvBiGRU-AM). 
The main contributions are given as follows:

(1)	 To enhance process stage identification, we use an 
improved AP clustering method that Markov chain-
based design of similarity matrix. This approach, which 
is an enhancement of the standard AP method, consid-
ers both the temporal and neighborhood information 
of the samples. It solves the problem that the original 
AP uses Euclidean distance to measure the similarity 
insufficiently and makes the clustering results more 
accurate.

(2)	 The method of maximum correlation-minimum redun-
dancy is used to mine the internal relationship between 
process variables and quality variables for variable 
selection, seeking to improve the interpretability of 
subsequent deep learning methods for quality predic-
tion.

(3)	 Under the coexistence of nonlinear and dynamic char-
acteristics of process data, ConvBiGRU extracts the 
causal relationship between process and quality vari-
ables. Through attention mechanism applied to the 
output layer of ConvBiGRU, which helps the model to 
better understand the key parts of the input sequence, it 
focuses the key information on the prediction process.

(4)	 For multi-stage batch processes, it is possible to inte-
grate the ConvBiGRU-AM established at each stage 
into the MI-ConvBiGRU-AM model for the whole pro-
duction process. Through Industrial-scale fed-batch fer-
mentation process and the Hot strip mill process valida-
tion the proposed MI-ConvBiGRU-AM can effectively 
accomplish quality prediction and monitoring for the 
batch process.

The structure of the paper is as follows. In Sect. 2, a brief 
overview of Affinity Propagation (AP) and Gate Recurrent 
Unit (GRU) is given, while our proposed ConvBiGRU with 
attention mechanism for multi-stage batch process quality 
prediction is detailed in Sect. 3. In Sect. 4, two case studies 
are used to validate the proposed algorithm, and our conclu-
sions are drawn in Sect. 5.

2 � Preliminaries

In this section, AP clustering and GRU are briefly intro-
duced as the basis of the proposed integrated quality predic-
tion algorithm in this paper.

2.1 � Affinity Propagation (AP)

Affinity Propagation [31, 32] clustering is a clustering algo-
rithm with "information transfer" between data. Compared 
with traditional clustering algorithms, it has a great improve-
ment in clustering performance and efficiency, and the big-
gest strength is that there is no need to specify the number 
of clusters before running the algorithm, thus avoiding the 
influence of human factors on the accuracy of clustering. 
AP clustering regards all sample points as nodes of the net-
work and automatically finds representative cluster centers 
to maximize the sum of similarities from all sample points to 
the nearest class representative point. It is realized by firstly 
picking out some special objects that are called exemplars, 
and then associating each left object to its nearest exemplar. 
The objective is to maximize formula (1):

where, s
(
i, ci

)
 denotes the similarity between the sample xi 

and its nearest sample xci . It is a difficult problem to solve the 
optimization problem of formula (1). Thus, by introducing a 
constraint function, which transforms the optimization prob-
lem into an unconstrained optimization problem, as shown 
in formula (2):

where, c = (c1, c2, …, ci,…,cn). �j(c) is the constraint function 
defined as in formula (3):

here, c1indicates the exemplar of the data point i. A value of 
c1 = j for i ≠ j indicates that object i is assigned to a cluster 
with object j as its exemplar. A value of c1 = j indicates that 
object j is an exemplar. The introduction of penalty term 
�j(c) is to avoid such a situation that object i chooses object 
j as its exemplar, but object j is not an exemplar at all.

AP clustering achieves the interaction of information 
through the iteration of responsibility and availability. 
Responsibility r(i,j) is sent from variable node ci to function 
node δ. It indicates how strongly object i wants to choose 
candidate exemplar j as its exemplar. Responsibility is cal-
culated from formula (4):

(1)z =

n∑

i=1

s
(
i, ci

)

(2)z =

n∑

i=1

s
(
i, ci

)
+

n∑

j=1

�j(c)

(3)�j(c) =

{
−∞, ifci ≠ j, but∃ci = j

0, otherwisw
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where, s(i, j) is similarity between two different data points 
i and j. Similarity is captured by the negative Euclidean dis-
tance: s(i, j) = −‖xi − xj‖2.

Availability a(i, j) is sent from variable node ci to function 
node δj. It reflects the accumulated evidence for how well 
suited it would be for point i to choose point j as its exem-
plar. Availability is calculated from formula (4):

Responsibility and availability update until convergence, 
the clustering result is: ĉ1 =

(
ĉ1, ĉ2,⋯ , ĉn

)
 , which can be 

obtained from formula (6) [33]:

2.2 � Gate Recurrent Unit (GRU)

While dealing with temporal data, recurrent neural networks 
have great advantages. In particular, the output of the current 
moment in the network depends on the network's memory 
of previous information, which means that the input of the 
hidden layer not only contains the output of the input layer at 
the current moment, but also the output of the hidden layer 
at the previous moment. Based on RNN, Hochreiter et al. 
[34] proposed LSTM neural network. It adds three kinds 
of gate structures besides RNN, and the number of neurons 
in each gate is the same, which controls the transmission 
of information flow and mitigates the problem of gradient 
vanishing or explosion in RNN. Cho et al. [35] proposed 
gated recurrent unit neural network, GRU achieves equiva-
lent results compared to LSTM at the same time, with fewer 
gate structures, simpler model, fewer network parameters 
and faster convergence. GRU network structure basically 
consists of reset and update gates. A general structure of 
GRU cell is shown in Fig. 1 [36].

The update formula is shown in (7)—(10) [37]:

(4)r(i, j) ← s(i, j) −
max

j�, j� ≠ j
{a(i, j�) + s(i, j�)}

(5)a(i, j) ← min

{
r(j, j) +

∑

i�,i
�∉{i,j}

max
{
0, r

(
i�, j

)}
}

(6)ĉ1 = arg
max

j
{a(i, j) + r(i, j)}

(7)zt = �
(
Wzxt + Uzht−1

)

(8)rt = �
(
Wrxt + Urht−1

)

(9)ht = zt ⊙�ht +
(
1 − zt

)
ht−1

(10)�ht = tanh
(
Wxt + rt ⊙ Uht−1

)

where, xt is the input of the current time step, ht-1 is the hid-
den state of the last time unit, ht is candidate variable, h̃t is 
indicates candidate status, σ is the sigmoid function, Wz, Wr 
and W is the input weights, Uz, Ur and U is the hidden state 
weights, and ⊙ is the Hadamard product.

GRU effectively retains dynamic temporal information, 
making it more suitable for dynamic, nonlinear process qual-
ity prediction. However, to ensure the accuracy of modeling, 
it is necessary to consider both past historical information 
and future information. Meanwhile, high-dimensional vari-
ables of the process may increase the complexity of model 
training, thus affecting the efficiency and interpretability of 
the model.

3 � The proposed ConvBiGRU based quality 
prediction framework for multi‑stage 
batch process

In this section, we illustrate the proposed ConvBiGRU-based 
multi-stage batch process quality prediction framework, 
which includes stage identification, variable selection, stage 
modeling, model evaluation, and quality monitoring.

3.1 � Stage identification by Improved Affinity 
Propagation (IAP)

In the case of stage identification of processes through 
AP clustering, how the similarity matrix is constructed 
determines the clustering results. Therefore, it is not suf-
ficient to measure between-sample similarity through 
Euclidean distance alone. To retain more similarity 
information between the samples, we proposed an IAP 
clustering based on the design of similarity with finite 

Fig. 1   Structure of the GRU network
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Markov chain, while considering the time information 
and neighborhood information.

The design of similarity matrices usually involves cal-
culating the similarities between a set of objects and con-
structing a matrix to represent these similarities. A similarity 
matrix can be constructed efficiently by utilizing the idea 
of Markov chains, which capture the relationships between 
objects by transferring probabilities. Markov chain-based 
similarity matrix [38] is calculated as follows:

Let A be a matrix whose rows are all equal. Since P 
denotes a stationary probability distribution, by the nature 
of the Markov chain being irreducible and ergodic, and the 
Perron-Frobenius theorem. That is A = [aT,aT,…,aT], where 
a = [a1,a2,…,am], then we have aP = a. For a Markov chain 
determined by P, we can form the fundamental matrix B = 
(I –P+A)−1. For a Markov chain, transition matrix P, limit-
ing vector a, and limiting matrix A. Then:

The transition matrix P is constructed according to for-
mula (12):

Let lij = exp
�

−Dij

�1

�
exp

�
−‖i−j‖2

�2

�
 , f

(
Dij;�1, �2

)
 is obtained 

according to formula (13):

where, ε is a small positive number. Dij = ‖Xi − Xj‖2j  be dis-
tance between two states. lij can be viewed as the integration 
of the locality weight exp

(
−Dij

�1

)
 and the time weight 

exp
�

−‖i−j‖2

�2

�
 . It means that lij reflects both the local neigh-

borhood structure and the time information of the states. β1 
and β2 are regulators, generally, β1 takes the square root of 
the mean value of Dij, and β2 takes the square root of the 
average Euclidean distance between all pairs of i and j.

Based on the fundamental matrix B, we can obtain the 
limiting covariance Cij for the number of times in states Xi 
and Xj in the first N steps by formula (14):

where, �ij = 1 if i = j and 0 otherwise.
Calculate the similarity matrix by formula (15):

(11)
PB = BP

aB = a

I − B = A − PB

(12)Pij =
f
(
Dij;�1, �2

)

Σkf
(
Dik;�1, �2

)

(13)f
(
Dik;�1, �2

)
=

{
lij + �, ifXi is among k nearest neighbors of Xj

�, otherwise

(14)Cij = ajBij + ajBji − aiaj − ai�ij

(15)Sij =
Cij

√
CiiCjj

For the similarity matrix Sij calculated above, then respon-
sibility and availability of AP can be further written as shown 
in formula (16):

r(i,j) and a(i,j) update until convergence, the result of clus-
tering is obtained. The process stage identification is per-
formed by clustering the results. For multiple batches with 
inconsistent phasing results, the number of batches with the 
most phasing results shall take precedence and fulfill the 
characteristics of the production process.

3.2 � Variable selection by Max‑Relevance 
and Min‑Redundancy (mRMR)

For correlation between variables is characterized using 
mutual information, for two random variables x and y the 
mutual information is defined according to the probability 
density function as shown in formula (17):

where, p(x,y) is the joint probability distribution function of 
x and y. p(x) and p(y) are the marginal probability distribu-
tion functions of x and y, respectively.

In variable selection, mRMR not only considers the correla-
tion between the process and the quality variables, but also the 
correlation between the process variables, through finding the 
subset of process variables from which the correlation with 
the quality variable is the highest and the correlation between 
them and other process variables is the lowest. The mRMR 
method effectively filters out features that have a significant 
impact on the target variable by enhancing the correlation 
between features while reducing the redundancy between 
them, and this selection helps to reduce the impact of noise 
and outliers on the model. Even if some features are disturbed 
by noise or outliers, the mRMR method still better preserves 
the selection of important features by considering their correla-
tion and redundancy together. The selected subset of features is 
more likely to contain features that are highly correlated with 
the target variable, thus reducing the risk of model overfitting 
and enhancing its robustness to noise and outliers.

Found an optimal subset Sm of process variables with m 
eigenvectors in the original process variables whose index D 
of maximum relevance is shown in formula (18):

where, I denote mutual information.

(16)
r(i, j) ← Sij −max

j�,j�≠j
�
a(i, j�) + Aij�

�

a(i, j) ← min
�
r(j, j) +

∑
i�,i�∉{i,j} max{0, r(i�, j)}

�

(17)I(x;y) = ∬ p(x, y)log
p(x, y)

p(x)p(y)
dxdy

(18)maxD(S, c),D =
1

|S|
∑

xi∈S

I
(
xi;c

)
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The features selected based on Max Relevance may have 
abundant redundancy. When two features are highly depend-
ent, if one feature is removed, their respective classification 
discriminative ability will not change much. Therefore, the 
optimal set of variables can be selected by adding the Min 
Redundancy R as shown in formula (19).

Based on combining the two constraints of formulas (18) and 
(19), the simultaneous optimization of D and R by formulas (20).

where, � is defined operator. Incremental search methods 
can be used to obtain an approximate optimal solution. It 
can be written as an optimization problem as in formula 
(21) [39]:

Through the above mRMR method, we select the process 
variables that have affected the product quality at each stage 
for modeling. And the process variables affecting product 
quality are not the same in each stage.

3.3 � The proposed ConvBiGRU prediction model 
with attention mechanism

After the quality related variables are selected, it is neces-
sary to build the prediction model for quality prediction. 

(19)minR(S),R =
1

|S|2
∑

xi,xj∈S

I
(
xi, xj

)

(20)max�(D,R), � = D − R

(21)max
xj��−Sm−1

[
I
(
xj;c

)
−

1

m − 1

∑

xi�Sm−1

(
xj;xi

)
]

The proposed ConvBiGRU-AM prediction model is shown 
in Fig. 2.

The framework of the proposed ConvBiGRU-AM 
includes an Input layer, convolutional neural network (CNN) 
layer, BIGRU layer, Attention layer, and Output layer. Pro-
cess data is input to the CNN layer through the input layer. 
CNN layer is focused on feature extraction. To extract fea-
tures from time-series sensor data, we employ one-dimen-
sional convolutional neural network (1D CNN) in this paper. 
Multidimensional time series sensor raw data will be Con-
volved as feature mapping. The number of feature dimen-
sions extracted after convolutional filtering is dependent on 
the dimensionality of the sensor data, the size of the filter 
and the convolution step size. The convolution layer uses fil-
ter matrix for feature extraction and pooling layer for feature 
dimensionality reduction to compress the amount of data 
and parameters and reduce overfitting. The convolutional 
operation process of 1D-CNN is shown in formula (22):

where, wi denotes ith filter kernel matrix, bi denotes bias 
of the feature, f denotes nonlinear activation function, conv 
denotes the convolution operation.

The pooling layer is scaled mapping of the data from the 
upper convolutional layer, which can significantly reduce 
the spatial dimension of the input data by sampling the 
input data through pooling, and the pooling layer operation 
is shown in formula (23):

where, down denotes downsampling function, βi denotes ith 
weight of the feature value.

(22)Mi = f
(
conv

(
wT
i
∗ X

)
+ bi

)

(23)Di = f
[
�idown(x) + bi

]

Fig. 2   Flowchart of the proposed framework
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The features extracted through the CNN layer are further input 
to the next layer of the network. Compared to GRU, BiGRU fuses 
both historical and future information that determines the quality 
prediction results from state information in both directions. BiGRU 
consists of two GRUs: a forward GRU model that accepts for-
ward inputs and a backward GRU model that learns the backward 
inputs. That is described as shown in formulas (24)-(26):

where, Ht denotes the output of the BiGRU layer, h+
t
 and h−

t
 

denote forward and backward outputs. ⊕ denotes element-
wise sum.

Considering not all the feature vectors output from BiGRU 
are decisive for quality prediction, the hidden states of different 
BiGRU layers are normalized and assigned different weights 
to focus on the important information. For BiGRU output vec-
tors, it is necessary to focus on the importance of different 
information to predict the model more accurately, therefore 
through introducing the attention mechanism model [40] as 
shown in formulas (27)-(29):

where, wt
i
 denotes the attention weigh, s

(
Ht, ut−1

)
 represents 

the scoring function, s represents the weight calculation 
methods, ut−1 denotes the random initialization vector of 
the previous layer, Ct denotes the output of the model that 
introduces the attention mechanism.

The attention mechanism helps the model to better focus 
on important features and ignore unimportant or noisy data, 
which allows the model to filter out this distracting informa-
tion more effectively when dealing with outliers. The model 
that combines the attention mechanism and BiGRU has strong 
robustness in dealing with noise and outliers.

3.4 � The indicators for prediction evaluation 
and quality monitoring

To evaluate the prediction performance of the method 
proposed in this paper, we employ several evaluation 

(24)h+
t
= GRU

(
xt, h

+
t−1

)

(25)h−
t
= GRU

(
xt, h

−
t−1

)

(26)Ht = h+
t
⊕ h−

t

(27)wt
i
=

exp
�
s
�
Ht, ut−1

��

∑T

i=1
exp

�
s
�
Hi, ut−1

��

(28)s
(
Ht, st−1

)
= Htut−1

(29)Ct =

T∑

i=1

wt
i
Ht

indicators to evaluate the model. It includes Mean Abso-
lute Error (MAE), Root Mean Square Error (RMSE), 
Mean Absolute Percentage Error (MAPE) and coefficient 
of determination R2. The specific calculations are shown 
in formulas (30)-(33):

where m is the number of prediction points, i is the ordinal 
number of prediction points, yi is the actual value, yi is the 
average of yi, ŷi is the predicted value. MAE and MAPE 
values are as small as possible and take values greater than 
0. RMSE values are smaller to indicate higher accuracy. R2 
describes the ability of the prediction model to fit the actual 
data curve, the larger the better, and the range of values is 
(−∞, 1).

To estimate the operational state of the process variables, 
it is further monitored by the process variables through the 
proposed prediction model. Under normal operating condi-
tions, the prediction error of the data obtained by the pro-
posed model should follow normal distribution and can be 
considered as noise. When faults occur, the residuals will 
increase due to the correlation of the variables captured by 
the prediction model being destroyed accordingly. There-
fore, the residuals through normal operating conditions 
according to the 3σ criterion determine a threshold d that 
can cover almost all the residuals under normal operating 
conditions. When the real-time residuals of the collected 
online data exceed this threshold, the process is considered 
to have faults; otherwise, the process is deemed normal.

For process monitoring, fault detection rate (FDR) is com-
puted as the rate of effective alarmed fault data corresponding 
to the entire fault dataset. fault false alarm rate (FAR) is the 
rate of normal being false alarmed as faulty. The higher FDR 
and lower FAR, the stronger discriminating performance. The 
calculation of FDR and FAR is as formula (34) and (35):

(30)MAE =
1

m

m∑

i=1

||yi − ŷi
||

(31)RMSE =

√√√√ 1

m

m∑

i=1

(
yi − ŷi

)2

(32)MAPE =
100%

m

m∑

i=1

|||||

yi − ŷi

yi

|||||

(33)R2 = 1 −

1

m

∑m

i=1

�
yi − ŷi

�2

1

m

∑m

i=1

�
yi − ŷi

�2

(34)FDR =
Number of fault alarmed data

Number of fault data set
× 100%
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3.5 � The procedure of the proposed quality 
prediction framework

In general, we propose a quality prediction and monitoring 
framework in this paper as shown in Fig. 3. The framework 
includes two subsections: A. offline modeling and B. Online 
monitoring. The specific steps are as follows.

A. Offline training

(35)FAR =
Number of fault false alarmed data

Number of normal data set
× 100%

Step 1: 	 The three-dimensional process data X (I × J × K) of 
the batch process is unfolded and normalized according 
to the batch-variable unfolding and converted into a two-
dimensional time-slice data X (I × JK), where X denotes 
the three-dimensional data of batch I, J denotes the var-
iable, and K denotes the sample time. Batch-variable 
unfolding can attenuate to some extent the nonlineari-
ties of the variables along the direction of the time axis, 
and highlight the information of the differences along 
the batch direction. Figure 4 shows the 3D batch data 
unfolding and normalization.

Step 2: 	 The pre-processed 2D time is divided into C stages 
of the production process using the IAP in Section 3.1. 
For multiple batches with inconsistent phasing results, 

Fig. 3   The procedures of 
integrated ConvBiGRU-based 
quality prediction and monitor-
ing framework
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the number of batches with the most phasing results 
shall take precedence and fulfill the characteristics of 
the production process.

Step 3: 	 For each stage, it was used to select modeling 
variables using mRMR in subsection 3.2 and to build 
ConvBiGRU-AM quality prediction model.

Step 4: 	 The set of ConvBiGRU-AM models constructed at 
each stage is integrated into a predictive model for the 
whole process. Calculate the prediction residuals of the 
offline normal data, and use the 3σ criterion to obtain 
the control threshold of the prediction residuals.

B. Online monitoring

Step 5: 	 Collect real-time data and normalize them with the 
mean and variance of the offline historical data.

Step 6: 	 The standardized real-time data is segmented into 
C stages according to the results of the stages segmented 
during offline modeling.

Step 7: 	 The real-time data is input into the integrated model 
MI-ConvBiGRU-AM at stages and is obtained predic-
tions results of product quality. The results of the predic-
tion are evaluated by means of evaluation indicators.

Step 8: 	 Calculate real-time prediction residuals and com-
pare them with offline monitoring thresholds for quality 
monitoring.

4 � Case studies

We conduct two batch process cases involving the Industrial-
scale fed-batch fermentation process [41] and the Hot strip 
mill process [42] to verify the functionality and superiority 
of our proposed ConvBiGRU with attention mechanism in 
multi-stage batch process quality prediction. The simulation 
was achieved with the Python 3.7 software. In this work, the 
calculation was performed on a computer with the following 

specifications: CPU: Intel(R) Core (TM) i5-6200U; RAM: 
12.0 GB; GPU: NVIDIA GeForce 930 M.

4.1 � Industrial‑scale fed‑batch fermentation process

Penicillin is an antibiotic widely used in clinical medicine, 
and its fermentation process is a typical batch process. The 
fermentation system usually includes major equipment 
such as fermenters, stirring motors, ventilation equipment, 
and involves the addition of reactants such as acids, bases, 
hot water, cold water, substrates, etc., and is equipped with 
temperature and pH controllers. Under specific production 
strains and conditions, the penicillin fermentation process 
leads to the growth and multiplication of the bacteria, and 
after a certain concentration of the strain is reached, penicil-
lin begins to be produced as a metabolite. The IndPenSim is 
an industrial-scale penicillin fermentation simulation plat-
form. Compared to traditional benchmark penicillin fermen-
tation platforms, it considers the growth, metabolism, and 
degradation of large-scale penicillin fermentation besides 
modeling the necessary online and offline variables. Penicil-
lin production is maximized by specifying multiple control 
strategies to reduce system fluctuations. The schematic of 
the Industrial-scale fed-batch fermentation process is shown 
in Fig. 5. More specific description of the process descrip-
tion and operation can be referenced from corresponding 
original reference [43, 44].

4.1.1 � Description of IndPenSim and datasets

In this case study, it was used 100 batches of dataset as 
shown in Table 1. In 100 batches, the 90 batches under nor-
mal conditions with three different control strategies and 10 
batches under fault condition.

In this work, every batch was run for 230 h, sample 
frequency of 0.2 h. The 22 main process variables were 
selected as shown in Table 2. Penicillin concentration is a 

Fig. 4   Batch data 3D unfolding
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key indicator of product quality and it is difficult to measure 
online. 30 batches of normal data were utilized for training 
and the rest of the batches were used for testing.

4.1.2 � Results of stage identification

As mentioned in the Sect. 3.1 above, when stage identifica-
tion through AP clustering, it is considered that the simi-
larity matrix has a greater impact on the clustering results. 
The more similarities between samples are retained based on 
the finite Markov chain similarity matrix, while considering 
both temporal and neighborhood information. The heat map 
of similarity matrix with AP and IAP is shown in Fig. 6, 
in which different colors correspond to different values. It 
can be seen from Fig. 6 that the large values in the IAP 
heatmap are closer to the diagonal, which means that IAP 
uses a smaller similarity for larger time interval samples 
compared to AP. It can effectively prevent sample points 
with large time intervals from having too much influence 
on the current sample.

The IAP algorithm was utilized to segment the industrial-
scale penicillin fermentation process into three sampling 
stages, i.e., 0 ~ 25 h, 25 ~ 120h, and 120 ~ 230 h, respectively. 

Fig. 5   The schematic of the 
Industrial-scale fed-batch fer-
mentation process

Table 1   Description of batch information in industrial-scale penicil-
lin fermentation process

Batch No Batch type Control strategy

1–10 Normal batch for training Recipe driven approach
11–30 Normal batch for test
31–40 Normal batch for training Operators
41–60 Normal batch for test
61–70 Normal batch for training Advanced Process Control 

(APC) & Raman spectros-
copy

71–90 Normal batch for test

91–100 Faulty batch Faulty batch
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The results of the stage segmentation are consistent with 
the three stages of penicillin fermentation process: bacterial 
growth, penicillin synthesis and bacterial autolysis.

4.1.3 � Results of variable selection

The importance of each process variable for the quality of 
the final product varies for the different stages. To build 
effective models at each stage, different process variables are 
selected for modeling at each stage reducing the complexity 
of modeling due to redundant variables. As mentioned in 
Sect. 3.2 above, each stage of the process variables that have 
a high impact on product quality are selected by mRMR, and 
the results of the variable selection are shown in Fig. 7. Then 
the yellow grid represents the selected variable, and the blue 
grid represents the unselected variable.

For some variables are uncorrelated with the character-
istics of the final product quality throughout the production 
stages of the process, several process variables affect the 
product quality at specific stages.

4.1.4 � The selection of model parameters

To demonstrate the superiority of the methods in this paper 
through comparison with GRU, BiGRU, BiGRU-AM, Spa-
tial–Temporal Graph Conv-GRU Network (STGCNT) [45] 
and ConvBiGRU-AM, the choice of parameters for these 
methods is described as follows. The GRU parameters are 
chosen according to the Deep Learning toolkit implementa-
tion, which has been shown to be able to converge stably, 
ensuring that the stability of the training can provide better 
performance. To verify that performance improvement of 
the model is contributed by the design of the model struc-
ture rather than the number of trainable parameters, all com-
parison methods were designed to have similar number of 
parameters. Specially, for MI-ConvBiGRU-AM is a model 
of multiple stages of integration, each stage is set with dif-
ferent parameters, and the number of parameters is not more 
than that of the other comparison methods during the fair-
ness period. Through the grid search method making the 
mean square error of the validation results the smallest, we 

Table 2   Description of process 
variable in industrial-scale 
penicillin fermentation process

Variable No Variable description Variable No Variable description

1 Aeration rate (L/h) 12 Dissolved oxygen conc. (mg/L)
2 Agitator RPM (RPM) 13 Vessel Volume (L)
3 Sugar feed rate (L/h) 14 Vessel Weight (Kg)
4 Acid flow rate (L/h) 15 pH (pH)
5 Base flow rate (L/h) 16 Temperature (K)
6 Heating/cooling water flow rate (L/h) 17 Generated heat (kJ)
7 Heating water flow rate (L/h) 18 CO2 percent in off-gas (%)
8 Water for injection/dilution (L/h) 19 PAA flow (L/h))
9 Air head pressure (bar) 20 Oil flow (L/hr)
10 Dumped broth flow (L/h) 21 Oxygen in percent in off-gas (%)
11 Substrate concentration (g/L) 22 Carbon evolution rate (g/L)

Fig. 6   Heat map of similarity matrices with IAP and AP
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choose the suitable stopping epoch and hidden neurons for 
each of the above stages. The detailed parameter choices for 
the model are shown in Table 3.

4.1.5 � Quality prediction and monitoring results

We use the parameters mentioned in the previous section 
to construct the MI-ConvBiGRU-AM model, as well as the 
comparison model. Under normal operating conditions, 30 
batches of data with different control strategies are used for 
model training and validation. Batches of 70 data containing 
normal working conditions and fault states were used for 
model testing. For the test batches, the evaluation indexes of 
the penicillin quality prediction results of 60 batches under 
normal working conditions were mean values as shown in 
Table 4.

It can be noted from Table 4 that the model in this paper 
has better predictive performance. It can monitor the changes 

of quality variables in real time. Compared with other mod-
els, MI-ConvBiGRU-AM has a smaller variance index and 
larger R2, which indicates that MI-ConvBiGRU-AM model 
has stronger robustness and fitting ability. Above results 
demonstrate the prospective performance of the proposed 
modeling framework in batch process quality prediction.

For one of the typical test batches the results of the pre-
diction on penicillin concentration are shown in Fig. 8. Here, 
blue indicates the predicted value and red is the actual value. 
It can be seen from Fig. 8(a) that the traditional GRU model 
can predict the overall direction of the quality trend, but for 
the local area the gap between the actual value and the pre-
dicted value is worse, and it cannot predict the product qual-
ity well. Compared with Fig. 8(a) GRU, Fig. 8(b) BiGRU 
has improved local prediction ability, but there are still many 
locally inaccurate prediction points. It is shown in Fig. 8(c) 
BiGRU-AM introduces the output attention mechanism 
based on Fig. 8(b) BiGRU, and the prediction effect is fur-
ther improved. To make the BiGRU-AM input features con-
tain more information about the prediction results, Fig. 8(e) 
shows that ConvBiGRU-AM extracts the original data fea-
tures by convolution operation, which makes the prediction 
results more accurate. Compared with Fig. 8(d) STGCNT, 
ConvBiGRU-AM which introduces the attention mechanism 
predicts better results. We proposed MI-ConvBiGRU-AM as 
an integrated structure that has different data and parameters 
at each stage for training ConvBiGRU-AM such that the 

Fig. 7   Results of variable selection (yellow grid: selected variable; 
blue grid: unselected variable)

Table 3   The selection of model parameters

Model Optimizer Learning rate Epochs (stages) Batch Size Time Steps Fully Con-
nected Layer

Hidden 
Neurons 
(stages)

GRU​ Adam 0.0001 50 16 10 1 90
BiGRU​ Adam 0.0001 50 16 10 1 90
BiGRU-AM Adam 0.0001 50 16 10 1 90
STGCNT Adam 0.0001 50 16 10 1 90
ConvBiGRU-AM Adam 0.0001 50 16 10 1 90
MI-ConvBiGRU-AM Adam 0.0001 20 (1) 16 10 1 40 (1)

Adam 0.0001 30 (2) 16 10 1 65 (2)
Adam 0.0001 45 (3) 16 10 1 90 (3)

Table 4   Comparison of algorithms in evaluation index

N0 Algorithms MAE RMSE MAPE R2

1 GRU​ 0.0333 0.0692 0.3761 0.9896
2 BiGRU​ 0.0242 0.0490 0.0805 0.9949
3 BiGRU-AM 0.0144 0.0598 0.1262 0.9923
4 STGCNT 0.0067 0.0580 0.0322 0.9927
5 ConvBiGRU-AM 0.0068 0.0417 0.0266 0.9963
6 MI-ConvBiGRU-AM 0.0043 0.0396 0.0121 0.9971
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Fig. 8   Prediction results of penicillin concentration
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integrated model is more adapted to the quality prediction 
of the multistage penicillin fermentation process.

As mentioned in Sect. 3.4, prediction residuals were 
used as statistics for quality monitoring, and thresholds 
were defined based on the residuals calculated from data 
under normal operating conditions. The performance of 
quality monitoring was verified with 20 test batches which 
contained normal operation and faults, and the mean fault 
detection rate and mean fault false alarm rate for each model 
are shown in Table 5. It can be observed from Table 5 that 
the proposed MI-ConvBiGRU-AM has higher fault detection 
rate and lower fault false alarm rate.

For typical batches, the quality monitoring results under 
normal and fault operating conditions are shown in Fig. 9. 
Where, quality related and unrelated variable faults are 
selected to be analyzed in the fault batch, and for the normal 
working condition which refers to under the control strategy 
of recipe driven approach. Where, Dissolved oxygen concen-
tration, pH, temperature, substrate concentration, agitator 
speed, and hot/cooling water flow rate faults can directly 
affect the penicillin quality. Reactor volume, weight, and 
generated heat fault have a small effect on penicillin mass, 
which is a quality-unrelated fault variable. Figure 9 shows 
quality-related faults are substrate concentration faults and 
quality-unrelated faults are reactor volume faults.

It can be noticed in Fig. 9(a) that it is able to reach the 
expected value of penicillin concentration at the end of a 
batch by using the control strategy of recipe driven approach. 
From Fig. 9(b) we can see that the prediction residuals of the 
model are kept consistently below the threshold value, which 
indicates that there are no fault false alarms. In Fig. 9(c) 
because of the fault occurrence the prediction model is 
not able to predict the change of penicillin concentration 
well, but the fault is a quality unrelated fault therefore it 
does not have much impact on the product quality and it is 
able to generate the whole batch of penicillin that fulfills 
the requirements. According to the quality monitoring per-
spective, no downtime is required for this fault alarm. In 
Fig. 9(d), it shows the result of fault detection, the fault is 
detected at the 437th samples, and the actual time of fault 
occurs at the 435th sample with some detection delay, that is, 
the fault missed alarm. From Fig. 9(e), the fault has affected 
the quality of the product, and even if the fault is eliminated, 
penicillin concentration increases are no longer desirable for 

the growth curve. Figure 9(f) reflects the fault detection after 
the occurrence of the fault, which can be detected at the first 
time. And since the elimination of this fault does not make 
it possible to produce the product normally, it is necessary 
to downtime and reprocess it.

The radar chart of multiple evaluative indicators for the 
different models is shown in Fig. 10. To enable the differ-
ent indicators to be visualized in the radar chart, the values 
of the indicators were quantified. For the indicators FAR, 
MAE, RMSE, and MAPE, smaller values indicate better 
model; for FDR and R2 larger values is better. It can be 
clearly seen from Fig. 10 that the proposed model in this 
paper has better results compared to other models.

4.2 � Hot strip mill process

The hot strip rolling process is a high investment, high 
quality and high productivity rolling process. A typical hot 
strip rolling line includes a heating furnace, roughing mill, 
transfer table & shear, finishing mill, laminar cooling equip-
ment and coiler. The Schematic of the Hot strip mill process 
is shown in Fig. 11. The process is as follows: the slab is 
heated in a heating furnace and then rolled several times 
through the roughing mill to form an intermediate slab. The 
intermediate slab is then quickly transported to the finishing 
mill using a flying shear and intermediate delay roller tables 
for more precise control to obtain a strip that meets the 
requirements. Finally, the strip is treated in a laminar flow 
cooling plant to improve properties and coiled for storage. 
Strip thickness is one of the key factors in the production of 
hot-rolled strips. According to customer requirements, the 
hot rolled strip process can produce strip thicknesses from 
1.5 mm to 12.7 mm to meet different requirements.

4.2.1 � Description of hot strip mill and datasets

The case study is experimentally validated with live data 
of strip production from a steel company, which produces 
thickness of 3.9 mm strips. The production process involves 
20 process variables and 1 quality variable which is shown 
in Table 6. This includes roll gaps, rolling forces and bend-
ing roll forces for the 7 stands of the finishing mill (no bend-
ing rolls for stand 1), and the quality variable is the thickness 
at the exit of the finishing mill.

Table 5   Mean monitoring index 
of different methods for 10 test 
batches

Algorithms GRU​ BiGRU​ BiGRU-AM STGCNT ConvBiGRU-AM MI-Con-
vBiGRU-
AM

FDR/% 93.91 95.65 97.73 96.95 98.34 99.73
FAR/% 1.18 3.25 2.91 2.29 2.13 0.54
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Fig. 9   Quality monitoring results for different test batches. (a) and 
(b) are prediction and monitoring results under normal operating con-
ditions; (c) and (d) are prediction and monitoring results for quality 

unrelated faults; (e) and (f) are prediction and monitoring results for 
quality related faults
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In this case study, it collects process data for each batch 
with sampling time of 30 s, sampling period 10 ms, and total 
3000 samples.

4.2.2 � Results of stage identification

As mentioned in Sect. 3.1, according to the finite Markov 
chain similarity matrix, more similarity between samples is 
also kept by considering both temporal and neighborhood 
information. Figure 12 shows the heatmap of AP and IAP 
similarity matrices with different colors representing dif-
ferent values.

It can be noticed from Fig. 12 that the larger values in the 
IAP are closer to the diagonal line, which means that IAP 
uses smaller similarity for samples from larger time intervals 
compared to AP.

The IAP algorithm was utilized to segment the hot strip 
mill process into three sampling stages, i.e., 0 ~ 572th, 
572 ~ 2117th, and 2117 ~ 3000th, respectively. The results 
of the stage segmentation are consistent with the three stages 

of hot strip mill process: acceleration period, steady period 
and deceleration period.

4.2.3 � Results of variable selection

For hot strip mill process, as mentioned in Sect. 3.2 above, 
each stage of the process variables that have a high impact 
on product quality are selected by mRMR, and the results of 
the variable selection are shown in Fig. 13.

4.2.4 � The selection of model parameters

To verify that performance improvement of the model is 
contributed by the design of the model structure rather than 
the number of trainable parameters, all comparison meth-
ods were designed to have similar number of parameters. 
Specially, for MI-ConvBiGRU-AM is a model of multiple 
stages of integration, each stage is set with different param-
eters, and the number of parameters is not more than that of 
the other comparison methods in the interests of fairness. 
By using the grid search method, the mean square error of 
the validation results is minimized, we choose the suitable 
stopping epoch and hidden neurons for each of the above 
stages. The detailed parameter choices for the model are 
shown in Table 7.

Fig. 10   Radar plot of prediction and monitoring indicators for differ-
ent algorithms

Fig. 11   Schematic of the Hot strip mill process

Table 6   Process and quality variables in finishing mill

Variable No Type Description Unit

1–7 Process variable Average roll gap of 7 stands mm
8–14 Process variable Roll force of 7 stands MN
15–20 Process variable Bending roll force of 6 stands MN
21 Quality variable Exit thickness at the last 

finishing mill stand
mm
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4.2.5 � Quality prediction and monitoring results

The MI-ConvBiGRU-AM model was constructed with the 
designed parameters and comparison models. Normal data 
of 10 batches were used for model training and validation. 
For the test batches, the evaluation indexes of the hot strip 

Fig. 12   Heat map of similarity matrices with IAP and AP

Fig. 13   Results of variable selection (yellow grid: selected variable; 
blue grid: unselected variable)

Table 7   The selection of model parameters

Model Optimizer Learning rate Epochs (stages) Batch Size Time Steps Fully Con-
nected Layer

Hidden 
Neurons 
(stages)

GRU​ Adam 0.0001 30 8 10 1 48
BiGRU​ Adam 0.0001 30 8 10 1 48
BiGRU-AM Adam 0.0001 30 8 10 1 48
STGCNT Adam 0.0001 30 8 10 1 48
ConvBiGRU-AM Adam 0.0001 30 8 10 1 48
MI-ConvBiGRU-AM Adam 0.0001 25 (1) 8 10 1 24 (1)

Adam 0.0001 20 (2) 8 10 1 30 (2)
Adam 0.0001 20 (3) 8 10 1 26 (3)

Table 8   Comparison of algorithms in evaluation index

N0 Algorithms MAE RMSE MAPE R2

1 GRU​ 0.0580 0.0996 0.7534 0.9202
2 BiGRU​ 0.0526 0.0971 0.6635 0.9220
3 BiGRU-AM 0.0404 0.0656 0.6250 0.9653
4 STGCNT 0.0357 0.0592 0.6052 0.9718
5 ConvBiGRU-AM 0.0129 0.0351 0.3432 0.9901
6 M-ConvBiGRU-AM 0.0053 0.0111 0.1539 0.9990



	 K. Liu et al.  123   Page 18 of 22

Fig. 14   Prediction results of strip thicknesses
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mill quality prediction results of 5 batches under normal 
working conditions were mean values as shown in Table 8.

It can be noticed from Table 8 that the model in this paper 
has better predictive performance, which can monitor the 
changes of quality variables in real time. The relevant evalu-
ation indexes indicate that the MI-ConvBiGRU-AM model 
has stronger robustness and fitting ability.

For one of the typical tests batches, the results of the 
prediction on strip thickness are shown in Fig. 14. Here, 
blue indicates the predicted value and red is the actual value.

It can be shown from Fig. 14(a) that the traditional 
GRU model cannot predict strip thickness trends well in 
the local area. Compared with Fig. 8(a) GRU, Fig. 8(b) 
BiGRU has improved local prediction ability, but there 
are still many locally inaccurate prediction points. Fig-
ure 14(c) and Fig. 14(d) introduce the attention mechanism 
and the convolution part based on BiGRU, respectively, 
which makes the prediction results more accurate. Com-
pared with Fig. 14(d) STGCNT, ConvBiGRU-AM which 
introduces the attention mechanism predicts better results. 
We proposed MI-ConvBiGRU-AM as an integrated struc-
ture that has different data and parameters at each stage for 
training ConvBiGRU-AM such that the integrated model 
is more adapted to the quality prediction of the multistage 
hot strip mill process.

The performance of quality monitoring was verified with 
test batches and the mean fault detection rate and mean fault 
false alarm rate for each model are shown in Table 9. It 
can be observed from Table 9 that the proposed MI-Con-
vBiGRU-AM has higher fault detection rate and lower fault 
false alarm rate.

For normal operating conditions, the quality related 
and unrelated fault quality monitoring results are shown in 
Fig. 15. For hot strip mill process, the fault of the actuator 
of the press-down system in stand 4 is a quality-related fault 
affecting the strip thickness, and the fault of the bend roll 
force control system in stand 5 is a quality-unrelated fault 
not affecting the strip thickness.

It can be seen from Fig. 15(a) that the method proposed 
in this paper can accurately predict the strip thickness. 
From Fig. 15(b) we can see that the prediction residuals 
of the model are kept consistently below the threshold 
value, which indicates that there are no fault false alarms. 

From Fig. 15(c), the fault affects the quality of the product. 
Figure 15(d) reflects the fault detection after the fault has 
occurred, which can be detected at the first time. Since the 
elimination of this fault would not allow the product to be 
produced normally, it was necessary to stop the machine and 
reprocess it. In Fig. 15(e), because of the occurrence of the 
fault, the prediction model is unable to predict the change in 
strip thickness well, but the fault is a quality-unrelated fault, 
so it does not have much impact on the product quality, and 
is able to generate a whole batch of strip steel that meets the 
requirements. Figure 15(f), the alarm occurs due to fault. 
According to the quality monitoring point of view, this fault 
alarm does not require downtime.

The radar chart of multiple evaluative indicators for the 
different models is shown in Fig. 16. To enable the different 
indicators to be visualized in the radar chart, the values of 
the indicators were quantified. It can be clearly seen from 
Fig. 16 that the proposed model in this paper has better 
results compared to other models.

5 � Conclusions

In this study, we propose an MI-ConvBiGRU-AM model for 
batch process quality monitoring and prediction. This model 
accomplishes process stage identification through IAP and 
employs mRMR at each stage to select process variables 
related to final product quality for modeling and to improve 
the interpretability of the subsequent model. The proposed 
model effectively extracts predictive features at the input 
layer, while combining historical and future information 
to extract dynamic and nonlinear features, and introduces 
attention mechanisms to ensure that important information 
is not lost and to reduce the complexity of the model. Two 
typical batch processes, industrial-scale fed-batch fermenta-
tion process and hot strip mill process, demonstrate that the 
model is effective for monitoring high quality production 
of batch products by accurately predicting product quality 
while reducing false alarms for processes that do not affect 
product quality. Since MI-ConvBiGRU-AM model needs 
huge computational resources during the training and moni-
toring process, in future, we will research a lightweight net-
work based on MI-ConvBiGRU-AM.

Table 9   Mean monitoring index 
of different methods for 5 test 
batches

Algorithms GRU​ BiGRU​ BiGRU-AM STGCNT ConvBiGRU-AM MI-Con-
vBiGRU-
AM

FDR/% 94.99 95.23 96.15 97.23 98.01 99.95
FAR/% 3.25 3.23 2.12 2.36 1.22 0.25
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Fig. 15   Quality monitoring results for different test batches. (a) and 
(b) are prediction and monitoring results under normal operating con-
ditions; (c) and (d) are prediction and monitoring results for quality 

related faults; (e) and (f) are prediction and monitoring results for 
quality unrelated faults
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Abstract

In batch processes, it is crucial to ensure safe production by fault detection.

However, the long batch duration, limited runs, and strong nonlinearity of the

data pose challenges. Incipient faults with small amplitudes further complicate

the detection process. To achieve safe production, motivated by deep learning

strategies, we propose a new fault detection method of batch process called

Siamese deep neighbourhood preserving embedding network (SDeNPE). First,

the DeNPE network is constructed by means of NPE and kernel functions,

which utilizes the different types of kernel functions in the kernel mapping

layer to extract diverse deep nonlinear features and overcome strong nonli-

nearity in the process data. Then, the Siamese network is used to obtain the

different features between the data and improve the recognition of incipient

faults. In addition, the deep extraction and Siamese network allow for batches

of training data reduction without diminishing the performance of fault detec-

tion. Finally, we utilize monitoring statistics to complete the fault detection

process. Two batch process cases involving the penicillin fermentation process

and the semiconductor etching process demonstrate the superior fault detec-

tion performance of the proposed SDeNPE over the other comparison

methods.

KEYWORD S

batch process, fault detection, kernel method, neighbourhood preserving embedding,
Siamese network

1 | INTRODUCTION

The batch process has the advantages of small batches,
multiple varieties, and flexible operating batches, and
therefore plays an important role in industrial produc-
tion. Along with improved automation and increasingly
complex processes, the safety and reliability of produc-
tion systems are becoming more and more important.
Therefore, it is urgent to develop process monitoring
technology to ensure that the operational potential of the
process is maximized and that the production is safe and
efficient. Fault detection of batch process is an important

research topic.[1–5] Traditional model-based methods have
difficulty achieveing better performance of fault detection
in complex batch processes, and data-driven methods are
gaining more and more attention from scholars. As one of
the important branches of data-driven approaches, multi-
variate statistical process monitoring (MSPM) methods
have been successfully used for batch processes with satis-
fying results.[6–8]

Typical MSPM methods include principal component
analysis (PCA),[9] independent component analysis
(ICA),[10] partial least squares (PLS),[11] and neighbour-
hood preserving embedding (NPE).[12] Compared to other
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MSPM methods, NPE considers the local neighbourhood
of data samples by mapping similar samples to neigh-
bourhood locations in the low-dimensional space. The
local structure of the original data is maintained in
the low-dimensional space, which helps to preserve the
important similarities and differences among the data
samples. Meanwhile, the batch diversity of the batch pro-
cess pays more attention to the local structural informa-
tion, and the preservation of the manifold structure in
the feature extraction process is very important for the
fault detection model. NPE is considered due to
the advantage of preserving the local manifold structure.
By considering the serial correlation of the process data,
Miao et al.[13] proposed temporal neighbourhood preserv-
ing embedding (TNPE) and applied it to dynamic process
fault detection. However, process data are closely related
to time series and dynamic characteristic. For the
dynamic characteristic of processes, Zhao and Wang[14]

proposed a tensor dynamic neighbourhood preserving
embedding (TDNPE) algorithm. Song et al.[15] con-
structed an enhanced neighbourhood preserving embed-
ding (ENPE) to solve reconstruction error and distance
problems for industrial process monitoring. In order
to monitor the processes with multiple operating
conditions, the multiple mode NPE method has been
developed.[16,17] Tan et al.[18] proposed an adaptive neigh-
bourhood preserving embedding (ANPE) algorithm that
combined nearly linear dependency conditions with
neighbourhood preserving embedding to achieve online
fault detection. Zhu et al.[19] proposed an advanced fault
diagnosis method based on discriminative neighbour-
hood preserving embedding of Mahalanobis distance
(DNPE-M), which addressed the problems of classifica-
tion accuracy and data overlap in process monitoring.

All the above NPE-based methods are designed for
linear process monitoring. However, most industrial pro-
cesses are nonlinear, so researchers have developed non-
linear NPE algorithm, called kernel NPE (KNPE).[20]

Owing to its effectiveness, KNPE has become a widely
used algorithm for nonlinear process monitoring. To
improve the performance of nonlinear modelling, Miao
et al.[21] proposed an orthogonal KNPE method for fault
detection of nonlinear processes. In addition, Miao
et al.[22] employed KNPE for soft sensor modelling, which
built KNPE from local variables that was different from
previous global modelling and which was applied to
industrial cases; the method was simultaneously used
to estimate some product qualities or critical variables
that were difficult to measure online. Liu et al.[23] pro-
posed a new anomaly detection method which used
KNPE and the double kernel parametrization to explore
the similarity relationship of the data and in turn to
detect process anomalies. Mou and Zhao[24] proposed a

hybrid kernel function KNPE method for the timely
detection and diagnosis of incipient faults.

Such KNPE-based methods all use KNPE as the core
algorithm and have been applied to various nonlinear
process monitoring cases. However, the KNPE model is
not adequate to extract the inherent features of process
data, and KNPE only obtains one layer of nonlinear fea-
tures for statistical modelling when applying a kernel
function to implement a nonlinear transformation. For
complex nonlinear process data, it is often difficult to
mine the inherent information through a single feature
extraction step. In other words, the feature extraction
with KNPE is shallow and does not make full use of the
inherent data information. In recent years, deep learning
has had great success in the field of fault detection.[25–27]

Zhao and Lai[28] proposed a neighbourhood preserving
neural network (NPNN) which adaptively trained a non-
linear neural network for extracting deep features, and
considered the local geometric structure of the data. Liu
et al.[29] proposed a novel stacked neighbourhood pre-
serving autoencoder (S-NPAE) to extract hierarchical
neighbourhood preserving features, and this network
extracted deep features by stacking. This demonstrates
that multi-layer feature extraction facilitates the discov-
ery of complex data structures. For small amplitude sig-
nals, feature extraction often involves much deeper
potential variables to be obtained. With deep feature
extraction from raw signals, the fault information con-
tained in early micro signals can be fully extracted.
Therefore, it is necessary to develop a multi-layer KNPE
feature extraction model in process monitoring.

As mentioned above, latent feature extraction is an
important aspect of all these algorithms. Latent variables
have the unobserved features that really represent the
property of the data. For some processes, the number of
batches of process data collected is limited. In general,
for fault detection in batch processes, the number of fault
batches affects the modelling results and the fault detec-
tion results. Abundant modelling batches statistically
cover enough batch-to-batch process variations to reveal
the potential process information. However, it may be
impractical to perform many operation cycles in each
state and wait for sufficient available batches. Therefore,
the models trained with limited batch data often have
poor results. Siamese networks are widely used in process
situations with limited data due to their effectiveness in
dealing with small samples of data.[30–32] Qin and Hu[33]

proposed an ANS-Net framework for measuring inherent
differences by using a small number of signals, and estab-
lished a fault diagnosis model. Yang et al.[34] utilized a
Siamese two-dimensional convolutional neural network
to extract the feature vectors of the input fault signal cou-
ple. For limited training samples, the proposed method
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was able to obtain good fault diagnosis accuracy. There-
fore, Siamese network is applied to the modelling of
batch process, which deals with limited batches of batch
process data.

Motivated by the above analysis, we propose an
improved NPE method with a deep architecture, referred
to as Siamese deep neighbourhood preserving embedding
network (SDeNPE), which adopts the Siamese depth fea-
ture extraction strategy to obtain the data features for
nonlinear process monitoring. In contrast to the tradi-
tional shallow NPE and KNPE, SDeNPE constructs a
deep feature extraction model that captures the deep
nonlinear features of the data. By alternating different
kernel functions in the kernel mapping layer, the
extracted features are more diverse. Simultaneously,
SDeNPE has a Siamese structure, which obtains differ-
ence characteristics by measuring the differentiation
between data. Normally, the difference between normal
samples is small, and when a fault occurs, the difference
between the faults and normal samples can increase. The
faults with smaller magnitudes can be detected by
the structure of this difference metric. In this way, the
twin structure allows more meaningful low-dimensional
features to be preserved for fault detection. SDeNPE
effectively solves the problem of limited batches of a
batch process by obtaining difference features for fault
detection through the Siamese method based on the non-
linear feature extraction. The effectiveness of SDeNPE
is verified by two typical cases of batch process: the
penicillin fermentation and the semiconductor etching
processes.

In this paper, SDeNPE is used for batch process fault
detection. The main contributions lie in the following
aspects:

1. In this paper, a new SDeNPE network is proposed for
batch process fault detection, motivated by a deep
learning strategy. The network improves the fault
detection performance of nonlinear batch processes
by alternately employing different kernel functions in
different kernel mapping layers, resulting in a diver-
sity of obtained deep nonlinear features.

2. The proposed SDeNPE network has a Siamese archi-
tecture, which effectively captures the difference char-
acteristics in process data, thereby ensuring better
fault detection performance, especially for incipient
micro magnitude faults.

3. The SDeNPE network can mine deep features and
extract data difference features, which leads to obtain-
ing excellent fault detection performance even with
limited batches of training data, making it highly
effective for batch processes with a limited data
availability.

The structure of the paper is as follows. In Section 2,
a brief overview of NPE, KNPE, and Siamese neighbour-
hood preserving embedding (SNPE) is given, while our
proposed SDeNPE network for nonlinear process fault
detection is detailed in Section 3. In Section 4, two cases
are used to validate the proposed network, and our con-
clusions are drawn in Section 5.

2 | OVERVIEW OF NPE, KNPE,
AND SNPE

The proposed network is based on NPE[35] and Siamese neu-
ral networks.[36] This section presents these preliminaries.

2.1 | NPE method

Consider a data matrix X with n samples and m variables
for each sample, for which the matrix is assumed to be
standardized according to the z-score method. NPE repre-
sents the local linear structure of manifold by local linear
reconstruction, which is in the form of mean square error.
The objective function representing the reconstruction error
in the high-dimensional space is shown in formula (1):

Φ Wð Þ¼ min
Xn
i¼1

xi�
X

j � Q ið Þ
wijxj

������
������
2

, ð1Þ

where Q ið Þ is the set of neighbouring samples and W
should satisfy the normalization constraint.

During dimensionality reduction, NPE retains the
same local linear reconstruction in the low-dimensional
space as in the original space. The objective function in
low-dimensional space is shown in formula (2):

Φ yð Þ¼
Xm
i¼1

yi�
Xn
j¼1

W ijyj

 !2

, ð2Þ

where Y ¼ y1,y2,…,ynð Þ is the linear reconstruction of X
in low-dimensional space. X and Y satisfy Y ¼ATX , and
A a1,a2,…,adð Þ is the reduced projection matrix.

The dimensionality-reduced linear map is computed by
solving for the generalized eigenvectors, as in formula (3):

XMXTa¼ λXXTa, ð3Þ

where M ¼ I�Wð ÞT I�Wð Þ and I¼ diag 1,…,1ð Þ. The
eigenvectors a are arranged in ascending order of eigen-
values to obtain the matrix A.
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For the test data xnew, low-dimension is represented
as ynew after dimensionality reduction through NPE. Sta-
tistics T2 and SPE can be established for fault detection,
as shown in formulas (4) and (5):

T2¼ yTnewΛ
�1ynew, ð4Þ

SPE¼ xnew�bxnewk k2, ð5Þ

where Λ�1 is the covariance matrix of the samples andbxnew is the low-dimensional reconstruction of the test
data. Figure 1 shows the schematic for NPE based fault
detection. For the NPE method, the T2 and SPE statistics
are constructed based on the linear features of the data.
Specifically, the T2 statistic is used to monitor data
changes in the feature space, while the SPE statistic is
used to monitor data changes in the residual space. Thus,
with these two statistics, it is possible to comprehensively
monitor data changes in linear characteristic. The fault detec-
tion based on NPE is shown in Figure 1B, which involves
the original data layer L1 and the linear feature layer L2.

2.2 | KNPE method

Although NPE is more effective than other dimension
reduction methods for pattern recognition, it is still a

linear technique in nature. Therefore, it is not sufficient
to describe nonlinearly distributed data. KNPE is
obtained by nonlinear mapping to deal with the
nonlinearity of the process. The nonlinear mapping Φ:
x �Rm�1!Φ xð Þ�F maps the process data into a linear
feature space F. In the feature space, NPE builds the next
objective function as shown in formula (6):

Φ Xð ÞMΦT Xð Þa¼ λΦ Xð ÞΦT Xð Þa: ð6Þ

To avoid defining nonlinear mappings Φ, the kernel
matrix is introduced as Κ¼Φ Xð ÞΦT Xð Þ. With the kernel
trick, the kernel matrix corresponding to the kernel func-
tion is shown in formula (7):

K i, jð Þ¼ΦT xið ÞΦ xj
� �¼ ker xi,xj

� �
: ð7Þ

Further, formula (6) can be written as formula (8):

Φ Xð ÞMΦT Xð Þa¼ λΦ Xð ÞΦT Xð Þa
Φ Xð ÞMΦT Xð ÞΦ Xð Þa¼ λΦ Xð Þa
ΦT Xð ÞΦ Xð ÞMΦT Xð ÞΦ Xð Þa¼ λΦT Xð ÞΦ Xð Þa
KMKa¼ λKa:

ð8Þ

The eigenvalue decomposition of the matrix MK is
performed. Then, the mapping matrix A from high
dimension space into dimension space can be achieved
by reconstructing eigenvector referring to the d smallest
eigenvalue. That is: A a1,a2,…,adð Þ.

For the new sample data xnew, statistics T2 and SPE
can be established for fault detection as shown in
formulas (9) and (10):

T2¼ATΦ xnewð ÞTΛ�1Φ xnewð ÞA, ð9Þ

SPE¼ Φ xnewð Þ� bΦ xnewð Þ
��� ���2, ð10Þ

where Λ¼Φ Xð ÞΦT Xð Þ=n�1 is the covariance matrix of
the samples and bΦ xnewð Þ is the low-dimensional recon-
struction of the test data. Figure 2 is the schematic for
KNPE based fault detection. KNPE maps the original non-
linear data into the high dimensional feature space, which
obtains the nonlinear features of the original data through
kernel matrix mapping. The fault detection based on
KNPE is shown in Figure 2B, which has a three-layer
structure involving the original data layer L1, the kernel
mapping layer L2, and the nonlinear feature layer L3. Sim-
ilar to NPE, KNPE only monitors one layer of features.
However, the difference is that KNPE introduces a kernel
mapping layer to obtain nonlinear features.

FIGURE 1 Schematic for neighbourhood preserving

embedding (NPE) based fault detection. (A) NPE model training.

(B) NPE fault detection. SPE, squared prediction error.
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2.3 | SNPE method

A Siamese network is a type of network that contains
two identical subnetworks. The subnetworks are iden-
tical to each other in structure and parameters. There-
fore, each subnetwork provides the same mapping of
inputs to potential features. The output of the whole
network is a measure of the difference between two
potential features. Since the two networks are identi-
cal, if two very similar inputs are fed to the Siamese
network, the resulting features should also be very
close to each other in the feature space. The schematic
for SNPE based fault detection is shown in Figure 3.
The two NPE subnetworks are identical to each other
and provide the same mapping parameters. The fea-
ture of SNPE network is a measure of the difference
between the extracted features T1 and T2, correspond-
ing to input samples X1 and X2, respectively. The objec-
tive function of the SNPE network is given as shown in
formula (11):

T¼ d T1,T2f g¼ Φ X1ð Þ�Φ X2ð Þk k22, ð11Þ

where d T1,T2f g is a measure of the distance between the
mapping features T1 and T2. If the Euclidean distance is
taken as a measure of distance, it can be written
as Φ X1ð Þ�Φ X2ð Þk k22.

For the test data xnew, statistics T2 and SPE can be
established for fault detection, shown in formulas (12)
and (13):

FIGURE 2 Schematic for kernel

neighbourhood preserving embedding

(KNPE) based fault detection. (A) KNPE

model training. (B) KNPE fault

detection. SPE, squared prediction error.

FIGURE 3 Schematic for Siamese neighbourhood preserving

embedding (SNPE) based fault detection. (A) SNPE model training.

(B) SNPE fault detection. NPE, neighbourhood preserving

embedding; SPE, squared prediction error.
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T2¼TTΛ�1T, ð12Þ

SPE¼ xnew�bxnewk k2, ð13Þ

where T is the Siamese feature output of the SNPE net-
work, Λ�1 is the covariance matrix of the samples, andbxnew is the low-dimensional reconstruction of the test
data. The Siamese structure can measure the difference
between features, so it is sensitive to minor faults, which is
described in further detail in Section 3 in this paper. In order
to make the fault detection with nonlinear and incipient fea-
tures better, based on SNPE, Siamese network structure has
a better fault detection effect for complex processes.

3 | THE PROPOSED SIAMESE
DeNPE METHOD (SDeNPE)

Compared with NPE, KNPE adds a nonlinear mapping
layer to effectively solve the nonlinear characteristic of the
input data. SNPE is based on the NPE Siamese structure,
which is more sensitive to incipient faults in fault detection.
At the same time, deep learning networks consist of multi-
ple nonlinear feature layers. More deeper features are
obtained layer by layer. Therefore, deep learning networks
are beneficial for improving the monitoring performance of
nonlinear processes. We propose a SDeNPE network with

deep feature extraction capability to improve the fault detec-
tion performance of batch process. This section mainly
introduces the proposed SDeNPE method.

3.1 | The construction of SDeNPE
network

The proposed SDeNPE network extracts linear and non-
linear features by integrating NPE and KNPE in an
L-layer structure. Meanwhile, the difference characteris-
tics are obtained by utilizing the ideology of twin net-
works. The structure is shown in Figure 4.

In the SDeNPE deep feature extraction structure, for
the training data X ¼ x1,x2,…,xn½ ��Rm�n, n is the sample
size obtained by sampling, and m is the dimension of
measure variable, which is first mapped into the high-
dimensional kernel space to obtain the first layer of fea-
tures K ¼ k11,k12,…,k1nf g�Rn�en, where en¼M. Then,
the features in the kernel space are linearly mapped to
the next layer by NPE to obtain the nonlinear features. In
this order, KNPE is applied to the LN� 2,…, l,…,Nf g
layer to obtain deeper nonlinear features. Finally, the
SDeNPE network outputs the difference degree S(x)
between the deeper nonlinear features of the two sub-
networks.

More specifically, at the first feature layer, we
use a nonlinear mapping Φ �ð Þ to map the input data

FIGURE 4 Schematic of Siamese deep neighbourhood preserving embedding network (SDeNPE) framework.
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into the high dimensional feature space. Kernel
function operation converts into original data through
calculation of inner product: Κ¼Φ X ið ÞΦT X j

� �
, where

Φ Xð Þ¼ Φ x1ð Þ,Φ x2ð Þ,…,Φ xnð Þ½ ��Rv is the data of high
dimensional feature space and v is the dimension of the
high dimensional feature space. The Euclidean distance
between two points in a high-dimensional feature space
is shown in formula (14):

Φ xið Þ�Φ xj
� ��� ��

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Φ xið Þ�Φ xj

� �� �T
Φ xið Þ�Φ xj

� �� �q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΦT xið ÞΦ xið ÞþΦT xj

� �
Φ xj
� ��2ΦT xið ÞΦ xj

� �q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K xi,xið ÞþK xj,xj

� ��2K xi,xj
� �q

:

ð14Þ

Then, a linear mapping is performed at the next layer
by using NPE algorithm based on preserving the local
nearest neighbour information, which is calculated
according to formula (15):

Φ Wð Þ¼ min
Xn
i¼1

Φ xið Þ�
X

j � Q ið Þ
wijΦ xj

� �������
������
2

¼ min
Xk
i¼1

K xi,xið Þ�2
Xk
j¼1

WijK xi,xj
� � 

þ
Xk
j¼1

Xk
j¼1

WijWijK xj,xj
� �!

,

ð15Þ

where Q ið Þ is the set of nearest neighbour samples; W
should satisfy the normalization constraint.

At the lth feature layer for 2≤ l≤L, the features are
further extracted by KNPE, where the features in the
l�1ð Þth layer are the training data for the lth layer. For
the last layer of features, the solution is solved by
using the Lagrange multiplier method, as shown in
formula (16):

Φ Tnð ÞDΦT Tnð Þa¼ λΦ Tnð ÞΦT Tnð Þa
KnDKna¼ λKna,

ð16Þ

where Φ Tnð Þ is the mapping feature of the LN¼N�2
layer, which is also the input data of the LN¼N�3
layer, and Knis the kernel matrix of the LN¼N�1 layer.
The eigenvalue decomposition of the matrix DKn is per-
formed. Then the mapping matrix D from high dimen-
sion space into dimension space can be attained by
reconstructing eigenvector referring to the d smallest
eigenvalue, that is: D a1,a2,…,adð Þ.

The output features of the two sub-networks are
passed through the Siamese network to obtain the differ-
ence features, as shown in formula (17):

S xð Þ¼ d Tn1,Tn2f g¼ Φ Tn1�1ð Þ�Φ Tn2�1ð Þk k22, ð17Þ

where S xð Þ is the differential feature of the two sub-
networks; d Tn1,Tn2f g is a measure of the distance
between the mapping features; Tn1 and Tn2 are the out-
put feature of each sub-network; and �k k22 is the square of
European distance. It is worth emphasizing that the
SDeNPE network achieves layer-by-layer feature extrac-
tion, with optimization at each layer of the network.

As the SDeNPE network contains multiple KNPEs,
the choice of kernel parameters is an important issue. In
practice, it is necessary to select the kernels with good
interpolation and extrapolation capabilities, that is,
good generalization capabilities. A mixed kernel function
is one that uses a linear combination of multiple kernel
functions, and this combination requires the optimiza-
tion of the mixture weight increasing the complexity of
the network training. Currently, the selection of mixture
weight is mainly empirical.

In this paper, SDeNPE is a multilayer network. To
ensure the diversity of the extracted non-linear features,
we choose different kernel functions at each kernel map-
ping layer, that is, global kernel function and local kernel
function are crossed to extract features, and Gaussian
radial basis function is used for odd kernel mapping
layers and polynomial kernel function is used for even
kernel mapping layers.

However, there are different kernel functions that sat-
isfy the conditions. Jordan noted two main types of ker-
nel functions including global kernel and local kernel
functions,[37] as shown in Figure 5, in which the illustra-
tions of kernel functions are shown for different parame-
ters: Figure 5A shows a typical global kernel function, a
polynomial kernel function, with the expression shown
in formula (18); Figure 5B shows a typical local kernel
function, a Gaussian radial basis function (RBF), with
the expression shown in formula (19).

Kp x,x0ð Þ ¼ x,x0h iþ1ð Þd, ð18Þ

Kg x,x0ð Þ ¼ exp � x�x0k k2
t

 !
, ð19Þ

where d is the kernel parameter that denotes the degree
of the polynomial, and satisfies the Mercer condition for
d�Ν; and t is the kernel width, which satisfies the Mer-
cer condition for c>0.
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It can be seen from Figure 5 that different parameter
values affect the interpolation and extrapolation capabili-
ties of the kernel function. Therefore, it is necessary to
choose suitable kernel parameters to ensure the feature
extraction capability. In this paper, we choose the polyno-
mial kernel with d¼ 1 and the RBF kernel function with
t¼ 2.[38] Furthermore, to illustrate different kernel func-
tions at each kernel mapping layer to guarantee the
diverse capabilities of feature extraction, meanwhile, to
demonstrate the effectiveness of the proposed multilayer
feature extraction for nonlinear processes, we illustrate it
with a numerical example,[39] as shown in formula (20):

z2i�1¼
z 1ð Þ
2i�1

z 2ð Þ
2i�1

z 3ð Þ
2i�1

26664
37775¼

1:5ai

1:8ai

1:3ai

2664
3775þ

0:28βi

0:385βi

0:42βi

2664
3775,

z2i¼
z 1ð Þ
2i

z 2ð Þ
2i

z 3ð Þ
2i

26664
37775¼

1:57 2:37 1:8

2:73 1:05 1:4

1:22 1:60 2:4

2664
3775z2i�1þ

0:35βi

0:385βi

0:42βi

2664
3775,
ð20Þ

where αi and βi are the random variables from the stan-
dard normal distribution, i¼ 1,2, � � �,N . According to for-
mula (20), normal process data with 1000 samples,
Z¼ z1,z2,…,z1000½ �, are generated. Fault process data are
simulated with a step fault: a step change of 2.5 is added
to the variable z 3ð Þ

2i�1 from the 401st sample, and a step
change of 1.22 is added to the variable z 1ð Þ

2i from the
402nd sample. The simulated fault data also contain
1000 samples. Figure 6 shows the visualization of the
normal samples and the fault samples on the first two
dimensions of different kernel mapping layer methods.

It can be seen from Figure 6 that the multilayer non-
linear feature extraction method has better results for

nonlinear processes. In Figure 6A, the fault samples and
the normal samples are largely mixed up; also, Figure 6B
has a partial mixture. Therefore, there is a limitation of
feature extraction from a single layer of kernel function.
In Figure 6C,D, two-layer mapping for RBF kernel and
polynomial kernel has an enhanced kernel function
extraction capability compared to a single layer, but its
extraction capability is still limited. Thus, a multi-layer
single kernel function does not extract the features well.
In Figure 6E, two-layer mapping for mixed kernel is
much more capable of distinguishing normal samples
from fault samples, with good feature extraction. In
Figure 6F, an increasing number of layers in the kernel
function does not enhance the feature extraction capabil-
ity anymore, so the most appropriate number of layers
for this example is 2. The above example illustrates the
choice of kernel mapping layer in this paper. However,
the choice of the number of layers for the network is
influenced by several factors. For the sample data of the
process, the amount of data determines the number of
layers chosen for the network. This is further discussed
in Section 4 on the selection of the number of network
layers. In practice, it may not always result in the best
performance in all tasks to use a constant number of
layers. It is really a challenging task to determine the
optimal number of network layers for different processes,
and there are no general definitive rules that can directly
determine the optimal number of layers for a network. In
this study, the number of network layers for a specific
process is determined by using cross-validation.[40] In
order to better determine the number of network layers,
the standard five-fold cross-validation method is used in
this paper. The training samples are divided into five
equal and mutually exclusive subsets, four of which are
used as the training set and one as the train set. The test
set is selected by letting the five subsets ergodic and aver-
aging the results of the five validation tests.

FIGURE 5 Sample plots of kernel values, where x0 ¼ 0:1, for: (A) Polynomial kernel; (B) radial basis function (RBF) kernel.
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3.2 | Fault detection based on statistical
indicators for SDeNPE method

A batch process is a repetitive production process which
has three-dimensional data compared to a continuous pro-
duction process. For fault diagnosis of batch processes,
three-dimensional data need to be unfolded as two-

dimensional data to build a fault diagnosis model. There-
fore, the batch-variable 3D data expansion method is used
to process the 3D data.[7] First, the data matrix of each sam-
pling moment is sequentially arranged along the time axis
and unfolded to obtain two-dimensional data, and then
standardized by columns, and the standardized two-
dimensional matrix is arranged in the variable direction to

FIGURE 6 Visualization of the normal samples and the fault samples on the first two dimensions of different kernel mapping layer

methods: (A) Polynomial kernel; (B) Radial basis function (RBF) kernel; (C) Two-layer mapping for RBF kernel; (D) Two-layer mapping for

polynomial kernel; (E) Two-layer mapping for mixed kernel; (F) Three-layer mapping for mixed kernel.
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form a two-dimensional matrix. This expansion method
can weaken the dynamic correlations which exist in the
process to a certain extent and result in more effective
monitoring of process changes.

After the data features are extracted by the offline
trained model, statistical indicators are established to com-
plete the fault detection. In this paper, we use the T2 statis-
tic and the SPE statistic for fault detection, and the control
thresholds for these two statistics are calculated based on
the assumptions of multivariate normal distribution and
temporal independence of the observations. Since the distri-
bution of the extracted features has no prior information,
this paper approximates the control thresholds of the T2

and SPE statistics by kernel density estimation (KDE).[41]

The T2 statistic is calculated as formula (21):

T2¼S xð ÞTΔ�1S xð Þ, ð21Þ

where S xð Þ is the differential characteristic and Δ�1 is
the covariance matrix of the samples.

The SPE statistic is calculated as formula (22):

SPE¼ exk k2¼ x�Gxk k2, ð22Þ

where G is the mapping matrix from input to output for
the SDeNPE network. The method of kernel density esti-
mation gives a univariate kernel function, which is
shown in the following formula (23):

f jð Þ¼ 1
n

Xn
i¼1

Kh j� jið Þ¼ 1
nσ

Xn
i¼1

K
j� ji
σ

� �
, ð23Þ

where j is the sample data, ji is the observation value, σ is
the window width, n is the number of observation values,
and K is the kernel function. In this paper, the Gaussian
kernel function is selected, and the test level α¼ 0:95 can
be obtained by formulas (24) and (25) to seek the control
limits T2

α and SPEα.

Z T2
α

�∞
f T2
� �

d T2
� �¼ Z T2

α

�∞

1
nσ

Xn
i¼1

K
T2�T2

i

σ

� �
d T2
� �

¼
Z T2

α

�∞

1

nσ
ffiffiffiffiffi
2π
p

Xn
i¼1

exp � T2�T2
i

� �2
2σ

 !( )
d T2
� �¼ α:

ð24Þ

Z SPEα

�∞
f SPEð Þd SPEð Þ¼

Z SPEα

�∞

1
nσ

Xn
i¼1

K
SPE�SPEi

σ

� �
d SPEð Þ

¼
Z SPEα

�∞

1

nσ
ffiffiffiffiffi
2π
p

Xn
i¼1

exp � SPE�SPEið Þ2
2σ

 !( )
d SPEð Þ¼ α:

ð25Þ

If T2 >T2
α or SPE> SPEα, a fault occurs; otherwise, it

is normal.

3.3 | Fault detection procedure based on
SDeNPE network

The proposed SDeNPE network for batch process fault
detection comprises offline modelling and online moni-
toring procedures. The fault detection steps of the pro-
posed SDeNPE network are shown in Figure 7, which
has two parts: offline modelling and online monitoring.

In the offline training stage, normal running data are
collected, the SDeNPE network is constructed, and con-
trol confidence thresholds are calculated.

3.4 | Offline modelling

Step 1: Collect normal operational data, divide them into
two datasets of the same number of samples, X1 and X2,
and normalize them with the mean and variance of the
normal data.

Step 2: Build the SDeNPE network with training data.
Step 3: Obtain differentiation feature between the

original data by the SDeNPE network and calculate the
statistics T2 and SPE for the network.

Step 4: Obtain the confidence thresholds T2
α and SPEα

by using the KDE method.
In the online monitoring stage, the new samples are

projected into the SDeNPE model to extract the features.
The statistics T2 and SPE are also obtained to judge the
process condition.

3.5 | Online monitoring

Step 1: Collect online samples xnew and then normalize
with the mean and variance of the normal training
data set.

Step 2: Project the xnew onto the SDeNPE model and
calculate the output feature.

Step 3: Calculate the monitoring statistics T2 and SPE
with formulas (21) and (22).

Step 4: If T2 ≥T2
α or SPE≥ SPEα, the fault occurs; oth-

erwise, return to step 1.

4 | CASE STUDIES

We conduct two batch process cases involving the penicillin
fermentation process[42] and the semiconductor etching pro-
cess[43] to verify the effectiveness and suitability of our
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FIGURE 7 Fault detection framework of Siamese deep neighbourhood preserving embedding network (SDeNPE). SPE, squared

prediction error.

FIGURE 8 Schematic of the penicillin fermentation process. MPC, model predictive control.
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proposed SDeNPE network in fault detection, specifically,
SDeNPE compared with multiway principal component
analysis (MPCA), NPE, KNPE, SNPE, and DeNPE methods.
For all these methods of building statistical models, KDE
method calculates 95% confidence limits for each statistic.
The fault detection rate (FDR) is defined as the percentage
of samples that exceed the threshold among all fault sam-
ples, while FAR is defined as the percentage of samples that
exceed the threshold among all normal samples.

4.1 | Penicillin fermentation process

Penicillin is a widely used antibiotic in clinical practice.
Its production process is typically intermittent and the

TABLE 1 Considered variables in the penicillin fermentation

process.

No. Process variables

1 Aeration rate (L/h)

2 Agitator power (W)

3 Substrate feed flow rate (L/h)

4 Substrate feed flow temperature (K)

5 Substrate concentration (L/h)

6 Dissolved oxygen concentration (%)

7 Reactor volume (L)

8 Fermentation temperature (K)

9 pH

10 CO2 (%)

TABLE 2 Penicillin fermentation

process fault modes.
Fault no. Fault variable name Disturbance Amplitude Fault period

F1 Aeration rate Step +0.8% 200–400 h

F2 Aeration rate Ramp +0.1 300–400 h

F3 Agitator rate Step +1% 200–300 h

F4 Agitator rate Ramp +1 250–400 h

F5 Substrate feeding rate Step +1.5% 200–300 h

F6 Substrate feeding rate Ramp +0.005 200–400 h

FIGURE 9 Visualization of the normal and fault samples on the first two dimensions with the different number layers: (A) LN = 2;

(B) LN = 3; (C) LN = 5; (D) LN = 7.
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process is characterized by strong nonlinearity, dynamics,
and mass production. The Illinois Institute of Technology
designed the Pensim2.0 platform based on the penicillin
fermentation process and it is widely used in areas such
as the modelling and monitoring of batch processes. The
initial state of the batch process should be different to
reflect the difference between different batches. Multiple
batches of data are generated in the normal range of set-
ting different initial conditions and process parameters. A
schematic of the penicillin fermentation process is shown
in Figure 8.

In our experiments, we selected 10 variables in the
penicillin fermentation process, as listed in Table 1.

We used the Pensim2.0 platform to generate
10 batches of normal data and 6 batches of fault data
with different fault types. The initial parameter settings
were different for each batch of data, but were within
normal ranges. The simulation time was set to 400 h, and
the sampling time was set to 1 h. The data under normal
operating conditions were used for training and model
building, where five batches of each sub network were
used in training for the Siamese network. The data col-
lected from abnormal conditions were used for fault detec-
tion. In order to simulate the actual penicillin fermentation
process and increase the robustness of the model, Gaussian
white noise e � ¥(0, 0.01) was introduced into the data.
The fault modes are shown in Table 2.

The number of layers in a deep network is influenced
by many complex factors and is certainly relevant to the
problem. Therefore, for the penicillin fermentation pro-
cess data, we determined the number of layers of the
SDeNPE network as LN = 5 by cross-validation. Since
the main nonlinear features of SDeNPE network are
extracted at the kernel mapping layer, we verified the
optimal choice of layers by LN = 2, 3, 5, and 7, respec-
tively. The results of the first two-dimensional visualiza-
tion of different layers for normal and fault samples are
shown in Figure 9, where the blue circle is normal sam-
ples and the red circle is fault samples.

It can be seen from Figure 9 that the feature extrac-
tion results are more obvious when the number of layers
increases. However, when LN = 5, SDeNPE has a good
extraction effect. When the number of layers is increased
to LN = 7, normal and fault samples overlap and the
extraction effect decreases. Therefore, for fault detection
of the penicillin fermentation process, it is reasonable for
the number of layers to be LN = 5 obtained by cross vali-
dation in this paper.

Table 3 shows the FDRs of different fault detection
algorithms; the highest FDR for each fault has been
marked in bold.

Table 4 shows the FARs of different fault detection
algorithms. The best fault detection performance is when
FAR is lower and in bold.

TABLE 3 Fault detection rates (FDRs) of the different methods for faults/%.

Fault no.

MPCA NPE KNPE SNPE DeNPE SDeNPE

T2 SPE T2 SPE T2 SPE T2 SPE T2 SPE T2 SPE

F1 12.00 3.50 7.01 2.48 15.42 67.16 74.12 90.10 99.50 85.07 89.55 99.50

F2 11.88 12.87 14.85 15.84 39.60 69.30 77.22 83.16 90.09 92.07 98.01 98.50

F3 13.86 9.09 16.83 6.93 34.65 38.61 68.31 67.32 93.06 95.04 97.02 99.00

F4 12.58 13.90 16.55 17.21 33.77 39.73 73.50 76.82 92.05 94.03 94.70 95.36

F5 2.97 5.94 4.95 9.09 27.72 30.69 66.33 65.34 91.08 92.07 92.07 96.03

F6 1.98 2.97 2.48 3.98 24.87 28.35 74.62 78.60 92.53 94.02 95.52 97.01

Mean 9.21 8.05 10.45 9.26 29.34 45.64 72.35 76.89 93.05 92.05 94.48 97.57

Abbreviations: DeNPE, deep neighbourhood preserving embedding network; KNPE, kernel NPE; MPCA, multiway principal component analysis; NPE,
neighbourhood preserving embedding; SDeNPE, Siamese deep neighbourhood preserving embedding network; SNPE, Siamese neighbourhood preserving
embedding; SPE, squared prediction error.

TABLE 4 FARs of the different methods for faults/%.

Fault no.

MPCA NPE KNPE SNPE DeNPE SDeNPE

T2 SPE T2 SPE T2 SPE T2 SPE T2 SPE T2 SPE

Mean 4.50 22.50 10.05 20.10 16.08 17.58 29.24 23.61 19.09 21.10 8.05 3.51

Abbreviations: DeNPE, deep neighbourhood preserving embedding network; KNPE, kernel NPE; MPCA, multiway principal component analysis; NPE,
neighbourhood preserving embedding; SDeNPE, Siamese deep neighbourhood preserving embedding network; SNPE, Siamese neighbourhood preserving

embedding; SPE, squared prediction error.
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FIGURE 10 Monitoring charts for the penicillin fermentation process fault 1 according to fault detection method. DeNPE, deep

neighbourhood preserving embedding network; KNPE, kernel NPE; MPCA, multiway principal component analysis; NPE, neighbourhood

preserving embedding; SDeNPE, Siamese deep neighbourhood preserving embedding network; SNPE, Siamese neighbourhood preserving

embedding; SPE, squared prediction error.
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In Table 3 and Table 4, the MPCA method has a low
FDR for multiple faults. Compared with MPCA, the
effect of NPE is improved, but the effect is not significant

enough, which is due to the limited number of batches of
training data and the inadequate feature extraction abil-
ity of the data. Based on NPE, KNPE considers the non-
linear characteristic of the data, resulting in better
feature extraction, and its FDR is higher. However, fea-
ture extraction of shallow layer makes the FDR not so
high overall. As SNPE is a Siamese structure, which is
valid for the modelling of limited batches, the differential

FIGURE 10 (Continued)

FIGURE 11 Histogram for mean fault detection rate (FDR)

of the penicillin fermentation process. DeNPE, deep

neighbourhood preserving embedding network; KNPE, kernel

NPE; MPCA, multiway principal component analysis; NPE,

neighbourhood preserving embedding; SDeNPE, Siamese

deep neighbourhood preserving embedding network; SNPE,

Siamese neighbourhood preserving embedding; SPE, squared

prediction error.

FIGURE 12 Schematic of the semiconductor etching process.

MF, mass flow; OES, optical emission spectroscopy; RF, radio

frequency.
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features between the data are fully considered, resulting
in a high FDR. However, the shallow feature extraction
makes the extracted features inadequate. DeNPE is a
deep nonlinear NPE extraction method with more ade-
quate extraction for feature and higher FDR. The

SDeNPE method, based on DeNPE, uses Siamese struc-
tures to obtain difference features while extracting the
features in depth, and has a higher FDR and a lower false
alarm rate.

To verify the superiority of the SDeNPE method in
fault detection performance in this paper, we further
illustrate the superiority of the SDeNPE method by using
the statistical information from the fault F1 monitoring
graph in Figure 10.

In Figure 10A, only a small number of faults are
detected by the MPCA method both in the T2 and SPE
statistics, owing to the low feature extraction capability of
MPCA method, so it has low FDRs along with low fault
false alarm rates. As NPE only considers the local mani-
fold structure information, it does not show a high
improvement in the detection effect compared to MPCA
due to the limited number of batches for training the
model and the poor feature extraction ability. KNPE is a
nonlinear deduction of NPE that extracts the nonlinear
features of the data; in Figure 10C, the improvement in
the FDR of the SPE statistic of KNPE is obvious, however
the T2 statistic is not visible. For the SNPE method, in

TABLE 5 Considered variables in the semiconductor etching

process.

No. Measured variables No. Measured variables

1 BCI3 flow 10 RF power

2 CI2 flow 11 RF impedance

3 RF bottom power 12 TCP tuner

4 Endpoint A detector 13 TCP phase error

5 Helium pressure 14 TCP impedance

6 Chamber pressure 15 TCP top power

7 RF tuner 16 TCP load

8 RF load 17 Vat valve position

9 Phase error - -

Abbreviations: RF, radio frequency; TCP, transformer coupled plasma.

FIGURE 13 Visualization of the normal and fault samples on the first two dimensions with the different number layers: (A) LN = 2;

(B) LN = 3; (C) LN = 5; (D) LN = 7.
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Figure 10D, the T2 and SPE statistics are effective for
detection, but faulty false alarm is evident; the cause is
that the fault cannot differentiate between incipient fea-
tures and faults. As DeNPE is a deep network based on
nonlinear NPE, the nonlinear feature extraction is much
more capable; it can be seen from Figure 10E that both
the T2 and SPE statistics are detected by a more correct
number of fault samples, but the faults are heavily misre-
presented. Therefore, it is an important issue for reducing
the fault false rate in deep networks. Based on DeNPE,
SDeNPE proposed with Siamese structure effectively
solves this problem; from Figure 10F, we can see that the
SDeNPE network performs better in fault detection.

Based on the FDR results, we plot the histograms in
Figure 11, where the error bars denote the variance. It
can be seen from Figure 11 that the mean FDR of the
proposed method in this paper is higher and more stable
for all fault batches of the penicillin fermentation pro-
cess. In other words, if the error bar is smaller, the FDR
fluctuates less.

4.2 | Semiconductor etching process

The semiconductor etching process is a very important
part of the semiconductor manufacturing process which
needs to operate under different conditions and is a

typical nonlinear batch process. A schematic of the semi-
conductor etching process is shown in Figure 12.

Our experiment was performed on a Lam9600 plasma
etching tool for stack etching with an inductively coupled
Bl3/Cl2 plasma etch stack. The metal etcher used in this
experiment is equipped with three sensor systems:
machine state, radiofrequency monitors, and optical
emission spectroscopy (OES). The device status sensor
collects the device data during wafer processing, includ-
ing 40 process setpoints that are sampled at 1 s interval
during the etching process, such as gas flow, chamber
pressure, RF power, and so forth. In this process, each of
the 17 non-setpoint process variables with normal varia-
tion is monitored, as shown in Table 5.

In this experiment, we selected 10 normal batches for
modelling, and each batch is 85 h in length. For the
Siamese network structure, each sub-network used for
5 batches of data to train the network model.

For the semiconductor etching process data, we deter-
mined the number of layers of the SDeNPE network to
be LN = 7 by cross-validation. To visualize the choice of
the number of layers, we verified the optimal choice
of layers by LN = 2, 3, 5, and 7, respectively. The results
of the first two-dimensional visualization of different
layers for normal and fault data are shown in Figure 13,
where the blue circle is normal data and the red circle is
fault data.

TABLE 6 Fault detection rates (FDRs) of the different methods for faults/%.

Fault no.

MPCA NPE KNPE SNPE DeNPE SDeNPE

T2 SPE T2 SPE T2 SPE T2 SPE T2 SPE T2 SPE

TCP + 10 3.52 24.71 3.52 17.64 15.29 45.88 78.82 82.35 91.76 89.41 96.47 98.82

RF-12 5.89 12.94 7.05 18.82 29.41 47.05 82.35 88.23 92.94 94.11 96.47 97.64

BCl3 + 5 14.11 15.29 18.82 23.52 35.29 25.88 81.17 81.17 87.05 90.58 92.94 95.29

Pr-2 7.05 16.47 9.41 16.47 25.88 35.29 87.05 88.23 90.58 94.11 94.11 95.29

Cl2-5 18.82 20.00 20.00 21.17 29.41 25.88 80.00 81.17 85.88 88.23 92.94 96.47

He Chuck 21.17 23.52 23.52 30.58 31.76 32.94 78.82 80.00 82.35 84.70 91.76 94.11

Mean 11.76 18.82 13.72 21.37 27.84 35.49 81.36 83.53 88.43 90.19 94.11 96.27

Abbreviations: DeNPE, deep neighbourhood preserving embedding network; KNPE, kernel NPE; MPCA, multiway principal component analysis; NPE,

neighbourhood preserving embedding; SDeNPE, Siamese deep neighbourhood preserving embedding network; SNPE, Siamese neighbourhood preserving
embedding; SPE, squared prediction error.

TABLE 7 FARs of the different methods for faults/%.

Fault no.

MPCA NPE KNPE SNPE DeNPE SDeNPE

T2 SPE T2 SPE T2 SPE T2 SPE T2 SPE T2 SPE

Mean 12.94 9.41 8.23 7.05 5.88 4.70 4.70 3.52 5.82 2.35 1.17 0.00

Abbreviations: DeNPE, deep neighbourhood preserving embedding network; KNPE, kernel NPE; MPCA, multiway principal component analysis; NPE,

neighbourhood preserving embedding; SDeNPE, Siamese deep neighbourhood preserving embedding network; SNPE, Siamese neighbourhood preserving
embedding; SPE, squared prediction error.

LIU ET AL. 1183
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FIGURE 14 Monitoring charts for the semiconductor etching process faults according to fault detection method. DeNPE, deep

neighbourhood preserving embedding network; KNPE, kernel NPE; MPCA, multiway principal component analysis; NPE, neighbourhood

preserving embedding; SDeNPE, Siamese deep neighbourhood preserving embedding network; SNPE, Siamese neighbourhood preserving

embedding; SPE, squared prediction error.
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It can be seen from Figure 13A that normal and fault
samples overlap, which are linearly nonseparable. In
Figure 13B, the normal and fault samples are linearly sepa-
rated, but some of the samples are not correctly classified.
Compared with Figure 13B, Figure 13C shows better linear
separation, that is, when layer LN = 3 is increased to
LN = 5, the feature extraction capability is better. In
Figure 13D, the fault and normal samples can be well line-
arly separable, and when the number of layers increases,
the feature extraction results are more obvious. For the
semiconductor etching process, when LN = 7 layers, the
fault and normal samples are fully linearly separable.
Therefore, it is reasonable for the SDeNPE network that
LN = 7 layers is chosen in this paper.

We select TCP + 10, RF-12, BCl3 + 5, Pr-2, Cl2-5, and
He chuck pressure fault batches to introduce faults in all
periods of each batch. Table 6 shows the FDRs of differ-
ent fault detection algorithms; the FDR with the best per-
formance for each fault has been marked in bold.

Table 7 shows the FARs of different fault detection
algorithms for normal batches of the semiconductor etch-
ing process. Better fault detection performance occurs
when FAR is lower and in bold.

In Table 6, the mean FDRs for MPCA, NPE, and
KNPE methods are lower, which are attributed to the
limited number of batches of training data. Although

KNPE is more efficient than NPE, shallow layer fea-
ture extraction makes the FDR not very high in gen-
eral. It was mainly due to the poor accuracy of models
trained in limited batches. FDRs based on the SNPE
method are higher, which is because of the extraction
of difference features between data, making it more
effective for limited batches of data. As a deep non-
linear NPE extraction method, DeNPE can more fully
extract the features and therefore the FDR is high. Our
proposed SDeNPE network has a higher FDR by
extracting depth features based on DeNPE and by
using the Siamese structure to obtain the difference
features.

To further analyze the fault detection performance of
the SDeNPE method in this paper, we illustrate the
advantages of the SDeNPE method in this paper by
means of the fault monitoring charts in Figure 14.

In Figure 14A, the fault detection performance of the
MPCA is poor and only a few points are detected. In
Figure 14B and Figure 14C, only a small number of faults
are detected in the T2 and SPE statistics; compared to
NPE, KNPE is a nonlinear deduction of NPE that extracts
the nonlinear features of the data and the FDR increases.
For SNPE method, in Figure 14D, the T2 and SPE statis-
tics are effective for fault detection, with a high number
of missed fault samples, the reason being the inadequate

FIGURE 14 (Continued)
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extraction of incipient fault features. DeNPE is a deep
nonlinear feature extraction method with better feature
extraction ability, and in Figure 14E, most of the fault
samples are detected in T2 and SPE statistics. In
Figure 14F, the SDeNPE method proposed in this paper
performs better for fault detection, that is, it has a higher
FDR and lower fault false alarm rate than other methods.

Based on the FDR results, we plot the histograms for
mean FDR in Figure 15, where the error bar denotes the
variance. It can be seen from Figure 15 that the mean FDR
of the method proposed in this paper is higher and is more
stable for all fault batches of the semiconductor etching
process. In brief, the fault detection performance of
SDeNPE is better than other methods and the proposed
method can better monitor the process.

5 | CONCLUSIONS

In this paper, a new statistical modelling method based
on deep feature extraction, called SDeNPE, is proposed
and applied to batch process fault detection. In the
SDeNPE network, the alternating use of different kernel
functions within the kernel mapping layer allows for a
diversity of extracted nonlinear features; the Siamese
deep model makes it more sensitive to incipient faults by
extracting differential features between data; in particu-
lar, when this twinned deep model is used to extract

features, the number of batches of training data required
is reduced while ensuring fault detection effectiveness.
Two industrial examples are used, including a penicillin
fermentation process and a semiconductor etching pro-
cess. The results show that the SDeNPE network is supe-
rior in FDR and FAR when it applied to batch process
monitoring and is more effective for process fault detec-
tion. SDeNPE is more prompt in detecting early faults
and avoids further expansion of early micro faults. An
efficient fault detection method can improve the accuracy
and reliability of fault diagnosis. How to accomplish fault
identification in an SDeNPE-based process monitoring
will be a focus of our further research.
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Nonlinear Quality-Related Fault Detection Using
Neighborhood Embedding Neural Orthogonal
Mapping Algorithm for Batch Process

Quality-related fault detection has become a hot research topic in recent years. It
is not reliable to measure quality-related relationships only by mutual information
among process variables and single-quality variables. Frequent alarms for quality-
unrelated faults seriously affect the normal operation of industrial production. At
the same time, the strong nonlinearity of the process data leads to the difficulty
of feature extraction. In this paper, we propose a fault detection algorithm based
on nonlinear quality-related neighborhood embedding neural orthogonal mapping
(QR-NENOM). First, quality-related and quality-unrelated variables are selected
by Bayesian fusion mutual information, and the weighted method of mutual in-
formation is used to enhance the quality-related information and suppress the
quality-unrelated information. Second, local manifold information is obtained by
reconstructing nearest neighbors of process data, and key features are extracted by
the nonlinearmethod composed of neural network and orthogonalmapping. Then,
statistical indicators are established to complete fault detection. Finally, the nonlin-
ear feature extraction ability of NENOM is verified by numerical examples, and the
QR-NENOMalgorithmproposed in this paper is applied to the penicillin fermenta-
tion process. Comparative experiments show thatQR-NENOMhas better detection
performance for quality-related faults and fewer alarms for quality-unrelated faults.

Keywords: Batch process, Fault detection, Neighborhood preserving embedding, Neural
network, Quality related
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DOI: 10.1002/ceat.202200577

1 Introduction

In the context of Industry 4.0, the manufacturing industry has
achieved rapid development, and product quality is the most
important production indicator in the manufacturing process
[1–4]. According to whether the faults affect the quality of the
products, the faults are divided into quality-related faults and
quality-unrelated faults. In recent years, quality-related fault have
gained a lot of attention in the process monitoring field. By
reducing quality-unrelated fault alarm rate, it can reduce unnec-
essary factory downtime, resulting in greater economic benefits
for the enterprise [5, 6].

As an important data-driven branch, multivariate statistical
process monitoring (MSPM) methods [7, 8] analyze the entire
process through the correlation between process variables,
without accurate analytical models and specific structural basis.
Moreover, such methods are easy to implement. Therefore, such
methods have gradually become a research hotspot for process
monitoring. Traditional MSPMmethods include principal com-
ponent analysis (PCA) [9], independent component analysis
(ICA) [10], linear discriminant analysis [11], and so on. Con-
sidering the importance of product quality for the production
process, and making the whole process of monitoring be more

accurate, scholars have proposed some quality-related process
monitoring methods, such as partial least squares (PLS) [12],
canonical correlation analysis [13], principal component regres-
sion [14], etc. However, these methods are all linear processing
methods, which have poor ability to extract nonlinear features.
As a result, the effectiveness and accuracy of the monitoring
results are greatly reduced.
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To deal with nonlinear problems, most methods adopt kernel
functions to projection nonlinear process data into a high-
dimensional kernel space. Fan et al. [15] proposed a nonlinear
process monitoring method of kernel independent component
analysis (KICA) -PCA, which uses genetic algorithm to deter-
mine the kernel parameters by minimizing the false alarm rate
and maximizing the detection rate to improve the monitoring
performance. He et al. [16] proposed a new method of kernel
locality preserving projection, the kernel trick is applied to the
construction of nonlinear kernel models for batch monitoring.
Liu et al. [17] proposed a kernel ICA for processing nonlineari-
ties in metallurgical processes. Further, consider quality-related
fault detection. Jiao et al. [18] proposed a nonlinear quality-
related fault detection method based on the kernel partial least
squares (KPLS) model. The method uses KPLS to realize the lin-
ear relationship between the kernel matrix and the outputmatrix
and solves the nonlinear problem between the process variables.
Wei et al. [19] considered the relationship between process vari-
ables and quality variables of using kernel functions to deal with
nonlinearity and proposed a supervised self-optimizing kernel
model for industrial processes. Ma et al. [20] proposed a new dy-
namic mixed kernel principal component analysis model based
on the mixed kernel function, which revealed and quantified the
linear and nonlinear dynamic interdependencies between pro-
cess variables and quality variables. However, the kernel function
method cannot maintain the characteristics of the original data.
In addition, in the training stage of the model, the kernel matrix
constructed based on a large amount of data is used for fea-
ture decomposition, which leads to an increase in the amount
of calculation and affects the detection efficiency.

Recently, artificial neural networks (ANN) have more advan-
tages in nonlinear data feature extraction. Yu et al. [21] proposed
a broad convolutional neural network with incremental learning
capability, which combined multiple consecutive samples into
a data matrix, and then extracted fault trends and nonlinear
structures from the obtained data matrix through a convolu-
tion operation. Wu et al. [22] proposed a fault diagnosis method
based on deep convolutional neural network for nonlinear chem-
ical process. Zhang et al. [23] proposed a bidirectional recurrent
neural network (RNN) (BiRNN) fault diagnosis method, which
proved its effectiveness in chemical processes. Xu et al. [24]
proposed an online fault diagnosis method based on the deep
transfer convolutional neural network framework, which was
effective for solving data nonlinearity. The above process moni-
toring methods based on ANN do not consider the influence of
monitoring on product quality. In addition, most of the neural
network-basedmethods are global end-to-endmodels, which do
not capture the local data structure. In the process of feature com-
pression, important local neighbor information is lost, which is
bad for monitoring.

On the other hand, neighborhood preserving embedding
(NPE) [25] algorithm not only has good performance in extract-
ing the manifold structure of the data, but also the ability to
preserve the original local neighborhood information of the data.
So, it has attracted much attention. Liu et al. [26] proposed a
stacked neighborhood preserving autoencoder to extract neigh-
borhood preserving features. Deep learning extracts features
while preserving local neighbor structure. Yu et al. [27] pro-
posed a deep neural network manifold regularization stacking

autoencoder for fault detection in complex industrial processes.
Rezaei et al. [28] proposed a regularized multilabel learning
method based on two-manifold learning (RMLDM) for indus-
trial processes. Such methods integrate the NPE into the neural
network to monitor the changes of the local structure of the
process data and realize the fault detection by monitoring the
local information changes. However, quality-related issues are
not considered, so the relationship between process variables and
quality variables should be further considered.

As meaningful supplements, strongly inspired by the above
observations, we propose a fault detection method based on
nonlinear quality-related neighborhood embedding neural or-
thogonal mapping (QR-NENOM). This method fully considers
the nonlinear characteristic of batch process and establishes the
supervision relationship between process variables and quality
variables through the weighting idea ofmutual information (MI)
and Bayesian inference. Simultaneously, it preserves local infor-
mation. In addition, the fault detection indicators are rationally
designed to improve the performance of fault detection. The
method is used for fault detection of penicillin fermentation
process, and its validity is verified.

In this paper, as a newnonlinear quality-related fault detection
framework, QR-NENOM can meet the practical needs of batch
process monitoring. The main contributions lie in the following
aspects.

(1) Our proposed fault detection method pays more attention
to process variables that affect product quality, which can
reduce production line shutdowns and equipment life losses
due to quality-unrelated variable faults.

(2) Under the joint action of neighborhood embedding and
neural network, the extracted features not only deal with the
strong nonlinearity of the data, but also better extract the
local structural information.

(3) Neighborhood embedding neural network under orthogo-
nal constraints can eliminate feature redundancy and reduce
computational complexity.

The remainder of this paper is structured as follows. Sect. 2
explains the fundamentals ofMI andNPE. Sect. 3 offers the prin-
ciples and optimization problems of NENOM algorithm. Sect. 4
is focused on theNENOM fault detection framework for quality-
related and quality-unrelated faults. Simulation example as well
as penicillin fermentation process are explained in Section 5 to
check the performance of the proposed approach. This work
ends with conclusions in the last part.

2 Preliminaries

In this section, the basic ideas of MI and NPE are reviewed
briefly. Then, the problem formulation is given.

2.1 Mutual Information (MI)

MI [29] is an informationmeasure in the field of information the-
ory, whichmeasures the amount of information that one random
variable contains in another random variable. It can not only
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represent the linear relationship between two random variables,
but also be used to evaluate the nonlinear relationship. If the
two variables are unrelated of each other, the MI value is 0. The
MI can be used to measure the common information contained
between two random variables, so the degree of correlation be-
tween the two random variables can be expressed by MI. The
calculation of MI is as formula (1):

I (X,Y ) =
∑
x∈X

∑
y∈Y

p
(
x, y

)
log

p
(
x, y

)
p (x) p

(
xy
) (1)

where, (X,Y ) ∼ p(x, y), I(X, Y) is the MI between X and Y.
For a single random variable x, the Shannon entropy is

expressed as formula (2).

H (x) = −
∫
x
p (x) log p (x) dx (2)

where, p(x) is probability density of x.
The joint entropy is shown in formula (3).

H (x1, x2) = −
∫
x1

∫
x2
p (x1, x2)log (x1, x2) dx1dx2 (3)

Therefore, theMI for two variables is obtained by formula (4).

I (x1, x2) =
∫
x1

∫
x2
p (x1, x2) log

(
p (x1, x2)

p (x1) p (x2)

)
dx1dx2 (4)

It can also be expressed as formula (5).

I (x1, x2) = H (x1) + H (x2) − H (x1, x2) (5)

For the same process variable x1, the MI obtained from dif-
ferent quality variables yj is usually different. For the process
monitoring model, it is unreasonable to determine the overall
quality information contained according to theMI between pro-
cess variables and a single-quality variable. Therefore, we adopt
the idea of weighting in Bayesian inference and integrate the MI
obtained by the same xi and each yj to obtain a weighted fusion
MI.

2.2 Neighborhood Preserving Embedding (NPE)

NPE [25] is a manifold learning algorithm that can obtain the
local manifold structure of the data. The main idea is to achieve
dimensionality reduction by extracting local linear information
of the manifold. Specifically, NPE uses a local linear reconstruc-
tion to represent the local linear structure of themanifold, which
is in the form of mean square error. The steps are as follows.

For the original data X(x1, x2,…, xn) ∈ RD, set the number of
samples to m, the dimension to n, the dimension to d after di-
mensionality reduction, andQ(i) to the set of k nearest-neighbor
samples of sample i. Then the objective function representing the
reconstruction error in the high-dimensional space is shown in
formula (6).

� (W) = min
n∑
i=1

∥∥∥∥∥∥xi −
∑
j∈Q(i)

Wi jx j

∥∥∥∥∥∥
2

(6)

whereW should satisfy the normalization constraint.
The matrix W obtained by optimizing the objective function

contains the local information of the manifold. In the process of

dimensionality reduction, NPE retains the same local linear re-
construction as the original space in the low-dimensional space
(that is, uses the same weight matrix W in the objective func-
tion) to achieve linear dimensionality reduction. The objective
function in low-dimensional space is shown in formula (7).

�(y) =
m∑
i=1

⎛
⎝yi −

n∑
j=1

Wi jy j

⎞
⎠

2

(7)

where Y= (y1, y2,…, yn) is the linear reconstruction ofX in low-
dimensional space. X and Y satisfy Y = ATX, A(a1, a2,…, ad) is
the reduced projection matrix.

The dimensionality-reduced linear map is computed by solv-
ing for the generalized eigenvectors, as in formula (8).

XMXTa = λXXTa (8)

where M = (I − W)T(I − W), I = diag(1,…, 1). Arrange the
eigenvectors a in ascending order of eigenvalues to obtain the
matrix A. The NPE algorithm has been widely used for process
monitoring due to the local manifold structure that can obtain
the data. However, NPE is a linear feature extraction algorithm,
and it is difficult to extract nonlinear features. Therefore, we
combine neural network and NPE to extract nonlinear features
while retaining local neighbor information.

3 Neighborhood Embedding Neural
Orthogonal Mapping (NENOM)

This section focuses on the derivations of the proposedNENOM.
It has been proved that the optimization procedures of NENOM
will converge to a local optimum.

3.1 The Theoretical Derivations of Neighborhood
Embedding Neural Orthogonal Mapping

This subsection proposes a nonlinear feature extraction algo-
rithm called neighborhoodNENOM, as shown in Fig. 1. First, the
original data preserves the local manifold structure information
through nearest-neighbor selection and weight reconstruction;
second, a nonlinear neural network is used as a nonlinear feature
extractor; finally, the features are mapped back to the original
data space using a linear orthogonal transformation.

Due to the objective function formula (6) of NPE algorithm,
this paper designs the optimization problem of NENOM as
shown in formula (9).

[W ∗, b∗,V ∗] = arg min
W,b,V

∥∥X − W f (X;W, b)VT
∥∥2 (9)

where subject to VTV = I, W is neighborhood reconstruction
weight matrix, f(X;W, b) is a feedforward neural network which
consists of one input layer with m inputs, one hidden layer with
munits, and one output layer with p nodes. In this paper, f(X;
W, b) = S(XW + b), where S is sigmoid function. A nonlin-
ear feature map of the data is learnt by adaptively adjusting the
parametersW and b.

Unlike kernel methods, the dimension of NENOM input does
not increase with the increase of training samples. Furthermore,

Chem. Eng. Technol. 2024, 47, No. 5, 764–778 © 2024 Wiley-VCH GmbH www.cet-journal.com

 15214125, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ceat.202200577 by L

anzhou U
niversity O

f, W
iley O

nline L
ibrary on [23/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.cet-journal.com


Research Article 767

Figure 1. Illustration of neigh-
borhood embedding neural or-
thogonal mapping (NENOM).

there are no prefixed kernels and related parameters in NENOM,
the parameters W and b can be learnt adaptively during the
training phase.

We represent the neural network in the form of a matrix;
formula (9) is further expressed as formula (10).

[W ∗, b∗,V ∗] = arg min
W,b,V

∥∥X − WFVT
∥∥2 (10)

where F = f(X; W, b), matrix F is the key feature that needs to
be extracted for further analysis to perform fault detection of the
process.

3.2 Optimization Problem of NENOM

For the objective function of NENOM to be a nonconvex func-
tion, it is difficult to iteratively calculate the parameters at the
same time. Therefore, we first iteratively calculate to determine
the parametersW and b and then calculate V. The calculation of
V can be optimized by formula (11).

V = argmin
V

∥∥X − WFVT
∥∥2 (11)

After obtaining V, the parameters W and b are updated by
formula (12).

W, b = argmin
W,b

∥∥X − WFVT
∥∥2 (12)

The parametersW and b in formula (12) can be adaptively op-
timized by the backpropagation algorithm that is often used in
training the forward neural network. The matrix V in formula
(11) is an orthogonal matrix that rotates F to fit the original data
X. Orthogonal transformation can be seen as an approximate ro-
tation or reflection that tries to find the optimal transformation
of one matrix relative to another.

The original objective function of NENOM in each iteration
process can be written as formula (13).

J
(
W ( j), b( j),V ( j)

)

=
N∑
i=1

∥∥∥∥Xi − W f
(
Xi;W ( j), b( j)

) (
V ( j)

)T∥∥∥∥
2

(13)

where [W(j + 1), b(j + 1),V(j + 1)] is the optimal solutions of objective
function in the j-th iteration. The neural network is trained by

backpropagation and the objective function is further reduced;
there are [W(j + 1), b(j + 1), V(j + 1)] ≤ [W(j), b(j), V(j)]. Therefore,
the optimization procedures of NENOM will converge to a lo-
cal optimum. After training, the obtained matrix F is used for
subsequent feature extraction and fault detection.

4 Fault Detection with Quality-Related
NENOM

In this section, the quality-related and quality-unrelated vari-
ables are selected by Bayesian fusion MI. We establish statistical
indicators and control limits to complete fault detection and give
the monitoring procedure.

4.1 Quality-Related and Quality-Unrelated Variables
Selections Based on Bayesian Fusion MI

We use MI evaluation for the correlation between process vari-
ables and quality variables. The solution of MI can be calculated
in the way of Renyi entropy according to formula (5). Unfortu-
nately, it is difficult to be widely used in complex multivariate
processes by estimating entropy through accurate probability
density function. It is feasible to evaluate a quantity of Renyi
entropy using the normalized eigenspectral of the Hermitian
matrix of the projected data in the regenerated kernel Hilbert
space, thus estimating the entropy directly from data without
probability density function estimation.

The MI is shown in formula (14).

I (x1, x2) = H (x1) + H (x2) − H (x1, x2)

= Hα (x1) + Hα (x2) − Hα (x1, x2)

= 1
1 − α

log2

(
n∑
i=1

λi(A)α
)

+ 1
1 − α

log2

(
n∑
i=1

λi(B)α
)

− Hα

(
A ◦ B

tr (A ◦ B)

)

(14)
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where Aij = k(xi, xj), Bij = k(yi, yj), and A◦B denotes the
Hadamard product between the matrices A and B. We use the
Gaussian kernel to obtain the Gram matrices.

For process variables X = [x1, x2,…, xm] ∈ Rn × m and quality
variables Y = [y1,…, xc] ∈ Rn × c, MI is usually different for the
same process variable and different quality variables. It is unrea-
sonable to determine how much information process variables
contain the overall quality variable only based on the MI of xi
and a certain yj. Therefore, we use the Bayesian fusion method
to weigh the MI of each yj corresponding xi to obtain newMI, as
shown in formula (15).

I (xi) =
c∑

j=1

p
(
xi|Qj

)
p
(
Qj|xi

)
∑c

j=1 p
(
xi|Qj

) =
c∑

j=1

p
(
xi|Qj

) p(xi|Qj )p(Qj )
p(xi )∑c

j=1 p
(
xi|Qj

)
(15)

Further, p(xi) can be obtained by formula (16).

p (xi) = p
(
xi|Uj

)
p
(
Uj
)+ p

(
xi|Qj

)
p
(
Qj
)

(16)

where p(Qj) and p(Uj) represent the related and unrelated prob-
abilities of xi and yj, respectively, and the sum of the probabilities
is 1. p(Qj) is the ratio of the number of variables that the mutual
of xi and yj is greater than the average MI to the total number of
process variables. The calculation of the average value of MI Īx j
is shown in formula (17).

Īx j =
∑m

i=1 I
(
xi, y j

)
m

(17)

wherem is the number of process variables.
The conditional probabilities p(xi|Qj) and p(xi|Uj) are shown

in formulae (18) and (19).

p
(
xi|Qj

) = exp

(
− Ii j

(
xi, y j

)
Īx j

)
(18)

p
(
xi|Uj

) = exp

(
− Īx j
Ii j
(
xi, y j

)
)

(19)

After the fusion MI I(xi) is calculated by the above method, it
is sorted in descending order, and the variables corresponding to
the top k largestMI I(xi) are selected to form quality-related vari-
ables. The remaining variables are quality-unrelated variables.
The number of quality-related process variables can be obtained
from formula (20).∑k

i=1 I (xi)∑m
i=1 I (xi)

≥ θax (20)

where θ ax is set as 0.85.

4.2 Fault Detection Based on Statistical Indicators

The number of downtimes increases the production cost of
the enterprise. In order to prevent the shutdown caused by
fault false alarm that does not affect the product quality, the
quality-unrelated fault alarm should be reduced. We use the

method of weighted data by MI to process the data, to ensure a
higher fault detection rate of quality-related fault variables and a
lower fault detection rate of quality-unrelated fault variables. The
weight is determined according to the ratio of the variable mu-
tual trust value to the maximum MI value, as shown in formula
(21).

W (xi) = I (xi)
max {I (x1) , . . . , I (xi) , . . . , I (xn)} (21)

For offline training, the training data X is trained through
the of NENOM to obtain the feature F. In the fault detec-
tion stage, the detection data xnew amplifies the quality-related
fault variables according to the weighting method of MI, the
suppression weight of the quality-unrelated information is cal-
culated as formula (21), and the weighted detection data is:
x∗ = W(xi)xnew.

The detection data feature is extracted by the offline trained
model, and after the features are acquired, statistical indicators
are established to complete the fault detection.

In this paper, we use the T2 statistic and the SPE statistic
for fault detection, and the control limits for these two statis-
tics are calculated based on the assumption of multivariate
normal distribution and temporal independence of the obser-
vations. Since the distribution of the extracted features has no
prior information, this paper approximates the control lim-
its of the T2 and SPE statistics by kernel density estimation
(KDE).

The T2 statistic is calculated as formula (22).

T 2 = F�−1
F FT (22)

where �−1
F is the covariance matrix associated with the features

F.
The SPE statistic is calculated as formula (23).

SPE = ∥∥X − FV T∥∥2 (23)

The method of KDE: given a univariate kernel function is
shown in the following formula (24):

f ( j) = 1
n

n∑
i=1

Kh
(
j − ji

) = 1
nσ

n∑
i=1

K
(
j − ji

σ

)
(24)

where j is the sample data, ji is the observation value, σ is the
window width, n is the number of observation values, and K
is the kernel function. In this paper, the Gaussian kernel func-
tion is selected, and the test level α = 0.95 can be obtained
by formula (25) and (26) to find the control limits T 2

α and
SPEα .∫ T2

α

− ∞
f
(
T 2)d (T 2)

=
∫ T2

α

− ∞

1
nσ

n∑
i=1

K
(
T 2 − T 2

i

σ

)
d
(
T 2)

=
∫ T2

α

− ∞

1
nσ

√
2π

n∑
i=1

{
exp

(
−
(
T 2 − T 2

i

)2
2σ

)}
d
(
T 2)

= α (25)

Chem. Eng. Technol. 2024, 47, No. 5, 764–778 © 2024 Wiley-VCH GmbH www.cet-journal.com

 15214125, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ceat.202200577 by L

anzhou U
niversity O

f, W
iley O

nline L
ibrary on [23/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.cet-journal.com


Research Article 769

Collect training data X and Y A new sample xnew

Normalization Normalization 
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Mutual Information

Quality-related 
variables
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variables

Mutual Information 
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Calculate Orthogonal 
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Obtain features F

Calculate Statistical 
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No

Next

Offline modeling Online monitoring
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Figure 2. Flowchart of the pro-
posed QR-NENOM algorithm
for fault detection.

∫ SPEα

− ∞
f (SPE)d(SPE)

=
∫ SPEα

− ∞

1
nσ

n∑
i=1

K
(
SPE − SPEi

σ

)
d(SPE)

=
∫ SPEα

− ∞

1
nσ

√
2π

n∑
i=1

{
exp

(
− (SPE − SPEi)2

2σ

)}
d(SPE)

= α (26)

If T 2 > T 2
α or SPE > SPEα , it is fault otherwise normal.

4.3 Monitoring Procedure

The nonlinear quality-related fault detection framework based
on QR-NENOM is shown in Fig. 2.

1) Offline modeling

Step 1: Process data X and quality data Y are collected and
normalized.

Step 2: The MI between each process variable xi and the qual-
ity variable yj is obtained by the Bayesian fusion method of
formula (15), and the quality-related variables and quality-
unrelated variables are selected according to the MI of each
variable and the threshold value θ ax by formula (20).
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Figure 3. Contour maps of the
T2 statistical index (log scale).
(a) NPE; (b) KNPE with RBF ker-
nel; (c) KNPE with polynomial
kernel; (d) NENOM.

Step 3: According to the objective function of formula (9) to
train the NENOMmodel, the feature F is obtained for online
monitoring.

Step 4: The statistical indicators T2 and SPE of the training data
in the offline process are obtained by formula (22) and (23).
The control limits T 2

α and SPEα are obtained through KDE.

2) Online monitoring

Step 1: A newdetection sample xnew is normalized using themean
and variance during the offline modeling stage.

Step 2: The quality-related variables and quality-unrelated vari-
ables are divided in the offline modeling stage; it is used to
judge whether the variables that detect sample fault are related
to quality.

Step 3: The detection samples are further processed using theMI
of the samples to weight, then: x∗ = W(xi)xnew.

Step 4: The statistical indicators of the test sample are calculated
and compared with the control limits. If the statistical indica-
tors aremore than the control limits, that is,T 2 > T 2

α or SPE>

SPEα indicates that a fault occurs; otherwise, it is normal and
next data are detected again.

5 Experiments

In this section, the performance of the proposed algorithm for
quality-related faults will be illustrated with numerical example
and penicillin fermentation process.

5.1 Numerical Example

A nonlinear example [30] is shown in formula (27). We use
this example to verify the nonlinear processing capability of the
NENOM algorithm.

x1 = t + e1

x2 = t2 − 3t + e2

x3 = −t3 + 3t2 + e3

y1 = −x2 (1 + x1)

y2 = x3 − sin (1.5πx2) (27)

where y1 and y2 are the only observable variables. x1, x2, and x3 are
the training data at time t ∈ [0.01, 2], with e1,2,3 ∼ N(0, 0.001).
Meanwhile, a test dataset is generated during that time period.
Among them, a slow linear drift fault occurs in y2 starting from
the 100th sample, and each group of data contains 300 sam-
ples. As faults occur, the test samples gradually deviate from the
normal path. In this example, the purpose of the detection algo-
rithm is to distinguish faulty data from normal data as early as
possible.

As a manifold learning algorithm, NPE could extract local
structural information of data and calculate T2 statistic for each
point in the data space y1 − y2, which represents it as a contour
map. Fig. 3 shows the contour maps of the T2 statistical indi-
cator for the different algorithms, the blue points represent the
training data, the red points represent the test data, the green
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Figure 4. Schematic of the
penicillin fermentation process.

part represents the process data in the normal range, the pur-
ple part represents the process data in the fault range, and the
control limit is described as the envelope around the training
data.

We can see from the T2 contour map in Fig. 3(a) that it
is difficult for NPE algorithm to fully express the nonlinear
characteristic of the process data, and only at the 163rd sample
point, the test data leave the normal area to detect anomalies.
In process monitoring, the fault is detected after the delay of 63
samples, so it cannot achieve good results in nonlinear process
monitoring. By finding nonlinear projections of the original data,
kernel NPE (KNPE) can detect fault sample points faster with
better detection performance. KNPE results in tighter bounds
around the data under normal circumstances, as the nonlinear
behavior of the process is captured more accurately. Fig. 3(b,c)
shows the T2 contour maps of the KNPE with radial basis func-
tion (RBF) kernel and polynomial kernel, respectively. It can be
seen from Fig. 3(b,c) that KNPEwith radial basis kernel function
and polynomial kernel function can better describe the nonlin-
ear characteristic of process data than NPE. The normal sample
points are in the green area, which fit the path of the normal
data. Compared with Fig. 3(b), Fig. 3(c) has better nonlinear fea-
ture extraction ability in the green area. In Fig. 3(b), KNPE with
radial base kernel detects the fault at the 130th sample point,
and in Fig. 3(c), KNPE with polynomial kernel detects the fault
at the 120th sample point, which is lower than the NPE detec-
tion delay. Although Fig. 3(b,c) both use the kernel function to
extract nonlinear features, the detection time is different. The
reason is that when NPE effectively extracts the local structure
of the data, as the global kernel function, the polynomial ker-
nel function can effectively extract the global features of the data
structure, which makes the feature extraction of the data more
comprehensive.

Fig. 3(d) shows the T2 contour map of NENOM algorithm in
this paper. It can be seen from Fig. 3(d) that T2 statistic can de-
scribe the process data path of almost the whole process and can
effectively deal with the nonlinear characteristic of the process
data. The fault is detected at 110 sample points, and the delay is
the lowest. The detection performance of the proposed algorithm
in this paper is improved significantly.

5.2 Penicillin Fermentation Process

5.2.1 Process Description

The penicillin fermentation process is a typical nonlinear batch
process that involves complex biological and chemical changes
from the raw materials to the final products. There are many
control loops and variables in the fermentation process, and
faults often occur, which seriously affect the production per-
formance and product quality. Therefore, it is a hot topic
to ensure the high-quality and high-efficiency operation of
penicillin through reasonable quality-related fault detection
technology.

In 2002, Birol et al. [31] developed the simulation produc-
tion platform Pensim 2.0 based on the fermentation process of
penicillin. It provides a benchmark platform for batch mon-
itoring and fault diagnosis of the penicillin production pro-
cess. It can simulate the effective fermentation of penicillin
and obtain a series of parameters such as process microbial
concentration, carbon dioxide, pH value, etc., which solves
the problem involving real-time acquisition of variable data.
Fig. 4 shows the schematic of the penicillin fermentation
process.

In the experiment, we choose ten main variables to describe
the penicillin fermentation process. The curve of the variable is
shown in Fig. 5, the process variable has strong nonlinear charac-
teristics.We use the pensim2.0 platform to generate 30 batches of
normal data and 6 batches of fault data with different fault types.
The simulation time was set to 400 h, and the sampling time
was set to 1 h. Data under normal operating conditions is used
for data training and model building, and data collected from
abnormal conditions is used for fault detection. In order to sim-
ulate the actual penicillin fermentation process and increase the
robustness of the model, Gaussian white noise e ∼ N(0, 0.01) is
introduced into the data.

According to different fault types, six groups of faults are
introduced for fault detection. The selected variables and in-
formation about the type of fault are shown in Tab. 1. Among
them, the bold values represent abnormal data values of the fault
variables.
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Figure 5. The curve of the process
variable under normal condition.
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Table 1. Condition settings for normal and fault samples.

Process variables F1 F2 F3 F4 F5 F6 Normal

1. Aeration rate [L h−1] . 8.6 8.6 8.6 8.6 8.6 8.6

2. Agitator power [W] 30.0 . 30.0 30.0 30.0 30.0 30.0

3. Substrate feed rate [L h−1] 0.042 0.042 . 0.042 0.042 0.042 0.042

4. Substrate feed temperature [K] 296.0 296.0 296.0 . 296.0 296.0 296.0

5. Substrate conc. [g L−1] 16.0 15.0 14.9 15.0 15.0 14.8 15.0

6. DO conc. [mmole L−1] 1.16 1.16 1.16 1.16 1.16 1.16 1.16

7. Culture volume [L] 100.0 102.0 100.0 101.0 100.0 103.0 100.0

8. CO2 conc. [mmole L−1] 0.6 0.5 0.5 0.6 . . 0.5

9. pH 4.8 5.0 5.0 5.0 5.0 5.0 5.0

10. Fermentation temperature [K] 299.0 297.0 298.0 298.0 299.0 298.0 298.0

Values in italics indicate outliers.

Figure 6. The mutual information between the quality variables
and all process variables.

5.2.2 Detection Results and Discussion

To judge whether the fault variables are quality related or quality
unrelated, the MI between each process variable and the qual-
ity variable is obtained by Bayesian fusion. Fig. 6 shows the MI
between process variables and quality variables.

It can be seen fromFig. 6 that the variables above the threshold
are quality related, and the below are quality unrelated, where the
red line is the threshold θ ax obtained by formula (20). Among
them, variables 1, 2, 3, 5, 9, and 10 are quality related (1. aeration
rate, 2. agitator power, 3. substrate feed rate, 5. substrate conc.,
9. pH, 10. fermentation temperature), and variables 4, 6, 7, and 8
are quality unrelated (4. substrate feed temperature, 6. DO conc.,
7. culture volume, 8. CO2 conc.).

For process monitoring, fault detection rate (FDR) is com-
puted as the rate of effective alarmed fault data corresponding
to the entire fault dataset. The higher the FDR, the stronger the
discriminating performance. The calculation of FDR is shown in
formula (28).

FDR = Number of false alarmed data
Number of fault data set

× 100% (28)

To ensure product quality and reduce the frequent alarms
of quality-unrelated faults affecting normal production, there

Table 2. FDRs of the different algorithms for faults/%.

Fault no.a) ANN MNPE MKNPE MKPLS QR-NENOM

T2 SPE T2 SPE T2 SPE T2 SPE T2 SPE

F1 64.18 69.31 67.13 73.27 81.12 84.67 89.90 87.72 91.12 .

F2 72.27 74.25 68.31 74.25 82.17 80.19 89.10 88.12 92.07 .

F3 59.40 61.38 62.37 64.35 74.25 76.23 78.21 79.20 87.12 .

F4 73.25 89.75 90.75 92.75 94.00 95.25 100.00 100.00 . 2.00

F5 17.25 14.75 71.25 80.75 77.25 88.75 79.75 100.00 4.51 .

F6 25.17 30.18 69.25 76.18 78.12 89.25 80.12 93.28 . 6.00

Values in italics indicate the best value for the results. a) F1 ∼ F3 are quality-related faults; F4 ∼ F6 are quality-unrelated faults.
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(a)

(b)

(c)

(d)

Figure 7. Fault detection per-
formance for different algo-
rithms under F1 condition.
(a) ANN; (b) MNPE; (c) MKNPE;
(d) MKPLS; (e) QR-NENOM.
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(e)  

Figure 7. Continued

are higher FDRs for quality-related faults and lower FDRs for
quality-unrelated faults. In other words, the higher the fault
detection rate of quality-related faults and the lower the fault
detection rate of quality-unrelated faults, the better the perfor-
mance of the fault detection algorithm. Tab. 2 shows FDRs of
different fault detection algorithms, and the fault detection rate
with the best performance for each fault has been shown in
bold.

In Tab. 2, F1 ∼ F3 are quality-related faults, and F4 ∼ F6
are quality-unrelated faults. For F1 ∼ F3 fault detection rates,
the higher the better. For quality-related faults, QR-NENOM
has a higher fault detection rate than other algorithms. It shows
that QR-NENOM can detect more accurately for quality-related
fault detection, thereby realizing effective monitoring of quality-
related faults during penicillin fermentation. The lower the fault
detection rate for F4∼ F6, the better the algorithm performance.
From Tab. 2, we can see that QR-NENOM algorithm has a lower
fault detection rate and better fault detection performance. After
a quality-unrelated fault occurs, it is compensated by the control
loop in the process and does not affect the quality of the final
product. A low fault detection rate can greatly reduce the number
of unnecessary downtimes, thereby increasing the productivity
of the enterprise.

Fig. 7 shows the fault performance for the quality-related
fault F1, the black curve is normal data, the blue curve is fault
data, and the red dashed line is the fault control limit. Fig. 7(a)
shows statistics T2 and SPE of ANN algorithm, most of the
fault data are below the control limit, resulting in serious fault
missed alarm. In Fig. 7(b), the fault missed alarm of statistic
SPE is less than ANN algorithm, but statistic T2 is still the ob-
vious fault missed alarm. In Fig. 7(c), compared with multiway
neighborhood preserving embedding (MNPE), multiway kernel
neighborhood preserving embedding (MKNPE) introduces the
kernel method to deal with nonlinearity, and the fault missed
alarms of statistics T2 and SPE are lower, but the statistics SPE
of MKNPE algorithm have lots of fault false alarms. In Fig. 7(d),
compared with ANN,MNPE, andMKNPE algorithms, statistics
T2 and SPE of multiway kernel partial least square (MKPLS) al-
gorithm significantly have reduced fault missed alarm, but the
fault missed alarms are still higher than QR-NENOM algorithm
in this paper. In Fig. 7(e), QR-NENOM algorithm in this paper

has the highest fault detection rate, with no fault missed alarm in
statistics SPE.

Fig. 8 shows the fault performance for the quality-unrelated
fault F5, the blue curve is fault data and the red dashed line is fault
control limit. In Fig. 8(a), ANN algorithm has a low fault detec-
tion rate for quality-unrelated faults. Combined with Fig. 7(a),
the fault detection rate of quality-related fault is also low, so it
cannot detect all faults well in the process, so the overall fault de-
tection performance is poor. As shown in Fig. 8(b,c,d), MNPE,
MKNPE, and MKPLS algorithms have poor fault detection per-
formance. Fig. 8(e), QR-NENOM algorithm in this paper hardly
shows alarm for quality-unrelated faults, and there are only indi-
vidual points of alarm. Combined with Fig. 7(e), there is a higher
fault detection rate for quality-related faults. Therefore, the fault
detection performance of QR-NENOM algorithm proposed in
this paper is better.

Fig. 9 shows the difference of loading matrix between QR-
NENOMwith and without orthogonal mapping. Fig. 9(a) shows
the result of the nonorthogonal mapping; obviously, with the
gradual extraction of nonlinear features, the loadmatrix contains
redundant features. Fig. 9(b) shows the result of the orthogonal
mapping, and it is easy to see that the loading matrix contains
orthogonal columns.

Fig. 10 shows the histograms of the average fault detection
rates for quality-related faults and quality-unrelated faults, re-
spectively. It can be seen intuitively that the fault detection rate is
higher for quality-related faults and lower for quality-unrelated
faults of QR-NENOM algorithm in this paper, with almost few
alarms for quality-unrelated faults. QR-NENOMalgorithmhas a
high fault detection rate of quality-related faults and reduces the
shutdown due to quality-unrelated fault alarms. Therefore, it can
effectively ensure the safety of industrial production and further
reduce unnecessary maintenance.

6 Conclusion

This paper proposed a nonlinear quality-related NENOM fault
detection algorithm for batch process monitoring, which can not
only have a higher fault detection rate for quality-related faults,
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(a)

(b)

(c)

(d)

Figure 8. Fault detection per-
formance for different algo-
rithms under F5 condition.
(a) ANN(b) MNPE; (c) MKNPE;
(d) MKPLS; (e) QR-NENOM.
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(e) 

Figure 8. Continued

Figure 9. Illustration of orthog-
onal mapping. (a) nonorthogo-
nal mapping; (b) after orthogo-
nal mapping.

(a) (b)

Figure 10. Histogram of the
FDR for quality-related faults
and quality-unrelated faults.
(a) quality-related faults;
(b) quality-unrelated faults.

but also have fewer alarms for quality-unrelated faults. At the
same time, the local manifold structure information is preserved
while extracting the key nonlinear features of the data. The
process monitoring is completed by establishing corresponding
fault detection indicators. To illustrate the effectiveness and
superiority of QR-NENOM algorithm proposed in this paper,
a typical batch process-penicillin fermentation process is used
to conduct relevant experiments. The verification results show
that, compared with several advanced fault detection algorithms
of the batch process, ANN, MNPE, MKNPE, and MKPLS, QR-

NENOM achieves better detection results and richer detection
information in quality-related fault detection. It is the primary
interest in future research that the detected faults are effectively
identified and diagnosed.
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Abstract

Fault prediction ensures safe and stable production, and cuts maintenance

costs. Due to the changing operating conditions that lead to the changes in the

characteristics of industrial processes, there is a need to monitor the fault state

of batch processes in real-time and to accurately predict fault trends. An adap-

tive slow feature analysis-neighborhood preserving embedding-improved sto-

chastic configuration network (SFA-NPE-ISCN) algorithm for batch process

fault prediction is proposed. Firstly, SFA is used to extract the time-varying

features of process data and establish the update index of the NPE model.

Then, to extract local nearest-neighbor features and reconstruct them by the

NPE model with adaptive update capability, square prediction error (SPE) sta-

tistics are constructed as fault state features based on the reconstructed error.

Further, the hunter-prey optimization (HPO) algorithm optimizes the weights

and biases in the stochastic configuration network, and the singular value

decomposition (SVD) and QR decomposition of column rotation are intro-

duced to solve the ill-posed problem of SCN and obtain the prediction model

of ISCN. Finally, the obtained statistics SPE is formed into a time series, and

the ISCN model is used to predict the process state trend. The effectiveness of

the proposed algorithm is verified by case studies of industrial-scale penicillin

fermentation processes and the Hot strip mill process.

KEYWORD S

adaptive strategy, batch process, fault prediction, stochastic configuration network, time-
varying

1 | INTRODUCTION

In the Industry 4.0 era, industrial systems are developing in the direction of scale, intelligence, and complexity. As one
of the important ways of industrial production, batch processes have the advantages of small batches, variety, and flexi-
bility in operating batches.1 With increased automation and increasingly complex processes, the safety and reliability of
systems are becoming increasingly important.2 Therefore, it is important to monitor and predict the process states, pre-
dict the occurrence of faults in advance, and take timely measures to mitigate or avoid losses.3–6

With the development of the Industrial Internet of Things, we can collect nearly all production process data, which
can be used to analyze the process status and predict faults. In simple production processes, detecting or predicting
faults before production interruptions may be easy to achieve, but in complex industrial processes, especially in the
complex batch process industry, the challenges are still serious.7 The challenges are mainly due to the large amount of
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high-dimensional data and the constantly changing operating conditions, which make process monitoring even more
difficult. Traditional algorithms based on gated recurrent units (GRUs) and long and short-term memory (LSTM) are
used to predict faults. Zhai et al8 fused GRU and extreme Gradient Boosting (XGBoost) to propose a multivariate time
series model for predicting the temperature of a heating furnace. Yao et al9 constructed a predictive model of deep
dynamic regression networks with GRU units that was used for quality prediction in chemical processes. Bai et al10 pro-
posed a fault alarm prediction model for critical variables in chemical processes based on dynamic inner-principal com-
ponent analysis (DiPCA) and long- and short-term memory (LSTM). LSTM was used to learn the relationships between
variables and predict critical variable fault alarms. Xu et al11 proposed a novel neural network-based classification
model using generative adversarial network (GAN) and LSTM to predict pipeline leaks. Xu et al12 established the TCN-
BiGRU-WD fault prediction model for the lifetime prediction of continuous casting rolls. These deep neural networks
have many parameters and their training process is quite time-consuming.

In recent years, Wang et al13 proposed a stochastic learning framework, called stochastic configuration networks
(SCN), which was an incremental learning method with universal approximation properties that used a supervised
mechanism to randomly configure the parameters of hidden layer nodes under a set of inequality constraints and was
faster for training compared to traditional iterative algorithms. To attenuate the effects caused by noisy data or outliers
throughout the training process, Li et al14 proposed a robust random configuration network (RSCN) framework to deal
with the problem of data modeling when given samples contain noise or outliers. Zhang et al15 proposed a parallel sto-
chastic configuration network (PSCN) model that not only performed well in parameter optimization but also in bear-
ing life prediction. To improve the feature learning capability and the effectiveness of SCN, inspired by the broad
learning system (BLS) architecture, Zhang et al16 proposed a novel extensive stochastic configuration network (BSCN)
in which the original features were transformed into mapped features at the feature layer, the mapped features were
augmented at the augmentation layer, and then the input weights and biases of the augmented nodes were determined
according to the supervision mechanism, and the output weight matrix was calculated by the standard least squares
method, resulting in a network with higher regression accuracy and stability. To speed up the construction efficiency of
SCN and reduce the redundant nodes of the constructed model, Li et al17 further compressed the singular value-based
model decomposition algorithm and proposed an improved SCN network model for industrial processes. Fang et al18

proposed a collaborative stochastic configuration network (CSCN) based on a differential evolutionary sparrow search
algorithm (DESSA), which improved the prediction accuracy.

Despite SCN and its variants achieved better performance in terms of learning accuracy and generalization ability.
However, there may be some better weights and biases that could reduce the SCN residuals faster. In addition, the hid-
den output matrix of SCN may be rank deficient or multicollinear, thus making the stability of SCN significantly worse.

Furthermore, process data have complex features and directly perform fault prediction on raw high-dimensional
complex, which can cause problems such as high computational effort and information redundancy. Effective informa-
tion fusion is also a difficult task for multi-sensor data. Therefore, it is necessary to find a time series that reflects the
process state information.19,20 Square prediction errors form the SPE time series, and the fault trend of the process is
predicted by predicting the SPE time series. Here, the reconstruction of the input features is the foundation for
obtaining the SPE time series. Traditional multivariate statistical process monitoring methods have been applied in
many practical engineering areas.21,22 In practical industrial production, aging equipment, and changes in operating
conditions exist, these factors make static models ineffective. Therefore, it is necessary to update a model for time-
varying processes to improve the accuracy of the feature reconstruction according to the changing state of the industrial
process. Shang et al23 proposed a recursive canonical variational analysis based on first-order perturbation theory
(RCVA-FOP) to detect faults in time-varying processes, this method was not only effectively adapted to the natural vari-
ability of time-varying processes but also detect and identify sensor accuracy degradation. Elshenawy et al24 proposed
modified reconstruction-based contributions for sensor fault diagnosis in continuous time-varying processes, this
method could adapt to time-varying characteristics and still detect sensor faults. Zhang et al25 proposed an incremental
deep computing model for IoT wireless big data feature learning by designing two incremental learning algorithms,
namely the parameter-based incremental learning algorithm (PI-TAE) and the structure-based incremental learning
algorithm (SI-TAE). To avoid performance drop-in time-varying models, Wu et al26 proposed an adaptive update frame-
work for deep learning based on just-in-time fine-tuning of the stacked autoencoder (JIT-SAE). However, the above
adaptive methods cannot well solve the problems of how to distinguish between normal varying working conditions
and faults.

Motivated by the above discussion, to better predict the state of time-varying batch processes and effectively predict
faults, we propose an adaptive slow feature analysis-neighborhood preserving embedding-improved stochastic
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configuration network (SFA-NPE-ISCN) algorithm for batch process fault prediction. Firstly, the adaptive SFA-NPE
model effectively monitors the time-varying process while calculating the SPE of the process data constituting the pro-
cess state sequence by the adaptive SFA-NPE model. Secondly, through the HPO optimization of SCN based on the
introduction of singular value decomposition (SVD) and QR decomposition of column rotation, which solve SCN
the ill-posed problem to establish the prediction model of ISCN. Finally, the effectiveness of the SFA-SCN-NPE model
is verified by two typical batch process cases.

In this paper, a proposed adaptive SFA-NPE-ISCN is used for time-varying batch process fault prediction. The main
contributions lie in the following aspects:

1. To describe the dynamic characteristic of time-varying processes, we propose an adaptive model updating strategy.
Specifically, we use SFA to extract the dynamic features of the process data, and the failure judgment of the NPE
model is established. When the model needs to be updated, the updated data set is selected from the training data in
a window near the online sample data.

2. We propose a prediction model of ISCN, which optimizes the parameters of the added hidden nodes using the HPO
algorithm under the supervised mechanism of SCN. It can reduce the network residuals faster while combining
SVD and QR with column rotation to solve the non-positive definitions problem of SCN.

3. The adaptive NPE model is used to extract data features and feature reconstruction, by which square prediction
error (SPE) statistics are constructed as fault state features. The ISCN model is used to achieve state trend
prediction.

The structure of the paper is as follows. In Section 2, a brief overview of Slow Feature Analysis (SFA), Stochastic
Configuration Network (SCN), and Hunter-prey optimization (HPO) is given, while our proposed adaptive SFA-
NPE-ISCN algorithm for time-varying batch process fault prediction is detailed in Section 3. In Section 4, two case stud-
ies are used to validate the proposed algorithm, and the conclusions are drawn in Section 5.

2 | PRELIMINARIES

In this section, the basic ideas of Slow Feature Analysis (SFA),27 Stochastic Configuration Networks (SCN),13 and
Hunter-prey optimization (HPO)28 are reviewed.

2.1 | Slow feature analysis (SFA)

Slow feature analysis prefers to deal with the time-varying characteristic of the process data. The main principles are as
follows: Given an m-dimensional input signal x tð Þ¼ x1 tð Þ,…,xm tð Þf gT with t� t0, t1½ �, SFA seeks a transformation func-
tion g xð Þ¼ g1 xð Þ,…,gJ xð Þ½ �T to make the output y tð Þ¼ y1 tð Þ,…,yJ tð Þ½ �T of the function change as slowly as possible,
where yj tð Þ¼ gj x tð Þð Þ. By minimizing the variance of the first derivative of the slow feature, the optimization of SFA is:

min _y2i
� �

t, i¼ 1,…,m
s:t: yih it ¼ 0

y2i
� �

t ¼ 1

yjyi
D E

t
¼ 0, 8i≠ j

ð1Þ

where, _yi represents the first-order derivative of the slow feature and �h it represents the average over time, which is
defined as formula (2).

fh it ≈
1

t1� t0

Z t1

t0

f tð Þdt ð2Þ

where, the angle brackets indicate temporal averaging.
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2.2 | Stochastic configuration network (SCN)

SCN is a kind of randomized learning model with supervisory mechanisms. The basic idea of SCN is to start with a
small network structure and then gradually add hidden nodes until an acceptable tolerance is achieved. The network
structure of SCN is shown in Figure 1.

Under the SCN framework, three algorithmic implementations, are named SC-I, SC-II, and SC-III. In terms of both
learning efficiency and generalization, SC-III outperforms the others. SCN is implemented using the SC-III algorithm
in this paper.

Suppose that span Γð Þ is dense in L2 space and 8g�Γ, 0 < gk k< bg for bg �Rþ. Given 0< r<1 and a non-negative
real number sequence μLf g with limL!þ∞μL¼ 0, μL ≤ 1� r, for L¼ 1,2,…, expressed by:

δL¼
Xm
q¼1

δL,q,δL,q¼ 1� r�μLð Þ eL�1,q
�� ��2,q¼ 1,2,…,m ð3Þ

If the random basis function gL is generated to satisfy the following inequalities:

eL�1,q,gL
� �2 ≥ b2gδL,q,q¼ 1,2,…,m ð4Þ

Based on inequality constraint, the output weights are evaluated by

β1,β2,…,βL½ � ¼ argmin
β

f �
XL
j¼1

βjgj

�����
����� ð5Þ

It holds that limL!þ∞ f � f Lk k¼ 0, where f L¼
PL

j¼1βjgj, βj¼ βj,1,…,βj,m
h iT

.

2.3 | Hunter–prey optimization (HPO)

Hunter prey algorithm is a population-based optimization algorithm inspired by the behavior of predatory animals and
has a similar general structure and other optimization algorithms.

d1 2

1 2 3 1

1

b

FIGURE 1 The network structure of SCN.
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Firstly, the initial overall population is randomly set to x¼ x1,x2,…,xnf g, the objective function for all members of
the population overall is then calculated as o¼ o1,o2,…,onf g. The position of each member of the initial population is
generated randomly in the search space by formula (6).

xi¼ rand 1,dð Þ:� ub� lbð Þþ lb ð6Þ

where, xi is the position of the hunter or prey, lb is the minimum value of the problem variable (lower bound), ub is the
maximum value of the problem variable (upper bound), and d is the number of problem variables (dimension).
The lower and upper bounds of the search space are defined as shown in formulas (7) and (8):

lb¼ lb1, lb2,…, lbd½ � ð7Þ

ub¼ ub1,ub2,…,ubd½ � ð8Þ

After generating the initial overall and determining the position of each agent, the fitness value of each solution is
calculated using the objective function oi¼ f xið Þ.

The mathematical model of the hunter's search mechanism is given in formula (9):

xi,j tþ1ð Þ¼ xi,j tð Þþ0:5 2CZPpos jð Þ � xi,j tð Þ
� �þ 2 1�Cð ÞZμ jð Þ�xi,j tð Þ

� �� � ð9Þ

where, x tð Þ is the current hunter position, x tþ1ð Þ is the next iteration position of the hunter, Ppos is the location of the
prey, μ is the average value of all positions, Z is the adaptive parameter calculated by formula (10), C is the balance
parameter between exploration and exploitation calculated by formula (11).

P¼ R
!

1 <C; IDX ¼ P¼¼ 0ð Þ;
Z¼R2

O
IDXþR

!
3

O
� IDXð Þ

ð10Þ

C¼ 1� it
0:98
MaxIt

	 

ð11Þ

where, R
!

1 and R
!

3 are random vectors in 0,1½ �, P is the index value of R
!

1 <C, R2 is a random number within 0,1½ �, IDX
is the index value of the vector R

!
1 that satisfies the condition P¼¼ 0ð Þ, it is the current number of iterations, and MaxIt

is the maximum number of iterations.
To calculate the position of the prey Ppos

� �
, we first calculate the average of all positions μð Þ from formula (12) and

then calculate the distance of each search agent from this average position from formula (13).

μ¼ 1
n

Xn
i¼1

xi ð12Þ

Denc ið Þ¼
Xd
j¼1

xi,j�μj

� �2 !1
2

ð13Þ

The search agent with the largest distance from the location mean is considered prey Ppos
� �

by formula (14):

P
!

pos¼ x
!

i j i is index of Max endð Þ sort Dencð Þ ð14Þ

If the maximum distance between the search agent and the mean position μð Þ is considered at each iteration, the algo-
rithm would delay convergence. To solve this problem, we consider a decreasing mechanism, as shown in formula (15):

kbest¼ round C�Nð Þ ð15Þ

where, N is the number of search agents.
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The location of the prey is calculated by converting formula (14) to formula (16):

P
!
pos¼ x

!
i j i is sortedDenc kbestð Þ ð16Þ

Update the prey position by formula (17):

xi,j tþ1ð Þ¼Tpos jð Þ þCZcos 2πR4ð Þ� Tpos jð Þ � xi,j tð Þ
� � ð17Þ

where, x tð Þ is the current position of the prey, x tþ1ð Þ is the next iteration position of the prey; Tpos is the global optimal
position, R4 is a random number within 0,1½ �.

3 | FAULT PREDICTION BASED ON ADAPTIVE SFA-NPE-ISCN
ALGORITHM

This section gives the problem formulation of the research and concretes the implementation of the proposed fault pre-
diction strategy based on the adaptive SFA-NPE-ISCN algorithm.

3.1 | Problem formulation

For batch processes, due to the changes in factors, such as working conditions and the environment, the industrial
characteristics also change, which this change is reflected in the gradual change in the correlation of the variables
over time. Given the time-varying characteristic, if we still use a static model to describe the process, that will
result in a model mismatch and, furthermore, lead to inaccurate monitoring results. It is an important task for
process monitoring to monitor the fault states of complex batch processes in real-time and to accurately predict
fault trends.

To accurately characterize the variability of a process, it is necessary to develop a model that can learn the dynamic
characteristics of a time-varying process while predicting fault trends. We propose a monitoring model based on the
adaptive SFA-NPE-ISCN algorithm. Firstly, SFA is used to extract dynamic features and establish a model update index
to achieve model mismatch judgment. When the update index exceeds the control limit, it indicates that the model is
not mismatched at this time and the parameters of the existing model need to be updated. Otherwise, it means that the
model is not mismatched at this time and the existing model will continue to be used for online monitoring. Secondly,
NPE is used to extract the process data features, build the process monitoring time series SPE, and complete the predic-
tion of the SPE trend using the optimized SCN. When the monitoring model mismatches and needs to be updated, an
updated dataset is created using normal time-domain samples of the online data, and the model is updated using a neu-
ral network incremental strategy to accommodate the dynamic characteristic. The concrete implementation of the pro-
posed monitoring strategy is described below.

3.2 | Adaptive SFA-NPE algorithm scheme

In this paper, SFA is used to extract the slow features of the process training data and construct the model update-index.
The extracted slow features are divided into dominant slow features sd �RM and residual slow features se �RMe , with
dominant features changing slowly and residual features changing quickly, where Me denotes the number of slow fea-
tures that are faster than all inputs xi tð Þ,1≤ i≤mf g, and the number of dominant slow features is M¼m�Me. To mon-
itor the match properties of the model, the statistics are defined as follows.

T2¼ sTs sd
Te

2¼ sTe se
ð18Þ
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Meanwhile, the control limits T2
lim and T2

elim of the statistics are calculated using the kernel density estimation
(KDE) method. When at least one of T2

lim ≥T2 or T2
e ≥T2

elim satisfies the condition, the current model is considered to
need to be updated, otherwise, the model does not need to be updated.

Neighborhood preserving embedding (NPE) is used to extract process features and construct a time series SPE for
fault prediction. NPE is implemented as follows:

For data matrix X with n samples and m variables for each sample, NPE represents the local linear structure of the
manifold by local linear reconstruction, which is in the form of mean square error. The objective function representing
the reconstruction error in the high-dimensional space is shown in formula (19):

ϕ Wð Þ¼min
Xn
i¼1

xi�
X

j � Q ið Þ
wijxj

������
������
2

ð19Þ

where, Q ið Þ is the set of neighboring samples, W should satisfy the normalization constraint.
During dimensionality reduction, NPE retains the same local linear reconstruction in the lower dimensional space

as in the original space. The dimensionality reduction linear map is computed by solving the generalized eigenvectors,
as shown in formula (20):

XMXTa¼ λXXTa ð20Þ

where, M¼ I�Wð ÞT I�Wð Þ, I¼ diag 1,…,1ð Þ. The eigenvectors a is arranged in ascending order of eigenvalues to
obtain the matrix A.

A relationship between the original data X and the reduced dimensional data Y exists as follows:

Y ¼ATX ¼ BTB
� ��1

BTX ð21Þ

where, BTB
� ��1

BT denotes the transformation matrix. Time series SPE is obtained from formula (22):

SPE¼ x�BATx
�� ��2 ð22Þ

From a certain time, window near the online sampling data in the historical dataset, the updated dataset is selected.
The updated dataset is then used to update the NPE model. The updated model learns the characteristics of the new
normal data. The update strategy is shown in formula (23):

ϕ Wð Þ¼min
Xn
i¼1

Δxi�
X

j � Q ið Þ
wijΔxj

������
������
2

Δx¼φ x,θþΔθð Þ� x

ð23Þ

where, θ is the original parameter obtained by training the NPE model on the old training set, Δθ is the parameter
increment obtained by training the NPE model on the incremental data set, φ x,θð Þ denotes the reconstructed output of
the old NPE model, and Δx¼φ x,θþΔθð Þ� x denotes the reconstructed error of the model after the parameter is
updated from θ to Δθ.

3.3 | Improved stochastic configuration network (ISCN)

The SCN construction process is equivalent to gradually reducing the network residuals by adding a new hidden node.
Owing to the inherent randomness of the SCN algorithm, it may be that there are better-hidden parameters that can
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reduce the network residuals faster. Compared to optimization algorithms such as PSO, TSA, LFD, HHO, and WOA,
the HPO algorithm is used to obtain better network parameters.28 Therefore, we propose an improved stochastic config-
uration network (ISCN).

In ISCN, the network residuals are defined as a fitness function of the HPO algorithm under the SCN supervision
mechanism. The optimized algorithm can minimize the network residuals, while its general approximation is
guaranteed by the supervisory mechanism of SCN.

For a given objective function f , the current residual error with L�1 hidden neurons is defined as:

eL�1¼ f � f L�1¼ eL�1,1,…,eL�1,q,…,eL�1,m
� �T ð24Þ

Further, eLk k2 is shown by formula (25):

eLk k2¼ eL�1�βLgLk k2

¼
Xm
q¼1

eL�1,q�βL,qgL,eL�1,q�βL,qgL
D E

¼
Xm
q¼1

eL�1,q,eL�1,q
� ��2 eL�1,q,βL,qgL

D E
þ βL,qgL,βL,qgL
D E� �

¼
Xm
q¼1

eL�1,q,eL�1,q
� �� eL�1,q,gL

� �2
gLk k2

 !
ð25Þ

where, βL,q is defined as eL�1,q,gL
� �

= gLk k2.
To improve the reduction rate of network residuals and the generalization ability of SCN, we choose the network

residuals as the fitness function of the predation optimization algorithm. The fitness function is defined as:

ϕL,q¼

þ∞,ξL,q ≤ 0

eTL�1,q Xð ÞeL�1,q Xð Þ�
eTL�1,q Xð Þ:hL Xð Þ
� �2

hTL Xð Þ:hL Xð Þ
þΨ Lð Þ wLk k2þ bLk k2

� �
,ξL,q >0

8>>>>>><>>>>>>:
fit Lð Þ¼

Xm
q¼1

ϕL,q,q¼ 1,2,…,m

ð26Þ

where, Ψ Lð Þ is the regularization function and hL is the output of the Lth hidden node from formula (27):

hL¼ gL wT
Lx1þbL

� �
,…,gL wT

LxN þbL
� �� �T ð27Þ

In SCN, the output weight β� ¼ β1,β2,…,βL½ � can be analytically determined by solving the least-squares solution of
the linear system HLβ¼T.

β� ¼ argmin HLβ�Tk k2F ¼HΔ
L T ð28Þ

where HL is the hidden layer output matrix. The SVD decomposition of HΔ
L is given by formula (25).

HΔ
L ¼VΣ�UT ¼

Xk
i¼1

1
σi
viu

T
i

Σ� ¼
Σ�k 0

0 0

" # ð29Þ

8 of 20 LIU ET AL.

 1099128x, 0, D
ow

nloaded from
 https://analyticalsciencejournals.onlinelibrary.w

iley.com
/doi/10.1002/cem

.3555 by L
anzhou U

niversity O
f, W

iley O
nline L

ibrary on [08/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



where U and V are two orthogonal column matrices, Σ�k ¼ diag σ�11 σ�12 …σ�1k

� �
and σ1 ≥ σ2…≥ σk ≥ 0. σi is the singular

value of HL. If the output matrix HL is severely ill-posed, σi may be close to zero, and σ�1i would be large. When these
singular values are close to zero in the calculation, it makes the solution unstable.

If the hidden layer output matrix is rank deficient or multicollinear, it may cause serious instability of the least-
squares solution. We incorporate truncated SVD and QR with column pivoting to produce a well-conditioned submatrix
of the hidden output. Firstly, the rank of the hidden output matrix HL is estimated using singular value decomposition;
secondly, a submatrix of the permutation and orthogonal matrices is obtained using QR with column pivots that are as
well-conditioned as possible; then, a more independent set of HL columns is selected based on the permutation matrix.
Finally, we obtain a minimum norm least squares solution using a well-conditioned submatrix. The flowchart of ISCN
is shown in Figure 2.

3.4 | Fault prediction procedure based on adaptive SFA-NPE-ISCN algorithm

A flowchart of the proposed adaptive SFA-NPE-ISCN algorithm for fault prediction is shown in Figure 3, the specific
steps of which are as follows:

Step 1: Collect offline data and normalize them to train the NPE model; meanwhile, the SFA algorithm is used to cal-
culate updated indicators T2 and T2

e by formula (19), and further calculate control limits T2
lim and T2

elim by ker-
nel density estimation (KDE) method, which is described in detail later.

Step 2: Collect and standardize online data and use SFA to calculate updated indicators T2
new and T2

enew for online data;
When at least one of T2

new ≥T2
lim or T2

enew ≥T2
elim satisfies the condition, the current NPE model is considered to

need to be updated, otherwise NPE model does not need to be updated.
Step 3: When the NPE model needs to be updated, the updated dataset is selected from a time window near the online

sample data in the historical dataset by formula (24). The updated NPE model learns the features of new
normal data.

Step 4: According to the features learned from the NPE model to extract the statistic SPE by formula (23). SPE is
arranged to form a time series by the preceding and following moments, and ISCN is then used to predict SPE
state trends.

The specific steps of the KDE method are as follows:
KDE gives a univariate kernel function, which is shown in formula (30):

f jð Þ¼ 1
n

Xn
i¼1

Kh j� jið Þ¼ 1
nσ

Xn
i¼1

K
j� ji
σ

	 

ð30Þ

where, j is the sample data, ji is the observation value, σ is the window width, n is the number of observation values,
and K is the kernel function. In this paper, the Gaussian kernel function is selected, and the test level α¼ 0:9529 can be
obtained by formula (31) and formula (32) to seek the control limits T2

lim and T2
elim.Z T2

α

�∞
f T2
� �

d T2
� �¼Z T2

α

�∞

1
nσ

Xn
i¼1

K
T2�T2

i

σ

	 

d T2
� �

¼
Z T2

α

�∞

1

nσ
ffiffiffiffiffi
2π
p

Xn
i¼1

exp � T2�T2
i

� �2
2σ

 !( )
d T2
� �

¼ α

ð31Þ

Z T2
e α

�∞
f T2

e

� �
d T2

e

� �¼ Z T2
e α

�∞

1
nσ

Xn
i¼1

K
T2
e �T2

e i

σ

	 

d T2

e

� �
¼
Z T2

e α

�∞

1

nσ
ffiffiffiffiffi
2π
p

Xn
i¼1

exp � T2
e �T2

e i

� �2
2σ

 !( )
d T2

e

� �
¼ α

ð32Þ
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To verify the validity of the model, we use Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Mean
Absolute Percentage Error (MAPE), and coefficient of determination R2 to evaluate the prediction effect, which is calcu-
lated as follows:

MAE¼ 1
m

Xm
i¼1

yi�byij j ð33Þ

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m

Xm
i¼1

yi�byið Þ2
s

ð34Þ

FIGURE 2 The flowchart of ISCN.
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MAPE¼ 100%
m

Xm
i¼1

yi�byi
yi

���� ���� ð35Þ

R2¼ 1�
1
m

Pm
i¼1

yi�byið Þ2

1
m

Pm
i¼1

yi� yið Þ2
ð36Þ

where m is the number of prediction points, i is the ordinal number of prediction points, yi is the actual value, yi is the
average of yi, byi is the predicted value. MAE and MAPE values are as small as possible and take values greater than
0. RMSE values are smaller, which indicates higher accuracy. R2 describes the ability of the prediction model to fit the
actual data curve, the larger the better, and the range of values is �∞,1ð Þ.

4 | CASE STUDIES

We conduct two batch process cases involving the Industrial-scale fed-batch fermentation process and the Hot strip mill
process to verify the effectiveness of our proposed adaptive SFA-NPE-ISCN algorithm in fault prediction, specifically,
adaptive SFA-NPE-ISCN algorithm is compared with NPE-LSTM, TNPE-LSTM, NPE-SCN, and TNPE-SCN algorithms.
In addition, we give two structures with different parameters, namely, adaptive SFA-NPE-ISCN-I and adaptive SFA-
NPE-ISCN-II. For adaptive SFA-NPE-ISCN-I, it only applies the HPO algorithm to optimize the randomly hidden
parameters. Based on adaptive SFA-NPE-ISCN-I, the singular value decomposition (SVD) and QR decomposition of

FIGURE 3 Fault prediction framework of adaptive SFA-NPE-ISCN algorithm.
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FIGURE 4 Schematic of the Industrial-scale fed-batch fermentation process.

TABLE 1 Description of process variable in the industrial-scale penicillin fermentation process.

Variable no. Variable description Variable no. Variable description

1 Aeration rate (L/h) 11 Substrate concentration (g/L)

2 Agitator RPM (RPM) 12 Dissolved oxygen conc. (mg/L)

3 Sugar feed rate (L/h) 13 Vessel Volume (L)

4 Acid flow rate (L/h) 14 Vessel Weight (Kg)

5 Base flow rate (L/h) 15 pH (pH)

6 Heating/cooling water flow rate (L/h) 16 Temperature (K)

7 Heating water flow rate (L/h) 17 Generated heat (kJ)

8 Water for injection/dilution (L/h) 18 CO2 percent in off-gas (%)

9 Airhead pressure (bar) 29 PAA flow (L/h))

10 Dumped broth flow (L/h) 20 Oil flow (L/hr)

TABLE 2 Comparison of process monitoring indexes.

Algorithms FDR MAR FAR

NPE 0.8767 0.1233 0.0371

TNPE 0.9034 0.0966 0.0485

SFA-NPE 0.9934 0.0066 0.0000
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(A) NPE-LSTM (B) TNPE-LSTM

(C) NPE-SCN (D) TNPE-SCN

(E) SFA-NPE-ISCN-I (F) SFA-NPE-ISCN-II
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FIGURE 5 Prediction result chart for different algorithms.
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column rotation are introduced adaptive SFA-NPE-ISCN-II to extract a linearly independent subset of the hidden layer
output matrix for ill-posed problems.

4.1 | Industrial-scale fed-batch fermentation process

IndPenSim is an industrial-scale penicillin fermentation simulation platform. Compared to traditional benchmark peni-
cillin fermentation platforms,30 it considers the growth, metabolism, and degradation of large-scale penicillin fermenta-
tion besides modeling the necessary online and offline variables. By specifying multiple control strategies to reduce
system fluctuations, and maximize the yield of penicillin. The schematic of the Industrial-scale fed-batch fermentation
process is shown in Figure 4. More specific descriptions can be referenced from the corresponding original paper.31

In this case study, we select normal 45 batches and 5 batches of data under different control strategies and fermenta-
tion reaction times of 230 h, in which the data are collected once every 12 min. we select 20 main process variables, as
shown in Table 1.

In this case, the five fault batches are disturbance in aeration flow rate, disturbance in vessel back pressure, distur-
bance in substrate feed rate, disturbance in base flow rate, and disturbance in coolant flow rate. The above fault batches
are monitored by NPE, TNPE, and SFA-NPE. The average monitoring indexes for all fault batches are given in Table 2.
The Fault Detection Rate (FDR) represents the ratio between the number of faults correctly detected and the total num-
ber of faults present, and the Missed Alarm Rate (MAR) represents the ratio between the number of faults not correctly
detected and the total number of faults present, and the False Alarm Rate (FAR) represents the ratio between the num-
ber of false alarms and the number of faults not present.

It can be noticed from Table 2 that SFA-NPE with adaptive capability has better process monitoring performance.
Specifically, it has a higher FDR and lower MAR and FAR. Adaptive SFA-NPE with better monitoring performance can
provide a more accurate time series for fault prediction. The fault state feature SPE is formed on a time series, which is
then divided into two parts: the training set and the test set. We use the former 815 samples as the training data set and
the latter 335 samples as the test data set.

This paper involves an LSTM network with the following parameters: the maximum epoch number is 1000, the hid-
den unit number is 20, and the mini-batch number is 10. The ISCN network parameters are: maximum hidden node
number is 500, training tolerance is 0.00001, and maximum candidate node number is 100. After the model is trained,
the network parameters are saved, and then the trained model is used to predict the fault state trends. The prediction
results of disturbance in aeration flow rate are shown in Figure 5, where the blue curve is the predicted value and the
red curve is the true value. The SCN-related method parameters are consistent with ISCN.

To visualize the effectiveness of the models, MAE, RMSE, MAPE, and R2 are used to evaluate the prediction effect,
and the results are shown in Table 3.

From Figure 5 and Table 3, it can be concluded that the proposed SFA-NPE-ISCN is much more accurate than NPE-
LSTM, TNPE-LSTM, NPE-SCN, and TNPE-SCN in fault conditions of prediction. TNPE-SCN and TNPE-LSTM are more
conducive to state prediction than NPE-SCN and NPE-LSTM because TNPE considers the time-series features of the pro-
cess data. The SPE sequences obtained are more time-seriousness and more conducive to state prediction. TNPE-SCN
and NPE-SCN have higher prediction accuracy than TNPE-LSTM and NPE-LSTM, due to the SCN having greater robust-
ness for disturbances in the process data. In addition, compared to LSTM, SCN has fewer number of parameters and is
faster for training. Our proposed SFA-NPE-ISCN algorithm further optimizes SCN by HPO algorithm to improve the

TABLE 3 Comparison of algorithms in evaluation index.

N0. Algorithms MAE RMSE MAPE R2

1 NPE-LSTM 0.2672 0.3482 6.0100 0.9922

2 TNPE-LSTM 0.2669 0.3495 5.6851 0.9921

3 NPE-SCN 0.1000 0.1235 2.0585 0.9990

4 TNPE-SCN 0.0998 0.1284 2.0957 0.9989

5 SFA-NPE-ISCN-I 0.0929 0.1226 1.8823 0.9991

6 SFA-NPE-ISCN-II 0.0747 0.0956 1.4693 0.9994
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prediction performance, and consider the data time-varying characteristic, so that the prediction accuracy is higher. SFA-
NPE-ISCN-II further improves the prediction performance by considering the SCN the ill-posed problem compared to
SFA-NPE-ISCN-I. The statistical box plots of the predictive indexes for the 50 test batches of data are shown in Figure 6.
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FIGURE 6 Statistics on the performance of different algorithms in 50 test batches.

1. 2. 3. 4. 5. 6.

FIGURE 7 Schematic of the hot strip mill process.

TABLE 4 Process and quality variables in finishing mill.

Variable no. Type Description Unit

1-7 Process variable Average roll gap of 7 stands mm

8-14 Process variable Roll force of 7 stands MN

15-20 Process variable Bending roll force of 6 stands MN

21 Quality variable Exit thickness at the last finishing mill stand Mm
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As can be seen from Figure 6, our proposed method has higher prediction accuracy according to MAE, RMSE,
MAPE, and R.2 Specifically, the values of MAE, RMSE, and MAPE are smaller and more concentrated, while the value
of R2 is closer to 1 which indicates that the predicted value is closer to the actual value.

4.2 | Hot strip mill process

The hot strip rolling process is a high investment, high quality, and high productivity rolling process. A typical hot strip
rolling line includes a heating furnace, roughing mill, transfer table & shear, finishing mill, laminar cooling equipment,
and coiler. The Schematic of the Hot strip mill process is shown in Figure 7. The process is as follows: the slab is heated
in a heating furnace and then rolled several times through the roughing mill to form an intermediate slab. The interme-
diate slab is then quickly transported to the finishing mill using flying shear and intermediate delay roller tables for
more precise control to obtain a strip that meets the requirements. Finally, the strip is treated in a laminar flow cooling
plant to improve the properties and coiled for storage. Strip thickness is one of the key factors in the production of hot-
rolled strips. According to customer requirements, the hot rolled strip process can produce strip thicknesses from
1.5 mm to 12.7 mm to meet different requirements. More detailed descriptions of the hot-rolled strip process can be
found in the literature.32

In this case study, a hot strip continuous rolling line (width 1700 mm) at a steel company is used for the study, and
experimental verification is carried out by collecting field data. we focus on the process variables of roll gap, rolling
force, and bending roll force for the seven stands of the finishing mill. The exit thickness of the finishing mill stand is a
quality variable. The process and quality variables for the finishing mill are shown in Table 4.

In this case study, three typical types of faults in finishing rolling mills are considered: the faults in the bending roll
system, the faults in the press-down system, and the faults in the cooling water between stands. The average indexes of
fault detection for several batches are shown in Table 5.

It can be concluded from Table 5 that adaptive SFA-NPE with better monitoring performance can provide a more
accurate time series for fault prediction. The fault state feature SPE is formed into a time series, which is then divided
into two parts: the training set and the test set. We use the former 2,520 samples as the training data set and the latter
1,080 samples as the test data set. The network parameters are the same as those of the case study 1. The prediction
results of faults in the press-down system are shown in Figure 5, where the blue curve is the predicted value and the
red curve is the true value.

To visualize the effectiveness of the models, MAE, RMSE, MAPE, and R2 are used to evaluate the prediction effect,
and the results are shown in Table 6.

In Figure 8A, the NPE-LSTM prediction performance is poor and does not predict the actual state trend well after
700 sample points. In Figure 8B, TNPE-LSTM significantly improves the prediction performance compared with

TABLE 5 Comparison of process monitoring indexes.

Algorithms FDR MAR FAR

NPE 0.9086 0.0914 0.0136

TNPE 0.9441 0.0599 0.0079

SFA-NPE 0.9895 0.0105 0.0000

TABLE 6 Comparison of algorithms in evaluation index.

No. Algorithms MAE RMSE MAPE R2

1 NPE-LSTM 0.0333 0.0418 2.8452 0.9952

2 TNPE-LSTM 0.0109 0.0170 1.1688 0.9991

3 NPE-SCN 0.0080 0.0118 0.9138 0.9996

4 TNPE-SCN 0.0057 0.0084 0.5192 0.9998

5 SFA-NPE-ISCN-I 0.0013 0.0023 0.1265 1.0000

6 SFA-NPE-ISCN-II 0.0011 0.0021 0.1079 1.0000
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(A) NPE-LSTM (B) TNPE-LSTM

(C) NPE-SCN (D) TNPE-SCN

(E) SFA-NPE-ISCN-I (F) SFA-NPE-ISCN-II
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Figure 8A. SFA-NPE-ISCN-II in Figure 8F and SFA-NPE-ISCN-I in Figure 8E show a significant improvement in pre-
diction performance compared to TNPE-SCN and NPE-SCN. Combined with the analysis of the predictive indexes in
Table 6, SFA-NPE-ISCN-II in Figure 8F predicts better compared to SFA-NPE-ISCN-I in Figure 8E, and TNPE-SCN
in Figure 8D predicts better compared to NPE-SCN in Figure 8C. Overall, our proposed SFA-NPE-ISCN-II algorithm is
the most effective for process state prediction. The statistical box plots of the predictive indexes for the 22 test batches of
data are shown in Figure 9.

It can be noted from the box plots in Figure 9 that the proposed method in this paper has higher predictive accuracy
and less statistical bias.

5 | CONCLUSION

In this study, to detect the fault states of complex batch processes as soon as possible and to accurately predict the
trends of faults, an adaptive slow feature analysis -neighborhood preserving embedding-improved stochastic configura-
tion network (SFA-NPE-ISCN) algorithm is proposed for fault prediction. Firstly, NPE models are adaptively updated
based on the extraction of time-varying properties of the process using SFA, and the updated models reconstruct the
process data to construct squared prediction error statistics as fault state features. Then, the Hunter-prey optimization
(HPO) algorithm is used to optimize the weights and deviations of the stochastic configuration network, and the singu-
lar value decomposition (SVD) and QR decomposition of column rotation are introduced to solve the discomfort prob-
lem of the SCN to obtain the prediction model of ISCN. Finally, the obtained SPE are composed into time series and
the ISCN prediction model is used to achieve process state trend prediction. The verification of the SFA-NPE-ISCN
algorithm in the industrial-scale fed-batch fermentation process and the hot strip mill process demonstrated significant
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improvements in prediction accuracy compared to other comparative algorithms. On data representation, deep neural
networks are more effective than shallow neural networks. Therefore, in the future, we will extend our work to deep
networks.
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Abstract
In industrial monitoring, although zero-shot learning successfully solves the problem of
diagnosing unseen faults, it is difficult to diagnose both unseen and seen faults. Motivated by
this, we propose a generalized zero-shot semantic learning fault diagnosis model for batch
processes called joint low-rank manifold distributional semantic embedding and multimodal
variational autoencoder (mVAE). Firstly, joint low-rank representation and manifold learning
makes the training samples map to the low-rank space, which obtains the global–local features
of the samples while reducing the redundancy in the inputs for the training model; secondly, the
bias of human-defined semantic attributes is corrected by predicting the attribute error rate;
then, fault samples and corrected semantic vectors are embedded into the consistency space, in
which the samples are reconstructed using the mVAE to fully integrate the cross-modal
information, meanwhile, Barlow matrix is designed to measure the consistency between the
fault samples and the attribute vectors, the higher the consistency, the higher the learning
efficiency of attribute classifiers; finally, the generalized zero-shot fault diagnosis experiments
are designed and conducted on the penicillin fermentation process and the semiconductor
etching process to validate the effectiveness, the results show that the proposed model is indeed
possible to diagnose target faults without their samples.

Keywords: fault diagnosis, batch process, generalized zero-shot, semantic correction,
variational autoencoder, distributed semantic embedding

1. Introduction

As a significant method of industrial production, batch pro-
cessing is widely employed in microbial fermentation, semi-
conductor etching, and the chemical industry due to its versat-
ility and convenience in using the same equipment to produce
various high-value products, without the need for dedicated

∗
Author to whom any correspondence should be addressed.

continuous processes. To satisfy the demands for high-quality
and high added-value products, the modern batch process is
more complex and flexible, once the system fault to produce
incalculable losses, batch process safety and production qual-
ity monitoring are widely recognized by research scholars and
engineers [1–3].

For fault diagnosis problems, traditional multivariate
statistics are effectively applied [4–6]. However, it is greatly
limited due to the assumption that the data satisfy the ideal
distribution of effectively dealing with the nonstationary and

1
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nonlinear characteristics of the process data. Such methods
as Bayesian-based methods [7], support vector machines [8]
and Gaussian mixture models [9] have been widely studied
in process diagnostics. However, the limitation of such meth-
ods that they are based on the premise that valid features are
assumed to be available. It is difficult to extract features dir-
ectly from the process signals to accurately capture the effect-
ive features of the faults without being familiar with the feature
selection techniques, as the effective features are usually pre-
defined and manually selected for the specific fault diagnosis
problem. In recent years, deep learningmethods have achieved
vigorous development in the field of industrial process fault
diagnosis. Chen et al [10] proposed a one-dimensional convo-
lutional autoencoder deep learning model which was used for
fault detection and diagnosis of the Tennessee Eastman pro-
cess and the refill batch fermentation penicillin process. Guo
et al [11] proposed a joint approach that combined a coupled
convolutional neural network (CNN) and dynamic time warp-
ing for fault detection and diagnosis for semi-batch crystalliz-
ation process. Wang et al [12] proposed a fusion method of
long short-term memory (LSTM) and CNN models for fault
diagnosis, LSTM and CNN extracted the features and fusion
the features extracted respectively, and utilized multilayer per-
ceptron for feature compression and extraction and obtaining
diagnosis results of the chemical process. Ji et al [13] construc-
ted a novel differential recurrent neural network by embedding
differential operations in LSTM neural network, and it mon-
itored and controlled the industrial-scale penicillin fermenta-
tion process (PFP). Zhang et al [14] proposed a gated recurrent
unit -enhanced deep CNN model for fault detection and dia-
gnosis in chemical processes. However, these methods need to
obtain enough fault samples through industrial sensors, and in
real scenes and practical applications, they often suffer from
sampling difficulties. These difficulties included long data col-
lection time, large investment, and not allowing many faults in
the actual production process. These problems limit the applic-
ations of supervised deep learning fault diagnosis methods.
Therefore, many scholars have tried to use transfer learning
method to overcome the sampling difficulties. Transfer learn-
ing learns empirical knowledge from historical data or other
faults in the same process for difficulties in capturing faults
and builds cross-domainmodels for fault diagnosis.Wang et al
[15] proposed a linear discriminant analysis for chemical pro-
cess fault classification based on weighted maximum mean
difference designed for domain adaptation, the fault diagnosis
effectiveness was improved in the Tennessee Eastman process
and the actual hydrocracking process. Zabin et al [16] pro-
posed a hybrid deep transfer learning architecture that con-
sisted of deep CNNs and long and short-term memory lay-
ers for extracting spatiotemporal features of two-dimensional
images of process data enhanced by the Hilbert transform
for industrial machinery fault diagnosis. Chen et al [17] pro-
posed a deep parameter less cosine network with PA Swish,
which could help to adjust the network weights of domain
specific features and domain invariant features by construct-
ing an attention module based on cosine adjustment, further
a reconstruction-based domain adaptive approach was used to

realize cross domain fault diagnosis. Ding et al [18] proposed
a new deep imbalance domain adaptive fault diagnosis frame-
work, and used it for bearing fault diagnosis. Liu and Ren [19]
proposed a generalized transfer framework with evolving abil-
ity for solving the problem of lack of fault samples to improve
fault diagnosis performance.

However, the transfer learning method solves the problem
of domain transfer between source and target domains for
the same type of faults. With further advancement of intel-
ligent manufacturing, the complex advanced systems would
be more diversified along with the types of faults, which sys-
tems are hard to obtain for some special fault samples, and
there are many unknown faults. When the target faults have
no samples for training, such transfer learning methods are no
more applicable.

In fact, the diagnosis of fault patterns in those unlabeled
samples is called zero-shot fault diagnosis [20, 21]. Zero-shot
learning aims to solve the problem that there are no test class
samples in the training phase, attempts to transfer knowledge
from known class samples to unknown class samples through a
shared semantic space. Lampert et al [22] proposed a classical
zero-sample learning method called direct attribute prediction
(DAP), which did not directly infer that test sample label,
but tried to study the relationship between the input data and
semantic properties. Lampert et al [23] also proposed indir-
ect attribute prediction method for zero-shot learning. Inspired
by DAP, Feng and Zhao [24] proposed an attribute trans-
fer method based on fault description to solve the zero-shot
fault diagnosis problem, which introduced the idea of zero-
shot learning into the industrial field. Hu et al [25] proposed
semantically consistent embedding (SCE) approach for indus-
trial zero-shot fault diagnosis, which inserted fault samples
and their human-specified attribute vectors into a semantically
consistent space, and then reconstructed the fault samples from
that space. It attempted to classify unseen classes of errors
by using only seen classes of errors for training. Chen et al
[26] proposed a zero-sample industrial process fault diagnosis
model based on explicit and implicit joint attribute trans-
fer, which utilized partially known fault samples to identify
unknown faults. Chen et al [27] proposed a pyramidal ZSL
(PZSL) model with multi-granularity hierarchical attributes to
deal with the inability to explore hierarchical features between
attributes, which utilized a hierarchical constraint network to
predict attributes layer by layer. However, ZSL fault diagnosis
method can only categorize unknown faults of the training pro-
cess in the diagnosis stage. It cannot categorize cases where
both seen and unseen faults are possible, which severely lim-
its their practical application. To solve the above problems,
Huang et al [28] proposed a generalized zero-sample learn-
ing (GZSL), which could classify seen faults and unseen faults
during the online fault diagnosis stage. There has been relat-
ively little research on GZSL in the field of fault diagnosis, and
mainly in the field of rolling bearing fault diagnosis [29–31].

Regarding these issues, in this paper, we select the typical
batch processes PFP and semiconductor etching process (SEP)
as the research objects, and propose a generalized zero-shot
fault diagnosis model for batch processes called joint low-rank
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manifold distributional semantic embedding and multimodal
variational autoencoder (JLMDSE-mVAE). The main contri-
butions of this paper are as follows:

(1) The proposed low-rank manifold structure (LRM) effect-
ively extracts the global–local structural information of
process data, thus reducing the input computation com-
plexity of the model and improving the training efficiency
of the model.

(2) The human-defined semantic attribute information is
affected by the labeler’s subjectivity with semantic bias,
which is achieved by the attribute prediction error rate to
correct the original semantic description information and
improve the accuracy of model classification.

(3) In generalized zero-shot classification, fault samples and
attribute vectors are used as cross-modal data, and the
mVAE structure is used to embed the cross-modal data
into a semantically consistent space, which is fused and
reconstructed in the output. The consistent space can fully
reflect the cross-modal information, meanwhile, the more
consistent the cross-modal embedding is between them,
better the learning efficiency of the attribute classifiers.

The rest of this paper is organized as follows. The fault
attribute descriptions and formulation of generalized zero-
shot fault diagnosis are illustrated in section 2. The proposed
JLMDSE andmVAE batch process generalized zero-shot fault
diagnosismethod is shown in section 3. The experiments of the
proposed method based on the PFP and the SEP are validated
in section 4. And section 5 summarizes this paper.

2. Problem formulation of generalized zero-shot
fault diagnosis

In this section, we first introduce the attribute descriptions of
industrial faults and then formulate the problem of generalized
zero-shot fault diagnosis.

2.1. Fault attribute descriptions

Fault attributes are expert knowledge that plays an important
role in zero-shot fault diagnosis. That is like semantic informa-
tion in computer vision, which usually describes the fault clas-
sification with a word or short phrase. Every fault is described
by several fault attributes, which include the location where
the fault occurred, the reason for generating the fault, and the
fault variables that are affected, etc.

The attributes of each fault form the attribute vector a ∈ RC,
where C is the number of attributes, each fault can be uniquely
represented by the attribute vector a. For m kinds of faults, we
getm attribute vectors to construct the fault description matrix
A ∈ Rm×C. The matrix A contains either 1 or 0 for each ele-
ment, where 1 indicates that the fault has the attribute descrip-
tion and 0 indicates that the attribute is not satisfied. Through
the fault description matrix A, all the faults can be accurately
depicted.

2.2. Formulation of generalized zero-shot fault diagnosis

In traditional industrial process fault diagnosis, it is often
assumed that all classes of fault samples are known when the
model is trained. In other words, all the samples that need
to be diagnosed in the test set are known in the training set.
However, in industrial processes, few processes are allowed
to generate all fault types, and some fault types exist only for
specific systems, equipment, and variables. If these fault types
do not occur, then there are no data samples of such faults,
which makes it impossible to obtain labeled samples of these
fault types during the fault diagnosis process. These fault types
for which labeled samples are not available are named unseen
faults, while other fault types for which labeled samples are
available are named seen faults.

For clarity, we first describe the zero-shot fault diagnosis
task. The implication of zero-shot fault diagnosis is that unseen
faults are diagnosed only if seen faults are known. Our goal
is to diagnose and recognize p faults, with a target fault set
of T= {t1, t2, . . . , tp}. There are no fault samples in T for
training. The set of seen types of faults used for training is:
S= {s1,s1, . . . ,sq}, where q is the number of seen faults. In
zero-shot fault diagnosis, T and S are mutually disjoint, that
is, T∩S= ∅. Zero-shot fault diagnosis assumes that the target
fault set contains only unseen faults. For industrial processes,
the target set contains not only unseen faults but also seen
faults. For generalized zero-shot fault diagnosis, our goal is to
diagnosem unseen faults and n seen faults with the target fault
set of Tg = {t1, . . . , tm,sk, . . . ,sk+n}. Then we have Tg∩S=
SK ̸= ∅, where SK = {sk, . . . ,sk+m}, SK is fault type of the tar-
get fault set involved in training of the model. The samples of
the training set S are denoted: χ =

{
XS ∈ RNS×D,YS ∈ RNS

}
,

whereNS is the number of samples, andD is the feature dimen-
sion, XS and YS denote the samples and labels of the training
faults. The generalized zero-shot fault diagnosis learns a map-
ping f from S to Tg, the objective function is derived from for-
mula (1) as follows,

min CLoss
(
YTg , ŶTg

)
, andŶTg = f

(
XS,YS,A|XTg

)
(1)

where CLoss denotes the classification loss,XTg and YTg denote
the samples and labels of the training faults, respectively,
A=

[
AS,ATg

]
∈ RL×C is the attribute description matrix, and

L= m+ n+ q. Noteworthy, the attribute description matrices
AS for S and ATg for Tg are both used for model training.

Since both seen and unseen faults are present in the need
diagnosed faults. Therefore, this paper attempts to establish a
more generalized zero-shot fault diagnosis method, which is
possible to diagnose both seen and unseen faults in the pres-
ence of only seen fault training models. A diagram of gener-
alized zero-shot fault diagnosis as shown in figure 1, in which
‘ASD#’ represents the attribute of the fault, ‘√’ means with the
attribute, ‘×’ means without the attribute.

3. Methodology

In this section, we introduce the motivation of this paper, the
proposed JLMDSE-VAE method is then explained in details.
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Figure 1. Illustration of generalized zero-shot fault diagnosis.

3.1. Motivation

As mentioned above, each fault can be described with specific
attribute vector. Yet, the labeled of attributes is often affected
by the subjectivity of the labeler, which is called semantic bias.
Therefore, we accomplish semantic correction of the semantic
description information of seen faults through attribute predic-
tion error rate method, which reduces the influence of human
subjectivity on the results and improves the model classifica-
tion accuracy. Further, during sample training, more redund-
ant features in the training samples lead to the complexity in
the training inputs while reducing the training efficiency of the
model. In fault classification with generalized zero-shot con-
taining both unseen and seen faults, fault samples and attrib-
ute vectors can affect the accuracy of fault diagnosis as cross-
modal data. The cross-modal data embedded into a semantic-
ally consistent space for fusion and reconstruction can fully
reflect the cross-modal information.Meanwhile, themore con-
sistent the cross-modal embedding between them, the higher
the learning efficiency of the attribute classifier.

In the next subsection, the proposed JLMDSE-mVAE
model is introduced to handle the above-mentioned
considerations.

3.2. The proposed JLMDSE-mVAE model

The structure of the proposed JLMDSE-mVAE model in this
paper is illustrated in figure 2. The model contains three main
parts: (1) LRM (2) semantic revision structure; (3) mVAEwith
one encoder and two decoders. Specifically, original seen fault
samples obtain global–local features through a LRM which
reduces the complexity of training samples. Human-defined
semantic attribute information is revised by the prediction
error rate, which reduces the semantic bias influenced from

the labeler’s subjectivity. The mVAE model consists of one
encoder and two decoders, whose purpose is to lign two dif-
ferent modes of sample features and semantic attributes in the
latent space.

3.2.1. Construct low-rankmanifold space. Low rank repres-
entation (LRR) [32] can accurately describe the original space
of data by capturing the lowest rank of data. LRR can solve
the problem of dimensionality catastrophe due to the super-
position of repetitive information in the data. Also, it can well
reveal the global structural information of the data in terms
of spatial distribution. To further preserve the local structural
information between the original feature space and the approx-
imate feature space, it is regularized by means of local man-
ifold learning. We use neighborhood preserving embedding
(NPE) with regularized low-rank representation to construct
a low-rank manifold space.

(1) LRR:
Given dataset X = (x1,x2, . . . ,xn), X ∈ Rm×n, where m denotes
the sample dimension and n denotes the number of samples, so
X= D+E, where D,E ∈ Rm×n, D is the low-rank representa-
tion of the dataset, E stands for residuals. The low-rank rep-
resentation D can be expressed as D= BZ, where B ∈ Rm×n is
the base of the data and Z ∈ Rm×n is the coefficient of variation
matrix. The low-rank solution is shown in formula (2):

min
Z,E
∥Z∥∗+λ∥E∥2,1 s.t. X= BZ+E (2)

where, ∥Z∥∗ denotes the nuclear norm of Z, ∥Z∥2,1 denotes the
norm of the residual, and λ is the regularization parameter. In
practice, B is always unknown, and a better option is to set
A= X. Since Z is the self-affinity matrix of the data X, we
conduct the symmetric constraint Z= ZT. Furthermore, for-
mula (2) could be transformed into formula (3):

min
Z,E
∥Z∥∗+λ∥E∥2,1 s.t. X= XZ+E, Z= ZT (3)

(2) NPE:
NPE [33] represents the local linear structure of manifold by
local linear reconstruction, which is in the form ofmean square
error. The embedding cost function of NPE can be indicated
as shown in formula (4):

ϕ (Y) =min
n∑

i=1

∥yi−
∑
j∈Q(i)

wijyj∥2 (4)

where, Q(i) is the set of neighboring samples; yj (yj) ∈ RD×P
is local manifold features extracted from X, D is the dimension
of the feature vector, W ∈ RP×P should satisfy the normaliza-
tion constraint.

The modeling for formula (4) can be transformed into the
form of matrix as shown in formula (5):

Φ (Y) = Tr
(
Y(I−W)

T
(I−W)YT

)
(5)
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Figure 2. Structure diagram for the proposed JLMDSE-mVAE algorithm.

where, Y ∈ RD×P is the matrix form of the local manifold fea-
tures, I= diag(1, . . . ,1).

(3) LRM:
LRM is obtained by NPE regularization of LRR, and data
samples are obtained global–local features in low-rank mani-
fold space. LRM can be modeled by formula (6):

min
Z,E
∥Z∥∗+λ∥E∥2,1 +βTr

(
Z(I−W)

T
(I−W)ZT

)
s.t. X= XZ+E, Z= ZT

(6)

where β is a balance parameter.

3.2.2. Semantic information correction. For the problem of
excessive human-defined subjectivity of semantic description
information, an attribute prediction error rate is utilized to real-
ize semantic correction of semantic description information of
seen class faults and to reduce the influence of human sub-
jectivity on the results and improve the classification accur-
acy of the model. We calculate the attribute prediction error
rate by inputting the training data into each trained attribute
classifier and comparing the output with the labeled data of
each faulty attribute. The attribute error rate matrix is shown in
formula (7):

E=


e1,1 e1,2 . . . e1,j−1 e1,j
e2,1 e2,2 . . . e2,j−1 e2,j
. . . . . . . . . . . . . . .

ei−1,1 ei−1,2 . . . ei−1,j−1 ei−1,j
ei,1 ei,2 . . . ei,j−1 ei,j

 (7)

where, ei,j represents the attribute error rate corresponding to
the jth attribute of the ith fault. If ei,j > η, the corresponding
attribute is changed, and if η is 0.9, it indicates that the attribute
is changed when the prediction error rate of the attribute is
more than 90%. The optimum value of η is further discussed
in the following section.

3.2.3. mVAE. For the JLMDSE-mVAE model proposed in
this paper, mVAE consists of one encoder and two decoders
whose purpose is to align data from two different modalit-
ies, that is, sample data and semantic attributes, in the latent
space. The encoder consists of three fully connected layers.
Specifically, the first layer has 256 neurons with ReLU activ-
ation, the second layer has 128 neurons with ReLU activa-
tion, and the final layer outputs the latent vector with 64 neur-
ons using a linear activation function. This structure effect-
ively captures essential features for embedding into a lower-
dimensional latent space. Both decoders use a similar three-
layer structure, with 128 and 256 neurons in the first two layers
(ReLU activation), followed by an output layer with sigmoid
activation to maintain output consistency with the input data’s
range. This dual-decoder approach enables cross-modal data
alignment within a unified semantic space. Once the original
sample data are mapped into the low-rank manifold space, the
encoder converts the low-rank manifold features and modi-
fied semantic attributes into low-dimensional potential vectors
Z1 and Z2, respectively. Z1 and Z2 are subsequently decoded
into the feature space to be reconstructed with decoder 1 and
decoder 2. Therefore, we give the functional expression of
mVAE as shown in formula (8):

LmVAE = LX
VAE

+LA
VAE

=
m∑
i=1

Eqϕ(z|x(i ) )
[
logpθ

(
x(i) |z

)]
−DKL

(
qϕ

(
z
∣∣∣x(i))∥pθ (z)) (8)

where, LX
VAE

and LA
VAE

denote the VAE loss for sample modality
and semantic modality, respectively. m = 2 denotes two mod-
alities. Specifically, x(1) ∈ X ′ and x(2) ∈ A ′. The first term of
the loss function formula (8) attempts to search for the true
conditional probability distribution pθ

(
x(i)|z

)
on the variable

z. The second term measures the Kullback–Leibler divergence
between qϕ

(
z|x(i)

)
and pθ (z).
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To make the proposed model further capture similar rep-
resentations between modalities, we attempt to decode the lat-
ent embeddings of samples which belong to another modal-
ity though from the same category. Thus, each modality spe-
cific decoder can be trained on potential vectors from different
modalities. The cross-reconstruction loss between sample and
semantics is shown in formula (9):

Lcr = |Xi′−D1 (E(A
′
i))|+ |Ai′−D2 (E(Xi

′))| (9)

where, E is a shared encoder of two different modalities, D1

and D2 are the decoders of visual features and semantics,
respectively.

In general, we distribute aligned sample features and
semantic attribute features by minimizing the Wasserstein dis-
tance between the latent multivariate Gaussian distributions
of the two-modal data, and a loss function as shown in for-
mula (10):

Lwda =
M∑
i

M∑
j ̸=i

∥µi−µj∥22 +
∥∥∥∥∥∥
1/ 2∑
i

−
1/ 2∑
j

∥∥∥∥∥∥
2

F


1
2

(10)

where, µ and
∑

are the distributional parameters of the
model, which denote the mean and variance. That satisfies

Z∼ N
(
µ,

2∑)
, ∥•∥F is the F-norm. Due to the higher consist-

ency between cross-modal embeddings, the better the learning
performance of the attribute classifiers. To align the sample
and attribute embeddings to measure the consistency of cross-
modal embeddings simultaneously, the design of specific
Barlow matrix as shown in formula (11):

Bij =

∑
b z

X
b,iz

A
b,j√∑

b

(
zXb,i

)2∑
b

(
zAb,j

)2
(11)

where, b denotes the batch sample, Bij denotes the consist-
ency of the ith dimension of the sample embedding with the
jth dimension of the attribute embedding, which ranges (−1,
1), that is, ‘−1’ means perfect negative correlation and ‘1’ is
perfect correlation. The consistency alignment loss function is
defined as shown in formula (12):

Lda =
n∑

i=1

(1−Bii)2 +χ
n∑

i=1

n∑
j ̸=i

B2
ij (12)

where, χ is the tradeoff parameter. For the loss function for-
mula (8), the first term denotes the semantic consistency of
the cross-modal embedding and the second term denotes the
redundancy information between the different elements.

The proposed JLMDSE-mVAE can be indicated by for-
mula (13):

LJLMDSE - mVAE = LmVAE +αLcr +βLda (13)

where, α and β are the tradeoff parameters for the cross-
reconstruction loss function and the consistency alignment
embedding function, respectively.

3.2.4. The JLMDSE-mVAE model for fault diagnosis. The
fault diagnosis procedures for the JLMDSE-mVAE model are
shown in figure 3, which are divided into training and testing
two parts.

In the training phase, the seen fault training samples are
mapped into the low-rank space to obtain low-rank mani-
fold features with global–local. The raw semantic informa-
tion is corrected by the prediction error rate, which reduces
the human factor influence. Furthermore, the fault sample fea-
tures and the revised semantic matrix are mapped into the lat-
ent space utilizing one encoder. The semantic latent features
and seen fault latent features are decoded and reconstructed
by using two decoders to train the complete mVAE model.
The seen fault samples are passed through the trained mVAE
model to obtain fault embeddings, which are obtained to train
the attribute classifier.

The trained classifier gives the estimated value of p(ai|z)
and completes the representation of the fault to the attribute
layer, as shown in formula (14):

p(a |z ) =
∏c

i=1
p(ai |z ) =

∏c

i=1
ai (z) (14)

where, ai represents the ith classifier, z represents the latent
variable of the fault sample.

By using Bayes rule, label inference is performed. The reas-
oning from attribute to class is as shown in formula (15):

p(y |a ) =
m∑
y=1

p(y)
p(ay)

p(ay |y ) (15)

where, ay represents the attribute vector of the yth class, and
m represents the number of class of faults. p(a|y) = [a= ay],
if a = ay,[a= ay] = 1 and otherwise [a= ay] = 0.

In the testing phase, the test sample includes both seen
faults and unseen faults. The test samples are mapped accord-
ing to the LRM from the training phase to obtain fault features.
The latent features of the test samples are further obtained
through the encoder input to the attribute classifier. Since all
the attributes of the unseen occur in the seen, we can get the
classification of the faults by using the maximum posteriori
probability.

A posteriori probability of the sample fault class is shown
in formula (16):

p(y|z) =
∑
a

p(y|a)p(a|z) = p(y)
p(ay)

m∏
j=1

p
(
ayj |z

)
. (16)

Using the maximum a posterior-maximum estimation to
give the best matching class from all test classes is shown in
formula (17):

y= argmax
m∏
j=1

p
(
ayj |z

)
p
(
ayj

) (17)

where, y denotes the test result output. The fault with the
highest posterior probability is taken as the prediction result.
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Figure 3. Procedures of JLMDSE-mVAE generalized zero-shot diagnosis.

In this paper, the performance of the proposed generalized
zero-shot fault diagnosis model is evaluated by using the har-
monic mean, which is widely used in classification tasks, as
shown in the formula (18):

H= 2× Accs×Accu
Accs +Accu

(18)

where, Accs and Accu denote the fault diagnosis accuracies
for seen and unseen fault, respectively. For generalized
zero-shot fault diagnosis whole accuracy is shown in
formula (19):

A=
m

m+ n
Accs +

m
m+ n

Accu (19)

where,m and n denote the numbers of samples with seen faults
and unseen faults. Given the definition of fault diagnosis accur-
acy is shown in formula (20):

Acc=
NC

N
(20)

where, NC denotes the number of samples classified accur-
ately, N denotes the total number of test samples.

4. Case studies

In this section, we evaluate the performance of the proposed
model for zero-sample fault diagnosis and generalized zero-
sample fault diagnosis by two typical batch processes: PFP
and SEP, and demonstrate the validity and superiority of the
proposed model.

4.1. PFP

Penicillin is an extensively used antibiotic with high clinical
medical value, its production process is a complex biochem-
ical reaction and typical batch production process. For this
case, the PFP data have been obtained from the pensim2.0 plat-
form designed by the Illinois Institute of Technology [34]. A
schematic diagram of the PFP is shown in figure 4. The fer-
mentation system mainly contains fermentation tanks, agita-
tion motors, aeration equipment and other major equipment,
in addition to the addition of acid, base, hot water, cold water,
substrate and other reactant’s part, and is equipped with the
corresponding temperature and PH controller. PFP utilizes
specific production bacteria to grow and multiply under cer-
tain conditions, and after the concentration of the produced

7
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Figure 4. Schematic of the penicillin fermentation process.

Table 1. Penicillin fermentation process fault information.

No. Fault state information

1 +3% step type, aeration rate fault
2 −2% step type, aeration rate fault
3 +5 l h−1 ramp type, aeration rate fault
4 −3 l h−1 ramp type, aeration rate fault
5 +5% step type, agitator power fault
6 −2% step type, agitator power fault
7 +3 W ramp type, agitator power fault
8 −5 W ramp type, agitator power fault
9 +6 K substrate feed temperature fault
10 −0.3 mmole L−1 CO2 conc. Fault

bacteria reaches a certain concentration, penicillin begins its
production as a product of metabolism, and to ensure the
production of penicillin, it is necessary to constantly replenish
the nutrient elements such as nitrogen and sugar. In penicil-
lin fermentation, the condition monitoring relies on a range of
sensors including pH sensors, dissolved oxygen probes, tem-
perature sensors and carbon dioxide sensors, etc.

To validate the proposed model, we use the PFP simulation
platform Pensim2.0 to generate 10 different types of faults,
which are described in detail in table 1. For each fault, the
reaction time is 400 h, the sampling time is 1 h, and the fault
is introduced from the reaction start moment to the reaction
finished moment.

The attribute semantic descriptions of the faults contain the
information about the faults types as shown in table 2. Each
fault is described by 10 fine-grained attributes.

The semantic description matrix of the fault attributes of
the PFP is shown in figure 5, the value ‘1’ means that the fault
has the current attribute, and ‘0’ means that the fault does not
have the current attribute.

The 10 types of faults are divided into 7:3 ratio, of which
seven are training faults and three are target faults. According
to different combinations, those faults are grouped into six
groups, and the specific fault groups are shown in table 3.

Table 2. Fault attribute semantic description for PFP.

No. Fault state information

ASD#1 Aeration rate is changed
ASD#2 Agitator power is changed
ASD#3 Substrate feed temperature is changed
ASD#4 CO2 conc. is changed
ASD#5 Fault change value is positive
ASD#6 Fault change value is negative
ASD#7 Fault change in step signal
ASD#8 Fault change in ramp signal
ASD#9 Strong related with final product quality
ASD#10 Weak related with final product quality

Figure 5. Attribute vectors of the PFP.

Significantly, for groups A, B and C, the training faults are all
seen faults, and the target faults are unseen faults, which are
used to verify the effectiveness of the zero-shot fault diagnosis.
For groups D, E and F, the training faults are all seen faults and
the target faults are both seen and unseen faults to verify the
effectiveness of the generalized zero-shot fault diagnosis.

8
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Table 3. Six different fault groups for PFP.

No. Training faults Target faults

A 2–4, 6–9 1, 5, 10
B 1–3, 5–7, 10 4, 8, 9
C 1–2, 5–7, 9–10 3, 4, 8

D 1–3, 5–7, 10 2, 6, 8
E 2, 4–7, 9–10 1, 3, 4
F 1–4, 7–8, 10 2, 5, 9

Figure 6. Attribute prediction error rate for group A.

The output data and the labeled data of each fault attrib-
ute are compared to calculate the attribute prediction error rate
table. The attribute prediction error rate is shown in figure 6,
where the column direction represents that the 7 types of seen
faults are classified in group A, and the row direction repres-
ents the 10 attributes of the semantic description of the faults,
respectively, where the deeper color means that the error rate
of fault corresponding to the attribute is higher.

The attributes are changed when the attribute error rate is
more than the threshold value. After making attribute correc-
tions and retraining the model, the overall attribute prediction
error rates resulting from attribute prediction with the train-
ing set are shown in figure 7, ‘UN’ indicates no semantic
correction.

It can be seen fromfigure 7 that the attribute prediction error
rate is minimized when η = 0.9, and the attribute prediction
error rate is the same as η equals to 0.8 and 0.9 for group D
data. For different groups of experiments with the change of η,
its trend correlation is poor, so this paper chooses the threshold
of the smallest attribute prediction error rate, i.e. η = 0.9.

The JLMDSE-mVAE loss function has two parameters that
need to be determined, i.e. the balance parameters α and β.
Taking the fault diagnosis accuracy as criterion, the balance
parameters α and β are obtained by the grid search method,
and the search range of α and β is between 0 and 1. In the case
of group A, figure 8 shows the diagnostic accuracies when α

Figure 7. The influence of different correction thresholds η for fault
diagnosis results.

Figure 8. Fault diagnosis accuracy for different values of α and β
(group A faults).

and β take different values. According to the search results,
we choose α= 0.3 and β= 0.1.

In table 4, the sample fault diagnosis accuracies of the pro-
posed model for different fault groups are given and com-
pared with two well advanced zero-shot fault diagnosis mod-
els, FDAT and SCE, with probabilistic naive Bayes (NB) and
nonlinear random forest (RF) selected as the attribute learners.
It can be seen from table 4 that the proposed model performs
better than the two compared models overall, especially in
fault group B. With the NB attribute learner, the zero-shot
fault diagnosis accuracy of JLMDSE-mVAE is improved by
19.75% compared to FDAT and 12.25% compared to SCE.

The generalized zero-shot fault diagnosis accuracies of the
three models which are given in table 5, where A denotes the
overall diagnostic accuracy of seen class faults and unseen
class faults, andH denotes the harmonicmean.Hmeasures the

9
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Table 4. Fault diagnosis results Acc for PFP (%).

Method Classifier A B C D E F

FDAT
NB 75.25 65.75 68.50 66.84 66.25 67.75
RF 72.75 64.25 67.25 65.75 65.00 67.00

SCE
NB 79.75 73.25 75.00 69.83 69.25 72.75
RF 77.25 70.25 67.75 69.75 68.75 71.50

JLMDSE-mVAE
NB 85.50 85.50 83.25 77.17 71.50 77.25
RF 83.75 84.25 81.50 72.50 70.25 75.00

Table 5. Generalized zero-shot fault diagnosis results A and H for PFP (%).

Method Classifier

D E F

A H A H A H

FDAT
NB 66.84 67.49 66.21 67.14 67.75 68.26
RF 65.75 66.37 65.13 66.23 67.00 68.11

SCE
NB 69.66 70.47 69.13 70.43 72.75 73.61
RF 69.75 70.63 67.66 70.33 71.50 73.01

JLMDSE-mVAE
NB 77.16 77.60 70.26 72.11 77.25 78.11
RF 72.37 73.26 69.96 71.03 75.00 77.21

Table 6. Fault diagnosis results Acc with different loss functions (%).

Method A B C D E F Mean

CA-mVAE (NB) 68.42 69.08 67.50 64.92 63.50 64.75 66.36
CR-mVAE (NB) 70.08 70.92 69.67 66.58 64.25 66.42 67.99
JLMDSE-mVAE-I (NB) 73.58 73.42 73.00 74.33 71.42 71.92 72.95
JLMDSE-mVAE-II (NB) 85.50 85.50 83.25 77.17 71.50 77.25 80.03

generalized zero-shot fault diagnosis effectiveness as it reacts
to the aggregate mean of seen faults and unseen faults. It can
be obtained from table 5 that the proposed model in this paper
is better than FDAT and SCE for generalized zero-shot fault
diagnosis.

To verify the effectiveness of the proposed loss function
in zero-shot fault diagnosis in PFP, the results of the abla-
tion experiments are given as shown in table 6. From both
tables 4 and 5, the results of using NB for attribute learn-
ing are better than RF, so only NB is used for attribute
learning in the ablation experiments. In table 6, CA-mVAE
indicates that only the cross-reconstruction loss function is
included, CR-mVAE indicates that only the consistent align-
ment loss function is included, and JLMDSE-mVAE-I indic-
ates that the above two loss functions are included at the
same time without the semantic information being corrected.
JLMDSE-mVAE-II representation includes both above loss
functions and the semantic information is corrected. As shown
in table 6, both CA-mVAE and CR-mVAE models achieve
high fault diagnosis accuracies when the model contains only
a single loss function.When two loss functions are introduced,
the fault diagnosis accuracy of the JLMDSE-mVAE-II gets
significantly improved compared with CA-mVAE and CR-
mVAE. JLMDSE-mVAE-II improves the mean fault diagnosis

accuracy 13.67 and 12.04 compared to CA-mVAE and CR-
mVAE, respectively. This result not only proves the effective-
ness of the added loss function, but also demonstrates its sig-
nificant advantage in improving the fault diagnosis perform-
ance. The mean fault diagnosis accuracy of JLMDSE-mVAE-
II is improved by 7.08% compared to JLMDSE-mVAE-I,
which indicates that the semantic correction has a signific-
ant improvement on the generalized zero-shot fault diagnosis
performance.

The Barlow matrixes of JLMDSE-mVAE on groups A and
B are shown in figure 9, which reveal that the diagonal ele-
ments are close to 1 and the off-diagonal elements are close
to 0. This indicates that the proposed method in this paper has
high consistency of sample embedding and attribute embed-
ding alignment, while reducing the redundant information.

Figure 10 plots the confusion matrixes of FDAT, SCE
and the proposed JLMDSE-mVAE with NB as the attribute
classifier.

From figure 10, the diagnosis results of FDAT, SCE and
JLMDSE-mVAE for faults 2, 6 and 8 where significantly
higher than random guessing (33.3%), which proves the feas-
ibility of generalized zero-shot fault diagnosis. JLMDSE-
mVAE-II (79% on fault 2, 77.5% on fault 6, and 75% on
fault 8) has significantly higher diagnostic results than FDAT
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Figure 9. Visualization of the Barlow matrix on group A and B.

Figure 10. Confusion matrices of the groups D for different method.
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Figure 11. Schematic of the semiconductor etching process.

(69.75% on fault 2, 69.75% on fault 6 of 65%, and fault 8 of
65.75%) by 9.25%, 12.5%, and 9.25%, compared to SCE (fault
2 of 71.75%, fault 6 of 66.25%, and FAULT 8 of 71.5%) by
7.25%, 11.25%, and 3.5%, and compared to the uncorrected
JLMDSE-mVAE-I (fault 2 of 76.25%, fault 74.5% for fault 6
and 72.25% for fault 8) by 2.75%, 3% and 2.25%, respectively.
It shows that the JLMDSE-mVAE proposed in this paper can
provide more critical features for fault diagnosis.

4.2. SEP

Semiconductor etching is one of the important process steps
in the semiconductor manufacturing process, which is typic-
ally batch process [35]. The most popular etching method is
plasma etching, in which gases are energized into plasma by
means of coils or electrodes, and semiconductor etching is
achieved by physical impact and chemical reactions between
the plasma and wafer surface. The schematic of the SEP is
shown in figure 11.

In this case, it has been performed on the Lam9600 plasma
etching tool, which uses inductively coupled Bl3/Cl2 plasma
etching of TiN/A1-0.5% Cu/TiN/oxide for stacking. The key
parameters are the linewidth of the etched A1 lines, its uni-
formity on the wafer and the oxide loss. There are three sensor
systems equipped with the metal etcher used in the exper-
iments: device status, radio frequency monitor, and optical
emission spectroscopy. The device status sensor collects the
device data during wafer processing, including 40 process set
points during etching sampled at 1 s intervals, such as gas flow,
chamber pressure, radio frequency power, etc. To validate the
proposed model, we use 10 different types of faults in the SEP,
which are described in detail in table 7.

The attribute semantic descriptions of the faults contain the
information about the faults class as shown in table 8, each
fault is described by 9 fine-grained attributes.

The semantic descriptionmatrix of the fault attributes of the
SEP is shown in figure 12, the value ‘1’ means that the fault

Table 7. Semiconductor etching process fault information.

No. Fault state information

1 Radio frequency power −12 W
2 Radio frequency power +10 W
3 He chuck pressure +3 Pa
4 Transformer coupled plasma power +10 W
5 BCl3 flow rate +5 sccm
6 He chuck pressure −2 Pa
7 Cl2 flow rate −5 sccm
8 Cl2 flow rate +5 sccm
9 BCl3 flow rate −5 sccm
10 Transformer coupled plasma power −15 W

Table 8. Fault attribute semantic description for SEP.

No. Fault state information

ASD#1 Radio frequency power is changed
ASD#2 He chucks pressure is changed
ASD#3 Transformer coupled plasma power is changed
ASD#4 BCl3 flow rate is changed
ASD#5 Cl2 flow rate is changed
ASD#6 Fault change value is positive
ASD#7 Fault change value is negative
ASD#8 Gas flow rate change
ASD#9 Power is changed

Figure 12. Attribute vectors of the SEP.

has the current attribute, and ‘0’ means that the fault does not
have the current attribute.

The 10 faults are divided into 7 training faults and 3 target
faults, and are categorized into 6 groups according to different
situations, which are shown in table 9. The first three groups
of training faults are all seen and the target faults is unseen,
which is used to verify the effectiveness of the zero-shot fault
diagnosis. The rest of the groups of training faults are seen
faults and the target faults are both seen and unseen faults,

12
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Table 9. Six different fault groups for SEP.

No. Training faults Target faults

A 1, 3–5, 7–9 2, 6, 10
B 1–3, 5–7, 9 4, 8, 10
C 2–3, 5–7, 9–0 1, 4, 8

D 2–3, 5–6, 8–10 1, 5, 8
E 1–4, 7–8, 10 2, 5,9
F 1–2, 4–6, 8–9 3, 5, 7

Figure 13. Attribute prediction error rate.

which are used to verify the effectiveness of the generalized
zero-shot fault diagnosis.

The output data and the labeled data of each fault attribute
are compared to calculate the attribute prediction error rate.
The attribute prediction error rate is shown in figure 13.

When the attribute error rate exceeds the threshold, the
attribute would be changed. According to the way that the
threshold is selected for the penicillin fermentation process,
the threshold with the lowest attribute prediction error rate is
selected in this case, i.e. the attribute prediction error rate is
minimized in η = 0.8. The two equilibrium parameters α and
β of the JLMDSE-mVAE loss function, which are selected in
the same way as for the PFP using the grid search method, and
the search range is between 0 and 1. In this case, we choose
α= 0.2 and β= 0.1.

In table 10, the sample fault diagnosis accuracies of the
proposed model for different fault groups are given and com-
pared with two well advanced zero-shot fault diagnosis mod-
els, FDAT and SCE, with probabilistic NB and nonlinear
RF selected as the attribute learners. It can be seen from
table 4 that the proposed model performs better than the two
compared models overall. Especially for group A, with the
NB classifier, the diagnostic accuracies of JLMDSE-mVAE

increase by 30.37% and 19.63% compared to FDAT and SCE
respectively.

The generalized zero-shot fault diagnosis accuracies of
the three models are given in table 11. It can be obtained
from table 11 that the proposed model in this paper is bet-
ter than FDAT and SCE for generalized zero-shot fault dia-
gnosis. Overall, when NB is used as a classifier, the diagnostic
accuracies of the three methods are higher than that of RF clas-
sifier. Specifically, when NB is utilized as a classifier, the H
value of JLMDSE-mVAE is most significantly improved by
26.94% compared to FDAT on group D, and JLMDSE-mVAE
is most significantly improved by 25.05% compared to SCE
for group F.

To verify the effectiveness of the proposed loss function in
improving the accuracy of zero-shot fault diagnosis in PFP,
the results of the ablation experiments are given as shown in
table 12. In ablation experiments, NB is used only for attrib-
ute learning, due to which classification is better than RF.
In table 6, CA-mVAE only includes the cross-reconstruction
loss function, CR-mVAE only includes the consistent align-
ment loss function, JLMDSE-mVAE-I includes both above
loss functions and is not corrected for the semantic inform-
ation, and JLMDSE-mVAE- II denotes the inclusion of the
above loss functions with correction for semantic inform-
ation. JLMDSE-mVAE-II has an increase for mean accur-
acy of 23.24% and 18.72 compared to CA-mVAE and CR-
mVAE, respectively, which indicates that the additional loss
function has a significant advantage in improving the fault
diagnosis performance. The mean fault diagnosis accuracy
of JLMDSE-mVAE-II is improved by 3.95% compared to
JLMDSE-mVAE-I, which indicates that the semantic correc-
tion has a significant improvement on the generalized zero-
shot fault diagnosis performance.

The Barlow matrixes of JLMDSE-mVAE on groups A and
D are shown in figure 14, which reveal that the diagonal ele-
ments are close to 1 and the off-diagonal elements are close
to 0. This indicates that the proposed method in this paper has
high consistency of sample embedding and attribute embed-
ding alignment, while reducing the redundant information.

The T-SNE visualization of the fault features extracted by
FDAT, SCE and the JLMDSE-mVAE proposed in this paper
in 2D feature space is shown in figure 15.

From figures 15(a) and 14(b), there are a large amount
of overlap in the features extracted by FDAT and SCE,
which lead to misclassification of unseen faults as seen
faults. Figures 15(c) and 14(d) show that the JLMDSE-mVAE
extracted features have clearer boundaries and the distinc-
tion between different fault features is more obvious, which
makes JLMDSE-mVAE more effective for generalized zero-
shot fault diagnosis. Compared with figure 15(c), figure 15(d)
has clearer contours, which indicates that the semantically cor-
rected semantic attribute matrix is more responsive to the cor-
relation information among the samples.
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Table 10. Fault diagnosis results Acc for SEP (%).

Method Classifier A B C D E F

FDAT
NB 52.22 41.11 62.22 58.89 51.94 49.44
RF 51.48 35.56 55.19 55.19 48.06 46.67

SCE
NB 62.96 65.56 78.06 66.30 74.17 48.33
RF 59.26 59.63 70.74 62.59 73.06 47.78

JLMDSE-mVAE
NB 82.59 84.44 80.83 75.93 78.89 74.44
RF 78.15 80.37 78.15 72.22 75.19 73.70

Table 11. Generalized zero-shot fault diagnosis results A and H for SEP (%).

Method Classifier

D E F

A H A H A H

FDAT
NB 57.83 58.93 51.74 52.18 49.47 50.26
RF 56.23 57.11 48.21 50.11 46.68 47.72

SCE
NB 66.31 67.26 74.16 74.18 48.34 50.11
RF 62.48 64.41 73.16 74.25 47.79 48.11

JLMDSE-mVAE
NB 75.92 76.12 78.89 79.12 74.49 75.16
RF 72.21 72.26 75.21 75.69 74.70 75.12

Table 12. Fault diagnosis results Acc with different loss functions (%).

Method A B C D E F Mean

CA-mVAE (NB) 64.81 65.56 63.70 35.56 58.89 48.33 56.14
CR-mVAE (NB) 67.04 66.30 66.67 49.44 62.59 51.94 60.66
JLMDSE-mVAE-I (NB) 79.26 81.11 77.04 70.37 74.07 70.74 75.43
JLMDSE-mVAE-II (NB) 82.59 84.44 80.00 75.93 78.89 74.44 79.38

Figure 14. Visualization of the Barlow matrix on group A and D.
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Figure 15. T-SNE visualization of feature extraction for different models on group D.

5. Conclusion

In this paper, we propose a generalized zero-shot fault dia-
gnosis model for batch processes calledJLMDSE-mVAE,
which can also detect new seen and unseen fault samples by
only using the sample training dataset of seen faults. In par-
ticular, (1) the training samples are mapped into a low-rank
space by joint low-rank representation and manifold learning
to obtain global local features of the samples while reducing
the redundancy of the inputs for model. (2) The method in this
paper corrects the bias of human-defined semantic attributes
by predicting the attribute error rate. (3) The fault embeddings
and attribute embeddings are aligned to learn better attrib-
ute classifiers by embedding the reconstructed structure and
Barlow matrix. The applicability and effectiveness of the pro-
posed JLMDSE-mVAE are verified by two PFPs and SEPs,
and in both cases, the proposed method exhibits excellent
performance, is much better than the compared methods. In
the future, we will further optimize the model structure to
improve the diagnostic performance while making the model
lightweight.
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基于S-RNPAE算法的间歇过程早期故障监测
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2. 甘肃省工业过程先进控制重点实验室，兰州 730050；
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摘 要: 针对具有多变量、非线性和高维度特点的间歇过程数据使得早期故障信号易被噪声干扰且故障幅值低
导致故障监测效果不佳的问题,提出一种基于堆叠鲁棒邻域保持自编码 (stack-robust neighborhood preserving
autoencoder, S-RNPAE)的间歇过程早期故障监测方法.首先,通过L2,1范数重新设计自编码器的目标函数,以提高
模型对噪声和离群点的鲁棒性;其次,利用邻域保持嵌入来正则化鲁棒自编码器的方式构建鲁棒邻域保持自编码
(robust neighborhood preserving autoencoder, RNPAE)模块,解决自编码器作为一种全局模型而忽略包含早期故障
特征的局部近邻信息的提取问题;然后,将多个RNPAE模块堆叠构造S-RNPAE网络,从而获取深层全局-局部特
征,保证对早期微小故障信息提取更充分,并建立检测统计量实现过程检测;最后,利用一种适用于非线性过程的
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0 引 言

现代工业生产中,间歇过程由于其产品种类多、
规模小、个性化、附加值等优点备受关注,由于其生产
的灵活和高效的特点,被广泛应用于轧钢、注塑、晶
圆蚀刻、微生物发酵等工业领域.然而,间歇过程由
于复杂的生产方式导致系统一旦发生故障,直接影响
产品质量,甚至还会引发安全事故危及操作人员的生
命安全[1-2].由于间歇生产过程的间断性和生产环境
的复杂性,早期故障的过程数据具有多变量、非线性、
高维的特点.当早期故障发生时,由于其故障幅度小,
容易被噪声所掩盖,从而极难有效地诊断故障.如何
有效地检测和诊断间歇过程的早期故障对保证生产

安全具有十分重要的意义[3-4].
随着计算机和控制技术的发展,大量的过程数据

被收集和存储,促进了数据驱动的多变量统计过程
监测方法的快速发展.众多学者致力于多变量统计
监测方法的研究,典型的多变量统计方法如主成分分
析[5]、独立成分分析[6]、偏最小二乘[7]以及其扩展形

式被广泛应用于过程监控. Harrou等[8]结合非线性

投影潜变量结构建模的优点和Hellinger距离度量的
优点,以识别高度相关的多元数据中的异常变化,提
出多变量故障检测方法. Harmouche等[9]基于主成分

分析和Kullback-Leibler散度的概率分布度量提出一
种基于概率分布度量的故障检测方法用于监测早期

故障. Ji等[10]通过引入两种具有代表性的平滑技术,
提出一种通用故障检测指标的新型早期故障检测策

略,该策略对早期故障表现出较高的敏感度. Shang
等[11]提出一种递归变换分量统计分析的方法用于早

期故障检测,这类早期故障检测的方法未考虑过程数
据的非线性特征提取,造成部分信息丢失.随着分布
式控制系统的广泛应用,以及数据存储、传输和处理
技术的不断发展,基于神经网络的智能故障检测方法
具有较强的非线性处理能力而得到广泛的应用,如深
度信念网络[12]、自编码器 (autoencoder, AE)[13]、长短

期记忆[14]和卷积神经网络[15]被成功应用于间歇过

程故障监测.其中,以AE及其变体为主的算法由于
其模型泛化性强、训练过程不需要数据标注的优点

备受关注. Gao等[16]提出一种多路拉普拉斯自编码

器的方法,用于间歇过程监控; Agarwal等[17]提出一

种多路偏最小二乘自动编码器架构用于间歇过程故

障检测; Wang等[18]通过长短期记忆网络从过程每个

阶段的时间序列中提取与质量相关的综合隐藏特征,
提出一种基于堆叠自动编码器的复杂特征表示和质

量预测框架用于间歇过程.
尽管上述这些机器学习的智能故障监测在间歇

过程中取得了成功,但仍然存在一些局限性.基于AE
的故障检测方法易受噪声和离群点的影响,导致系统
的鲁棒性较差,因此提高AE算法的鲁棒性对于有效
监测过程是否发生故障十分重要.同时,过程数据的
局部信息包含重要的早期微小故障信息,然而AE是
一种全局端到端模型,而并未捕获局部近邻信息.此
外,连续的特征压缩可能会丢失原始数据中重要的局
部邻域信息,这对于过程监控是不利的,需要从原始
输入数据中提取局部邻域信息.流形学习的方法能
够将复杂的高维空间转化为低维空间,从而在低维空
间中提取高维空间的数据信息.典型的流形学习方法
包括等距特征映射[19]、拉普拉斯特征映射[20]、局部切

空间对齐[21]、邻域保持嵌入 (neighborhood preserving
embedding, NPE)[22]等.其中, NPE不仅在提取数据的
流形结构方面有很好的性能,而且能够保持数据原有
的局部邻域信息. Liu等[23]受流形学习NPE思想的启
发,提出一种基于NPE正则化的深度学习方法来提
取邻域保持特征,用于工业软测量; Li等[24]提出一种

基于流形学习的过程监控方案,该方案将统计局部方
法融入NPE中,以监控过程数据局部结构的变化,不
仅继承了NPE挖掘数据局部结构的能力,而且通过
监测新观测的局部信息变化实现在线故障检测; Yu
等[25]提出一种深度神经网络流形正则化堆叠自动编

码器,用于复杂工业过程的故障检测.以上方法在考
虑数据的全局结构的同时更加关注局部近邻信息,但
对于过程的早期故障并未考虑.
综上所述,针对间歇过程在故障发生早期幅值

小、信号微弱导致监测难的问题,本文提出一种堆
叠鲁棒邻域保持自编码 (stack-robust neighborhood
preserving autoencoder, S-RNPAE)的间歇过程故障监
测方法.首先,在基于AE有效处理过程非线性的基
础上,计算AE重构误差时采用L2,1范数增强算法对

噪声和异常点的鲁棒性;其次,为了解决传统AE作
为一种全局模型忽略过程数据局部近邻信息,难以
提取过程数据全部信息的问题,通过NPE作为AE
的正则项的方式构造鲁棒邻域保持自编码 (robust
neighborhood preserving autoencoder, RNPAE)结构,该
结构能够有效提取过程数据的全局-局部特征;然后,
采用多层堆叠的方式进一步提取过程数据深层微小

特征,使得对于包含早期微小故障信息提取更充分;
最后,通过Swiss Roll数据集验证S-RNPAE的特征提
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取能力,同时将本文方法应用于青霉素发酵过程,验
证所提方法在间歇过程早期故障监测的有效性和优

越性.

1 基本方法

1.1 自编码器(AE)

AE[26]是一种人工神经网络,广泛应用于高维数
据降维和特征提取.一个基本的自编码器网络由编
码器和解码器两部分组成,编码器将原始数据传递到
隐藏层获得数据低维表示形式,解码器将低维数据传
递到输出层,以获得原始数据重构,使得重构误差足
够小,重构数据可以保留原始数据的大部分信息.在
自编码器网络训练过程中,将输入数据x映射到隐藏

层,得到编码后的z,然后通过反向解码得到重构数据
x̂,输入数据的维数为m,输入样本的个数为n,原始数
据经过编码压缩后的隐藏层z的维度为d.
编码器公式为

z = f(Wex+ be). (1)

其中: f是编码器的激活函数,We是m× d维的加权
矩阵, be是维度为d的偏置向量.
解码器公式为

x̂ = g(Wdx+ bd). (2)

其中: g是解码器的激活函数,Wd是d×m维的加权
矩阵, bd是维度为m的偏置向量.

自编码器网络训练的损失函数如下式所示:

JAE =
1

2n

n∑
i=1

∥x̂i − xi∥2, (3)

其中n为训练样本的个数.自编码器网络训练的目标
是使输入数据重构的误差最小,因此为了使重构数据
尽可能与输入数据相等,将损失函数的值最小化.

1.2 邻域保持嵌入(NPE)

NPE[27]是一种最优地保留了数据集的邻域结构

特征的流形学习算法,它是通过构造邻接图来揭示数
据的邻域关系,对数据点最近邻域进行重构,将数据
投影到低维空间,并在低维空间保留其邻域结构.假
设原始数据集X包含n个训练样本,通过重构每个
数据点k个最近邻的权重系数来反映NPE的邻域结
构,wij是用于重构xi的数据点xj的权重系数.权重
系数的计算可以通过最小化重构误差获得,如下所
示:

min
w

n∑
i=1

(
xi −

n∑
j=1

wijxj

)2

, (4)

其中wij是xi和xj的连接权重,若xj不是xi的近邻,

则wij = 0,wij满足约束
n∑
j=1

wij = 1.

原始数据通过映射矩阵A降维到低维空间中,
映射矩阵可通过求解如下的最小化代价函数获得:

JNPE = min
w

n∑
i=1

(
yi −

n∑
j=1

wijyj

)2

, (5)

其中Y =
n∑
j=1

yj为原始数据X =
n∑
i=1

xi通过映射矩

阵A在低维空间的数据表示.式 (5)的矩阵表示如下
所示:

JNPE = min Y T(I −W )T(I −W )Y =

minATX(I −W )T(I −W )XTA, (6)

约束条件为Y TY =ATXXTA = I .引入拉格朗日
乘子法,将式 (6)的求解问题转化为如下求广义特征
值的问题:

XMXTa = λXXTa, (7)

其中M = (I −W )T(I − W ),求解M所对应的

前 d个最小特征值 (λ1 ⩽ λ2 ⩽ . . . ⩽ . . . ⩽ λd)的特

征向量构成映射矩阵A(α1, α2, . . . , αd),即满足Y =

ATX .

2 基于S-RNPAE算法的早期故障监测
2.1 鲁棒自编码(robust autoencoder, RAE)

自编码器网络在训练过程中,编码器将原始数据
嵌入到一个潜在的低维空间中,解码器重构尽可能接
近原始输入.最小化重构误差函数来优化网络参数
θ = {we, wd, be, bd},如下所示:

min
θ

1

2n

n∑
i=1

∥x̂i − xi∥22 = min
θ

1

2n
∥X̂ −X∥2F . (8)

对式(8)求偏导,得

∂
1

2n

n∑
i=1

∥X̂ −X∥2F

∂x̂i
=

1

n
(x̂i − xi). (9)

式 (9)表明,具有较大重构误差的噪声和异常点在AE
网络的目标函数起重要作用,影响过程监测的效果,
然而使用Frobenius范数训练网络对噪声敏感.为了
克服这一问题,采用L2,1范数作为目标函数,能够在
网络训练过程中更好地处理噪声和异常点.

min
θ

1

2n
∥X̂ −X∥2,1. (10)

对式(10)求偏导得

∂
1

2n
∥X̂ −X∥2,1
∂x̂i

=
1

n

x̂i − xi
∥x̂i − xi∥2 + ε

. (11)
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其中: ε是一个非常小的常数,
x̂i − xi

∥x̂i − xi∥2 + ε
近似于

x̂i − xi
∥x̂i − xi∥2

.

通过对比式 (9)和 (11)可以发现,L2,1范数对每

个残差进行归一化,异常点只占过程数据的小部分,
归一化可以抑制残差较大的异常点对AE参数调节
的影响.此外,L2,1范数更多关注大部分数据集.具有
L2,1范数的AE网络可以提取到更多有用信息,对噪
声和异常点具有更强的鲁棒性.

2.2 鲁棒邻域保持自编码(RNPAE)

经过改进的鲁棒自编码器是一个全局网络,进
行特征提取时忽略了数据近邻结构,通过这种网络
提取到的特征只能捕获单个数据的分布特征,没有
考虑样本关系.为了提高学习网络的泛化性能,通过
NPE正则化的方式保持输入层空间中每个数据的
局部邻域结构特征.将具有NPE正则化的RAE称为
RNPAE, RNPAE的目标不仅是使重建误差尽可能小,
而且要保持原始数据的邻域结构.采用如下所示的
目标函数来训练RNPAE模型:

J(θ) = JRAE(θ) + ηJNPE(θ) =

min
θ

1

2n
∥X̂ −X∥2,1+

ηmin
w

n∑
i=1

(
yi −

n∑
j=1

wijyj

)2

, (12)

其中η是一个平衡重构误差和局部保留误差权重的

正则化参数.
RNPAE的目标函数由两部分组成,前者是数据

在输入层和输出层之间的重构误差,以确保重构的数

据与原始数据尽可能一致;后者是数据在输出层的
局部邻接误差,通过局部邻接约束确保重构数据与原
始数据保持相同的局部邻近结构,在RNPAE中保留
局部近邻信息.为了解决式 (12)的优化问题,采用基
于反向传播 (BP)的梯度下降算法进行迭代更新,对
于参数 θ = {Wm, b(m)}Mm=1第 t次更新迭代如下所

示: ■■■■{■■■■
W

(m)
t =W

(m)
t−1 − µ

∂Jt(θ)

∂W
(m)
t

,

b
(m)
t = b

(m)
t−1 − µ

∂Jt(θ)

∂b
(m)
t

.

(13)

J(θ)相对于W (m)和 b(m)的子梯度可通过下式

所得:■■■■■■■■■■■■■■■{■■■■■■■■■■■■■■■

∂J(θ)

∂W (m)
=
∂JRAE(θ)

∂W (m)
+ η

∂JNPE(θ)

∂W (m)
=

N∑
i=1

(∇(m)
1i )Th

(m−1)
i + η(∇(m)

2i )Th
(m−1)
i ,

∂J(θ)

∂b(m)
=
∂JRAE(θ)

∂b(m)
+ η

∂JNPE(θ)

∂b(m)
=

N∑
i=1

(∇(m)
1i )T + η(∇(m)

2i )T.

(14)

其中:∇(m)
1i 和∇

(m)
2i 表示梯度,h(m−1)i 表示网络的潜

在表征.

2.3 堆叠鲁棒邻域保持自编码(S-RNPAE)的故障
监测

S-RNPAE是由多个RNPAE依次连接而成的深
层网络结构,图1所示为S-RNPAE网络结构.

RNPAE
输入层

输入数据
X

隐藏层

输出层

X

X
�

...

...

...

J( )θ Z

J J J( ) = ( )+ ( )θ θ η θRAE NPE

RNPAE 1 损失函数

编码1 隐藏层1
z1

解码1
X
�重构数据

RNPAE 2

RNPAE 3

隐藏层1
z1

编码1

编码1隐藏层 2
z2

隐藏层2
z2

损失函数

隐藏层 3
z3

损失函数

解码1

解码1

z1

�重构隐藏层1

z
�重构隐藏层2

图 1 S-RNPAE网络结构

本文S-RNPAE是由3个顺序连接的RNPAE组成
的深度网络结构,在S-RNPAE算法中, NPE正则化作

为附加项加入到逐层预训练的损失函数中,对于每
个RNPAE,首先通过寻找近邻的方法为其输入数据
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构建邻接图,然后通过计算每个输入数据节点与其
相邻节点之间的权重系数来获得相似性矩阵,基于
新的损失函数,利用输入数据和得到的相似度矩阵对
RNPAE进行预训练,同样从第一个RNPAE到最后一
个RNPAE,邻域结构特征被逐层保留.利用S-RNPAE
对深度网络的训练参数进行初始化,可以提高模型的
监测性能.本文提出S-RNPAE网络的主要目标是恢
复一个完整的潜在空间,该空间能够很好地揭示输入
数据的局部近邻结构.
通过将正常数据训练获得特征空间和残差空间,

在特征空间建立T 2统计量,用于度量投影在特征空
间的样本的变化. T 2的计算公式为

T 2 = zTΦ−1z. (15)

其中: z是一个向量,表示通过S-RNPAE从原始高维
数据中提取的低维特征;Φ是协方差矩阵.
在残差空间建立SPE统计量,用于度量样本在残

差空间的投影,定义为算法模型所生成的残差的平方
和, SPE的计算公式为

SPE = ∥x− x̂∥2. (16)

利用核密度估计的方法确定监测统计量的控制

限.
当检测到故障发生时,通过确定哪些变量与异常

行为的发生直接相关,从而诊断故障发生的根本原
因.本文通过统计量T 2和SPE的贡献图来实现故障
诊断,贡献图通过计算潜在故障变量对监测统计的贡
献来识别潜在故障变量,对于识别故障变量表现出较
好的效果.在贡献图中,对监控统计具有最大贡献值
的变量通常是故障源.由于过程具有的非线性特性，
传统线性贡献图通常假设过程线性,诊断效果并不理
想,本文所采用的非线性贡献图方法灵敏度更高,对
小扰动引起的故障更加灵敏[28].
对于统计量T 2和 SPE的贡献图的计算公式如

下:

CT2
i = xi

∂T 2

∂xi
, (17)

CSPE = xi
∂SPE
∂xi

. (18)

对于贡献度在整个训练数据集上执行的均值和

标准差运算,相对贡献表达式如下:

RCT2
i =

CT2
i −mean(CT2

i,normal)

std(CT2
i,normal)

, (19)

RSPEi =
CSPEi −mean(CSPEi,normal)

std(CSPEi,normal)
. (20)

其中: CT2
i,normal和CSPEi,normal表示正常操作条件

下第 i个过程变量的贡献值, mean(·)和 std(·)表示均

值和标准差.对于贡献值的计算可正可负,由于反应
过程变量的主要影响因素为数值的大小,因此在绘制
贡献图时采用绝对值的方式.

2.4 堆叠鲁棒邻域保持自编码 (S-RNPAE)的故障监
测流程

S-RNPAE可以从原始数据中学习深层的邻域特
征,这些特征能够保留原始数据的邻域结构信息,更
适合早期故障的监测.图 2所示为基于S-RNPAE的
间歇过程故障监测的基本过程,该过程主要包含离线
建模和在线监测两部分,同时进一步地诊断出发生故
障的变量.

RNPAE

RNPAE

Z1

S-RNPAE

RNPAE

训练数据

离线建模 在线监测

测试数据

数据预处理 数据预处理

-

残差空间

SPE

识别故障变量 故障报警

N

Y

是否超过
控制限

计算统计量

T
2

T
2 SPE

计算统计量

特征空间特征空间

残差空间

-重构特征

Z2

Z

�

重构特征

核密度估计
计算控制限

图 2 基于S-RNPAE的故障监测流程

2.4.1 离线建模

step 1: 正常生产条件下,采集间歇过程的运行数
据组成三维训练数据集X ,将训练数据集X(I × J ×
K)按照先沿批次方向展开成二维矩阵X(I × JK),
再沿变量方向排列为X(IK × J)的批次-变量混合
展开的方式展开并标准化 (I表示批次, J表示变量,
K表示采样时间);

step 2:通过式(12)构造RNPAE网络,在有效提取
数据特征的同时充分挖掘数据的邻域结构,利用堆叠
的方式建立 3层的S-RNPAE网络模型,对S-RNPAE
网络进行训练获得网络参数;

step 3: 获得特征空间和残差空间,分别在特征空
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间和残差空间建立T 2和SPE统计量,利用核密度估
计的方法求取统计量的监测控制限.
2.4.2 在线监测

step 1: 在线采集监测数据按照批次-变量展开的
方式展开且标准化数据;

step 2: 将标准化后的数据输入到训练好的 S-
RNPAE网络中,并将其投影到特征空间和残差空间;

step 3: 通过式 (15)和 (16)计算T 2和SPE统计量,
一旦两个统计值中的任何一个超过其对应的阈值,就
触发警报;

step 4:在使用S-RNPAE有效地检测到故障之后,
通过式 (19)和 (20)计算故障变量贡献值并绘制贡献
图,通过贡献图完成故障诊断.

3 实验结果与分析

3.1 Swiss Roll数据集

Swiss Roll数据集是常见的验证算法嵌入结果的
数据集,通过在三维欧氏空间中的Swiss Roll曲面上
随机采样,并利用不同颜色区分样本的分布,近邻由
相同颜色标识.本文利用Swiss Roll数据集,本征维数
为2,样本点数为8 000.图3所示为Swiss Roll曲面和
采样数据点分布.
通过降维将原始数据复杂的非线性流形展开,观

察降维过程中数据结构的保持性.将S-RNPAE算法
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图 3 Swiss Roll数据集

与AE、 NPE、 堆栈自编码器 (stacked autoencoder,
SAE)[29]、 动态图嵌入 (dynamic grap embedding,
DGE)[30]和领域保持自编码 (neighborhood preserving
autoencoder, NPAE)[31]进行对比,以验证所提出算法
的特征提取能力.图4所示为特征空间的Swiss Roll
数据投影.
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图 4 特征空间的Swiss Roll数据投影

图4(a)中, AE在一定程度上能够保持数据的原
有结构,但存在大量的数据点重合,重合处未能反映
数据的近邻信息;图4(b)中, NPE保留了数据的局部
近邻结构信息,但存在较多的重合点,提取效果较差;
图4(c)中, SAE相较于AE提取更多的数据近邻特征,

但结构变形严重,不能够很好地保持原有结构;图
4(d)中, DGE对局部近邻信息保留较好,但存在大量
的重合点,特征提取效果一般,未能提取原始数据的
完整结构;图 4(e)中, NPAE保持近邻信息较好,但在
一定区域内存在较多的重合部分,不能完全提取数据
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特征;图4(f)中,本文所提S-RNPAE能够很好地保持
局部近邻信息,降维结果清晰可靠,特征提取能力强.

3.2 青霉素发酵过程

青霉素发酵作为典型的间歇过程,其过程数据的
非线性和高维度等特性使得对生产过程状态的监控

更加复杂.美国伊利诺州立理工学院研究小组研发
的青霉素发酵平台是一个模拟实际发酵过程的仿真

平台[32],该平台通过设定初始变量的参数和运行条
件产生过程数据,完成青霉素发酵过程的建模、监
测和控制.通过该平台可以设定通风速率、搅拌功
率和底物加速率3个故障变量.当扰动信号为斜坡信
号时,由于故障变化缓慢,在故障发生的早期幅值较
小、信号微弱,很难被检测.为了训练所提网络模型,
本文通过仿真平台产生30批次的正常数据作为训练

样本,每个批次的反应时间为400h,采样时间为1h,
从18个变量中选取10个过程变量 (按照变量编号从
1～ 10依次为通风速率、搅拌功率、底物流速率、底物
流温度、底物浓度、溶解氧浓度、反应器体积、发酵罐

温度、PH和CO2),所有过程数据引入高斯白噪声模
拟实际工况,表1所示为故障样本.

表 1 故障样本

故障 变量名 扰动类型 幅值 时段 / h

F1 通风速率 / (L / h) 阶跃 +2 250∼ 400
F2 搅拌速率 / (r / min) 斜坡 +6 300∼ 400
F3 底物流加速率 / (L / h) 阶跃 +1 100∼ 400

对比本文所提算法与NPE、AE、SAE、DGE和
NPAE.在不同样本的故障检测率,结果如表 2所示.
由表2可以看出本文所提算法的检测率更高.

表 2 不同方法每批次故障样本的故障检测率

故障
NPE AE SAE DGE NPAE S-RNPAE

T 2 SPE T 2 SPE T 2 SPE T 2 SPE T 2 SPE T 2 SPE

F1 0.74 0.89 0.88 0.90 0.87 0.90 0.89 0.95 0.92 0.94 0.96 0.99
F2 0.51 0.72 0.77 0.81 0.83 0.85 0.87 0.90 0.89 0.93 0.95 0.98
F3 0.61 0.82 0.79 0.86 0.84 0.87 0.91 0.92 0.91 0.94 0.92 0.93

图 5和图 6所示为故障F2分别采用NPE、AE、
SAE、DGE、NPAE和本文所提S-RNPAE算法的故
障检测图.由图 5(a)和图 6(a)可以看出NPE算法对
早期故障敏感性差,T 2统计量在 350 h时才能检测
到故障, SPE统计量较T 2统计量更早,在 320 h检测
到故障,不能及时地检测到故障,且存在大量的漏报
和误报.从图5(b)和图6(b)所示AE算法对故障的统
计量检测结果来看,相较于NPE算法漏报较少,但早
期故障发生时不能及时地检测到,T 2和SPE统计量

分别在324 h和320 h检测到故障.图5(c)和图5(b)中,
SAE算法相较于AE算法,网络层数增加提取故障
特征的能力更强,检测到故障的时间较早,T 2和SPE
统计量均在 310 h检测到故障,相较于AE和具有局
部邻域信息提取的NPE算法能够更早地检测到故
障,但仍然有部分早期故障未被检测出来.图5(d)和
图 6(d)中, DGE算法由于考虑过程数据的动态特性
和近邻信息,故障检测时间更加提前,T 2和 SPE统
计量分别在 305 h和 304 h检测到故障,但从统计图
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图 6 SPE统计量检测图

来看统计量T 2和SPE均存在较多的误报,且当故障
发生后有少量的漏报.图5(e)和图6(e)的NPAE算法
在AE算法的基础上保留了原始数据的局部信息,检
测到故障的时间较早,T 2和SPE统计量分别在305 h
和304 h检测到故障,由于算法鲁棒性不强仍然存在
较多的漏报,相较于DGE算法漏报较少.图5(f)和图
6(f)为本文所提S-RNPAE算法的检测图,T 2和SPE
统计量分别在305 h和302 h检测到故障,检测时间较
其他算法更早.有效检测到早期故障的原因在于本
文算法在保留数据原始局部结构信息的基础上,通过
堆叠网络的方式提取深层特征,对早期故障更敏感,
对青霉素发酵过程早期故障的检测更及时.同时,通
过在目标函数的计算中采用L2,1范数增强算法对噪

声和离群点的鲁棒性,使得检测的漏报和误报更少.
使用S-RNPAE有效检测到故障之后,对发生故

障的变量通过T 2和SPE统计信息绘制贡献图.故障
诊断采用贡献图的方式,图7所示为非线性贡献图故
障诊断结果.从图7诊断结果来看,非线性贡献图不
仅能够诊断出发生故障的变量,而且可以观察到过程
变量的变化.
通过贡献图的冷暖色调可以观察到造成过程故

障的根本原因和影响,故障F1主要是通风速率所带

来的影响,同时还导致发酵过程溶解氧的变化,当溶
解氧浓度发生变化时,青霉素产率发生变化,反应容
器体积发生改变;故障F2主要是搅拌功率改变所引

起的故障,其他过程变量整体变化较小;故障F3是底

物流速率故障,当底物流速发生变化时,菌丝生长所
需的溶解氧浓度也发生变化.在故障发生后, CT2和

CSPE都可以根据所建立的基于S-RNPAE算法得到
的非线性分量来定位对每个故障有贡献的变量.
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图 7 故障F1 ∼ F3的贡献图诊断结果

4 结 论

本文提出一种堆叠鲁棒邻域自编码的间歇过

程早期故障监测方法.该方法利用L2,1范数作为AE
的目标函数,降低了监测过程中噪声和异常点的干
扰, NPE作为AE的正则项能够保持数据的局部近邻
结构,采用堆叠的方式获取数据的深层特征.对于检
测到的故障采用一种新的贡献图的方法进行故障诊

断,相较于传统贡献图而言,在诊断发生故障变量的
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同时,可以观察到每个故障发生时过程变量的变化情
况.本文方法在Swiss Roll数据集中有更好的特征提
取能力,同时所提方法在青霉素发酵过程的监测中具
有良好的表现,能够更好地监测到早期故障.
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Fault monitoring of batch process
based on multi-stage optimization
regularized neighborhood preserving
embedding algorithm
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Abstract
Batch process is an important type of industrial production process, and the process mechanism is complex. It is difficult to accurately describe the

dynamic changes of the production process of multi-stage time-varying batch process. In addition, the data of batch process contain not only global

information but also local information. The traditional neighborhood preserving embedded algorithm is used to maintain the local geometric structure

of data while ignoring the global information, and the extracted latent variables cannot fully characterize batch process. Therefore, we propose a

multi-stage optimization regularized neighborhood preserving embedding (ORNPE) algorithm. First, the multiple process stages are separated by affinity

propagation (AP) algorithm. Second, based on maintaining local information of neighborhood preserving embedding algorithm, slow feature analysis

algorithm is used to extract dynamic time-varying global information. Then, cross-entropy is used to optimize the global information, and the extraction

ability of the global information is improved. Finally, a monitoring index based on support vector data description is constructed to eliminate adverse

effects of non-Gaussian data for monitoring performance. The effectiveness and advantages of the proposed algorithm based on monitoring strategy

are illustrated by the penicillin fermentation process and a semiconductor industry process.

Keywords
Batch process, multi-stage, fault detection, affinity propagation clustering, neighborhood preserving embedding

Introduction

Batch process is widely used in semiconductor, pharmaceuti-

cal, injection molding, and other production processes due to

its high added value, small production batches, and meeting

individual needs. It is a crucial production mode in modern

manufacturing (Luo and Bao, 2018; Qin, 2012). At present,

as the complexity of the production process increases and the

scale continues to expand, the production process also con-

tains vast safety risks and the probability of faults continues

to grow (Lavanya et al., 2021; Prasanth, 2021). Therefore,

real-time monitoring of process ensures that faults can be

detected timely, and accurate fault detection has essential eco-

nomic value and practical significance (Fu and Zhang, 2017;

Jiang et al., 2020; Zhang et al., 2018, 2019, 2020).
With the development of advanced control systems, a

large amount of process data is collected and stored, which

provides a development basis for data-driven modeling and

monitoring technology. Multivariate statistics methods (e.g.

Principal Component Analysis (PCA; Abdi and Williams,

2010; Cotrufo and Zmeureanu, 2016)) and Partial Least

Squares (PLS; Helland, 2014; Li, 2010) have been widely used

in process monitoring. These methods have good perfor-

mances for dimension reduction and process monitoring. A

strategy of multi-directional expansion data processing is

used to obtain Multiway Principal Component Analysis

(MPCA; Jeffy et al., 2018; Majid et al., 2011) and Multiway

Partial Least Squares (MPLS; Camarrone and Van Hulle,

2018; Wang et al., 2016), which are applied in fault monitor-

ing of the process. Besides, some experts and scholars have

done a lot of researches (Jiang and Yin, 2018; Peng et al.,

2020; Zhang et al., 2021a, 2021b). Although these researches

have achieved good results in fault monitoring, they usually

consider the global structure of data and ignore the local fea-

ture information.
However, He et al. (2005) proposed Neighborhood

Preserving Embedding (NPE) algorithm based on Locally

Linear Embedding (LLE; Roweis and Saul, 2000). Compared

with LLE algorithm, NPE algorithm can more accurately
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obtain the mapping matrix and has better practicability. In

process monitoring, unlike PCA, PLS, and other global struc-

ture preserving algorithms, NPE maintains the neighborhood

structure by projecting neighboring points in high-

dimensional space to low-dimensional space, and pays more

attention to the local structure information.
Generally speaking, the occurrence of faults often leads to

changes of the global and local structure information. In this

sense, it is essential to consider both the global structure

information and the local structure information. Therefore,

only focusing on the global structure or the local structure

can hardly reflect the actual working conditions of batch pro-

cess. To extract the global and local information of batch

process simultaneously, Zhang et al. (2011) proposed a

Global-Local Structure Analysis (GLSA) algorithm that con-

sidered the extraction of global structure and local structure

features. On this basis, Yu (2016) proposed a monitoring

model of local and global principal component analysis

(LGPCA) algorithm, which could better extract the global

and local structure. Zhao et al. (2016) proposed a Global

Neighborhood Preserving Embedding (GNPE) algorithm in

fault detection of batch process, which combined PCA and

NPE algorithm. Xu and Ding (2021) proposed a Manifold

Regularized Slow Feature Analysis (MRSFA) algorithm,

which gave sufficient consideration to the global time change

and local structure information of original data: so that the

extracted latent variables can more truly represent the process

data. These algorithms preserve the global and local informa-

tion of the data through different strategies and also achieve

better fault monitoring results. However, the lack of process

optimization for preserving global information mediately

loses part of the data information. As a result, some faults

are not detected, and the effect of fault monitoring is directly

affected. Because each stage of batch process has its own pro-

cess mechanism, different stages show different process char-

acteristics. Therefore, batch process has a multi-stage

characteristic. However, traditional algorithms such as

MPCA, MPLS, Multiway Neighborhood Preserving

Embedding (MNPE), and their improved algorithms regard

batch process as a single stage in the monitoring process.

They do not consider the multi-stage information of batch

process. In order to improve the monitoring performance of

batch process under the influence of multi-stage characteris-

tic, some researchers have proposed different modeling meth-

ods to strengthen process monitoring. Ningyun et al. (2010)

used K-Means (KM) algorithm to divide the process into

multiple stages through clustering. Zhao and Sun (2013) pro-

posed a step-wise sequential phase division method. Liu et al.

(2016) proposed a step-wise sequential phase division method

based on windows. Gao et al. (2014) proposed a multi-stage

modeling method by using fuzzy clustering, and process data

could be divided into multiple categories simultaneously to

complete the stage division. Guo et al. (2017) divided the

stages according to the characteristics of different stages of

batch process. Ge et al. (2012) proposed a new staged method

based on a defined repeatability factor. However, the above

clustering methods need to set the clustering model para-

meters in advance during the stage division process. The

manual set parameters affect the accuracy of stage segmenta-

tion and cannot accurately reflect the stage characteristic of

the process.
To solve the accuracy problem of stage division caused by

the manual setting of parameters, affinity propagation (AP)

clustering algorithm is used to classify data without knowing

the number of classifications in advance, which can divide

batch process into different operating stages. We utilize

Dynamic Time Warping (DTW) algorithm to process the data

of different batches at the same stage with equal length. The

divided sub-stages have similar data structures and character-

istics, which are convenient for statistical monitoring. In each

sub-stage, we use ORNPE algorithm for dimension reduction

and feature extraction. Fault detection is performed by con-

structing statistics of T2 and R2 based on the multi-stage

ORNPE algorithm. Finally, the Penicillin fermentation pro-

cess and semiconductor etching process are used to verify the

effect of the proposed algorithm on batch process monitoring.
Batch process is a typical multi-stage process. The data at

the same stage have similar characteristics and correlations

which can establish a unified model to ensure that the estab-

lished monitoring model has the smallest error. In process

monitoring, the traditional NPE algorithm only considers the

local manifold structure of the data, but ignores the global

information of the data, resulting in incomplete information.

Therefore, it is necessary to improve NPE algorithm to

extract important global information while extracting local

information.
According to the aforementioned problems, we propose a

multi-stage ORNPE algorithm for batch process monitoring.

The contributions of this paper are given as follows:

1. AP clustering algorithm is used to divide batch process
into stages. Due to the difference in the stage division
of each batch, DTW algorithm processes the same
stage of different batches with equal length.

2. A new dimensionality reduction algorithm named
ORNPE is proposed to extract latent variables in each
stage, which considers the global dynamic information
and the local geometric structure information of the
original data, consequently providing a more faithful
low-dimensional representation of the original data.

3. At each stage, since the original data is non-Gaussian,
based on the ORNPE algorithm, SVDD algorithm is
used to construct statistical indicator to avoid the
adverse effects of the non-Gaussian distribution of
process data.

The rest of this paper is organized as follows. The section

‘‘Preliminaries’’ introduces the principle of NPE algorithm,

AP clustering algorithm, and slow feature analysis algorithm.

The section ‘‘Multi-stage monitoring process based on

ORNPE algorithm’’ proposes a multi-stage process monitor-

ing method based on ORNPE algorithm. The proposed algo-

rithm is demonstrated through the penicillin fermentation

process and the semiconductor industry process in the section

‘‘Case studies.’’ The section ‘‘Conclusion’’ concludes the

work.
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Preliminaries

NPE

NPE (He et al., 2005) is a manifold learning algorithm that

approximates LLE algorithm. It can mine local topological

structures and high-dimensional structure relationships. The
basic idea is to linearize the original training data set

X (x1, x2, . . . , xn) 2 RD in high-dimensional space through the

nearest neighbors. The dimensionality is reduced through

mapping matrix from high-dimension to low-dimensional
space. The obtained data set is as follows: Y =(y1, y2, . . . , yd),

where A(a1, a2, . . . , ad)(d ł D) is a mapping from high-

dimension space to low-dimensional space and satisfies Y =

AT X. Specific steps are as follows:

Step 1: Construct a neighborhood graph

The Euclidean distance between samples in the training data

set X (x1, x2, . . . , xn) 2 RD is arranged by the K Nearest

Neighbor (KNN) method in ascending order. The first k

points of each sample are selected as neighbor points, and a

neighborhood graph is formed by comparing and connecting.

Step 2: Calculate the weight matrix

If the sample point xj is the neighbor point corresponding to

the selected connection, its weight coefficient is wij. And if
there is no connection, then wij = 0. All the weight coeffi-

cients form the weight matrix W. The weight matrix W can

be obtained by minimizing the reconstruction error

F Wð Þ=min
Xn

i= 1

������xi �
Xn

j= 1

wijxj

������2 ð1Þ

The normalization constraint is
Pn

j= 1 wij = 1 that the sum of the

weights meets the normalization condition, and the result is 1.

Step 3: Calculate the mapping matrix

The mapping matrix A is obtained by solving equation (2) to
minimize the cost function

f (A)=
Xn

i= 1

yi �
Xk

j= 1

wijyj

 !2

= yT (I �W )T (I �W )y

= aT X (I �W )T (I �W )X T a

ð2Þ

That is A= arg minaT X (I �W )T (I �W )X T a, where the con-

straint is yT y= aT XX T a= 1.
We introduce the Lagrange multiplier method to trans-

form the solution of equation (2) into the generalized eigenva-
lues of equation (3)

XMX T a=lXX T a ð3Þ

where M =(I �W )T (I �W ). We can find the eigenvectors

corresponding to the first d smallest eigenvalues

(l1 ł l2 ł � � � ł � � � ł ld) from the mapping matrix

A(a1,a2, . . . ,ad), which satisfies Y = AT X.

AP clustering

AP clustering (Frey and Dueck, 2007) was a clustering
method proposed by Frey and Dueck in 2007. This algorithm
does not need to set the number of clusters in advance, but

automatically obtains clusters based on the cluster samples in
the iterative process. Clustering centers are clustered accord-
ing to the similarity between data objects. Before clustering,
all sample points are regarded as potential cluster centers,
and the similarity calculation performs in a loop. Each sam-

ple point converges through iteration to obtain the final rep-
resentative point set of the best category.

Given a data set X = fx1, x2, . . . , xig, where xi represents a
sample point and d represents the dimension of the data point.
There is xi = fxi1, xi2, . . . , xidg. The calculation steps of AP
clustering algorithm are as follows:

Step 1: Calculate similarity matrix

The similarity between samples selects different measurement
criteria according to different scenarios, such as Euclidean

distance. Depending on the similarity criteria, the similarity
between samples may be symmetrical or asymmetrical. These
similarities form a similarity matrix with N3N dimension
similarity matrix S (N is the number of data samples). Here,
we choose the square of the negative Euclidean distance to

calculate the similarity and construct the similarity matrix,
that is, s(i, k)= � xi � xkk k2, similarity matrix S is shown as
equation (4)

S =

s x1, x1ð Þ s x1, x2ð Þ � � � s x1, xNð Þ
s x2, x1ð Þ . .

. � � � s x2, xNð Þ
..
. ..

.
s xk , xkð Þ ..

.

s xN , x1ð Þ s xN , x2ð Þ � � � s xN , xNð Þ

2
66664

3
77775 ð4Þ

Step 2: Divide clusters based on cluster centers

To select the appropriate cluster centers, the degree of
attribution a(i, k) and the degree of attraction r(i, k) are
defined. The degree of attribution a(i, k) indicates that the

data point xi belongs to one of the categories represented by
the data point xk. The stronger the numerical information
expressed by a(i, k) and r(i, k), the greater the probability that
the point is the center of the cluster. The degree of attribution
a(i, k) and the degree of attraction r(i, k) are shown in equa-

tions (5) and (6), and the initial value is 0

a i, kð Þ=
min 0, r(k, k)+

X
i
0 62ji, k�

max 0, r i
0
, k

� �n o8><
>:

9>=
>;, i 6¼ k

X
i
0 6¼k

max 0, r i
0
, k

� �n o
, i= k

8>>>>>><
>>>>>>:

ð5Þ
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r(i, k)= s(i, k)� max
k
0 6¼k

n
a
�

i, k
0
�
+ s i, k

0
�o�

ð6Þ

The damping coefficient is added to adjust the convergence

speed during each iteration update, which prevents oscilla-

tions during the iteration process. By repeating the above

steps, equations (7) and (8) are updated

rt+ 1(i, k)=l 3 rt(i, k)+ (1� l)3 rt+ 1(i, k) ð7Þ

at+ 1(i, k)=l 3 at(i, k)+ (1� l)3 at + 1(i, k) ð8Þ

Cluster center point H is obtained. The original data set is

divided into H clusters through cluster center point H.

Slow feature analysis

Slow feature analysis (SFA; Shang et al., 2016) is a dimen-

sionality reduction algorithm, which can find a projection

matrix to convert time series data into latent variables that

change as slowly as possible, which latent variables contain

the main information of the original data. The specific steps

are as follows:
Given an m-dimensional input signal x(t)= ½x1(t),

x2(t), . . . , xi(t), . . . , xm(t)�T , where t 2 ½t0, t1� represents time,

SFA seeks a transformation function g(x)= ½g1(x), . . . ,

gJ (x)�T to change the output y(t)= ½y1(t), . . . , yJ (t)�T of the

function as slowly as possible, where yj(t)= gj(x(t)). By mini-

mizing the variance of the first derivative of the slow feature,

the optimization of SFA is derived

min _y2
i

� �
t

ð9Þ

And, three constraints are derived

yih it = 0 ð10Þ

y2
i

� �
t
= 1 ð11Þ

8i 6¼ j, yjyi

� �
= 0 ð12Þ

where _yi represents the first-order derivative of the slow fea-

ture and hit represents the average over time, which is defined

as equation (13)

fh it ¼:
1

t1 � t0

ðt1

t0

f (t)dt ð13Þ

The constraint condition of equation (10) ensures that the

mean value of the extracted slow feature information is zero.

The purpose of equation (11) is to exclude the trivial solution

of the output signals. The constraint condition of equation

(12) guarantees that the output signals are multiple. The com-

ponents are uncorrelated so that they carry different aspects

of information.
The slow feature of x can be expressed as y. The projection

matrix A= ½a1,a2, . . . ,al� is obtained by two-step singular

value decomposition.

To whiten the slow feature, singular value decomposition

of the covariance matrix of the original data is performed,

and shown as equation (14)

xxT
� �

t
=U

X
UT ð14Þ

where U represents the eigenvector and
P

represents the

eigenvalue. The data after whitening is c and meets
cov(c)= ccTh it = I , and the data after whitening eliminates

the cross-correlation between variables. The covariance of the

first derivative of c is found, and the second step of singular
value decomposition is performed, as equation (15)

_c _cT
� �

t
=XTOX ð15Þ

The slow feature of x is obtained by equation (16)

y=Xc=X
�1
2

X
UT x ð16Þ

where O= diagfw1,w2, . . . ,wmg is composed of eigenvalues

and arranged on its diagonal in ascending order to satisfy
wi = _y2

i

� �
t
, thus it ensures that the slowest feature has the

lowest exponent. The matrix X is composed of eigenvectors

corresponding to eigenvalues.

Multi-stage monitoring process based on
ORNPE algorithm

This section introduces the process of multi-stage fault moni-

toring based on ORNPE algorithm: including data preproces-
sing, stage division, algorithm model and establishment of

statistical indicators.

Three-dimensional expansion of batch process data

Compared to continuous process, batch process has three-
dimensional data. When fault diagnosis of batch process is

performed, it is necessary to unfold the three-dimensional

data into the two-dimensional data to establish a fault diag-
nosis model. Therefore, the three-dimensional data expansion

method is used to process the three-dimensional data. First,
the three-dimensional data are unfolded as two-dimensional

data along the batch direction, as shown in equation (17),

then, it is standardized by column, and the standardized two-
dimensional matrix is arranged according to the variable

direction to form a two-dimensional matrix, as shown in
equation (18). The expansion method can eliminate data pre-

estimation problems during online monitoring and can moni-

tor process changes more effectively

X (I 3 KJ)=

x1
1, 1, x

1
2, 1 � � � x1

J , 1 � � � x1
1,K , x

1
2,K � � � x1

J ,K

x2
1, 1, x

2
2, 1 � � � x2

J , 1 � � � x2
1,K , x

2
2,K � � � x2

J ,K

..

. . .
. ..

.

xI
1, 1, x

I
2, 1 � � � xI

J , 1 � � � xI
1,K , x

I
2,K � � � xI

J ,K

2
66664

3
77775 ð17Þ

where xi
j, k represents the variable xj of the ith batch at the kth

sampling time
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X (KI 3 J)=

½ðx1
1, 1, x2

1, 1 � � � x J
1, 1Þ � � � ðx1

1, 1, x
2
1, 1 � � � x J

1, 1Þ�T

½ðx1
2, 1, x2

2, 1 � � � x J
2, 1Þ � � � ðx1

2, 1, x
2
2, 1 � � � x J

2, 1Þ�T

..

. . .
. ..

.

½ðx1
K, 1, x2

K, 1 � � � x J
K, 1Þ � � � ðx1

K, I, x2
1, I � � � x J

K, IÞ�T

2
6666664

3
7777775
ð18Þ

where x
j
k, i represents the variable xj of the ith batch at the kth

sampling time.
The process of data obtained by the expansion method is

shown in Figure 1 (I represents the batch of data, J represents

the variable of data, K represents the sample time of data).

Stage division based on AP clustering

After three-dimensional data are processed, AP clustering

algorithm is used to divide the process data into different
stages. The steps of AP clustering are as follows:

Step 1: Divide data into the matrix X =(x1, . . . , xi, . . . , xI )T ,
where xi represents the ith batch of data.
Step 2: Slice X along time to get K time slices and calculate
the similarity matrix S according to equation (4).
Step 3: Take i(i= 1, 2, . . . , I) batch data as the AP cluster-
ing input and replace s(k, k) in the similarity matrix s(i, k)
with the optimal bias parameter p. We take the average of
all similarities as the setting value of p, and the number of
clusters obtained at this time is medium. If the value of the
minimum similarity is taken as the value of p, the number
of clusters obtained is small. The AP clustering bias para-
meter divides the batch process into stages. The process is
initially divided into n stages.

The stage division of each batch is shown in Figure 2.

Sub-stage unequal length processing based on DTW
algorithm

DTW is an algorithm of speech recognition technology. The

algorithm can find the optimal curve path, and match the

coordinate points in one time series with the coordinate points

with the most significant feature similarity in another time

series.
First, for two unequal length series, the distance between

two series as matrix d and the distance between series gi and

hi are defined as equation (19)

d gi, hj

� �
= gi � hj

		 		
p

ð19Þ

where kkp represents the norm and p usually takes the value 2.
DTW algorithm synchronizes two unequal length time

series by searching for the shortest distance and the optimal

path, and optimization performance index of the shortest dis-

tance is shown as equations (20) and (21)

D(m, n)= min
F

Xl= 1
L

d i lð Þ, j lð Þð Þ
2
4

3
5 ð20Þ

W = arg min
F
½D(m, n)� ð21Þ

where max(m, n)ł L ł m+ n, D(m, n) is the sum of the two

series of local shortest distances along the optimal path, the

optimal path W = w1,w2, . . . ,wlf g wl =(i(l)j(l)) is a series

searched in the m3 n grid based on the shortest distance

D(m, n).
To avoid excessive data distortion and skipping, theW set-

ting of each step is continuous. There are three options for the

points before the grid point: point (i– 1, k), point (i– 1, k– 1),

point (i– 1, k– 2); therefore, equation (20) can be obtained by

equation (22)

D(i, k)=
D(i, k)+ d(i, k)

D(i� 1, k � 1)+ d(i, k)
D(i� 1, k � 2)+ d(i, k)

8<
:

9=
; ð22Þ

After the cumulative distance matrix D(m, n) is deter-

mined, the last element is used to find the point where the

optimal path passes gradually. Finally, we find the corre-

sponding data to be synchronized through the optimal path

value. The newly obtained series is a synchronized series.

DTW algorithm is used to regularize the sub-stages of differ-

ent batches, and the data of each batch after equal length is

shown in Figure 3.

Monitoring scheme based on ORNPE

Cross-entropy. Cross-entropy represents the similarity of two
probability density functions, and it has high efficiency for

multi-objective global optimization. It can update the rules

Figure 1. The process of three-dimensional variable expansion.
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through analysis and calculation to make the optimization

path more efficient and faster.
Cross-entropy is used to globally optimize the two-

dimensional data matrix and feature reduction through multi-

ple iterations. Defining the probability density functions as f

and g, the definition of cross-entropy is given in equation (23)

D(f (x) k g(x))=
X
x2X

f (x)ln
f (x)

g(x)

=Ef (x)ln
f (x)

g(x)

ð23Þ

where E() is the mathematical expectation.
From equation (23), we know that D(f (x) k g(x))ø 0,

because cross-entropy is a downward convex function, there

is only f(x) = g(x), which meets D(f (x) k g(x))= 0.

Therefore, cross-entropy characterizes the similarity of the

two distributions. The more similar the two distributions, the

smaller the cross-entropy between them. For matrix

A(M 3 N ) f (i, j)(ø 0), the definition of two-dimensional

entropy of the matrix is given by equation (24)

H = �
Xi= 1

M Xj= 1
N

pijlogpij ð24Þ

pij =
f (i, j)

Pi= 1
M Pj= 1

N

f (i, j)

ð25Þ

The iterative optimization of cross-entropy can significantly

improve the global structure of the matrix after dimensional-

ity reduction, thereby improving the fault detection rate.

Regularized NPE. When a fault occurs, it usually causes the
global and local structure of normal data to change. Only

considering local or global information would inevitably lead

to the loss of some information. Therefore, in the process of

fault diagnosis, global structure information and local struc-

ture information have the same importance.
SFA algorithm only reveals the time change of the global

information without considering the local geometric structure.

NPE algorithm only considers the local structure. Therefore,

to consider the global and local information of the process

data simultaneously, a global–local feature extraction algo-

rithm is constructed through SFA and NPE, which

comprehensively considers the global time change and local

structure information of original data.
Equation (9) can be rewritten as equation (26) according

to the trace

JSFA =
Xi

n�1

_yik k2 = trð _Y T _Y Þ= trðKT ð _Z> _ZÞKÞ ð26Þ

where K is the projection matrix, tr() denotes the trace of a

matrix, and _Z = ½_z1, _z2, � � � , _zn�1�T , evidently, Y T Y =KT (ZT Z)

K =KT K = I .
We introduce cross-entropy algorithm in the training set and

calculate the value of the objective function corresponding to each
sample. We sort from small to large and update the probability

distribution function by using the sample features with the larger

function value. In this way, the sample quality is continuously

improved globally, and finally, the optimal value is obtained

JSFA =
Xn�1

I

_yik k2
S

p
ij ð27Þ

where S
p
ij is the corresponding cross-entropy probability

matrix.
Because the data are sampled at discrete intervals,

therefore, the first-order derivative of the collected data can be

approximate as the corresponding first-order difference

_zj(t)’
zj(t)� zj(t � Dt)

Dt
ð28Þ

Therefore, the objective function of ORNPE algorithm is

given by equation (29)

argmin
Xn�1

i

_yk k2
S

p
ij +h

Xn�1

i

yi �
Xn�1

j

wijyj

					
					

2
0
@

1
A

=tr _Y S
T _Y S

� �
+htr Y T I �Wð ÞT I �Wð ÞY

� �
=tr KT _Z

T _Z
� �

K
� �

+htr KT ZT MZ
� �

K
� �

=tr KT HK
� �

ð29Þ

where h is the tuning parameter, H = _ZT _Z +hZT MZ, and

M =(I �W )T (I �W ). Equation (29) can be obtained by seek-

ing the generalized characteristic solution of equation (30)

HK =KC ð30Þ

Figure 2. Unequal length of batch data. Figure 3. Each batch of data after the equal length.
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According to the reference (Xu and Ding, 2021), the tuning

parameters h can be determined by the spectral radius, shown

as equation (31)

h=
r Fð Þ

r Gð Þ+ r Fð Þ ð31Þ

where G= _ZT _Z, F= ZT MZ, and r() denotes the spectral

radius of a matrix.

Monitoring statistics based on Support Vector Data
Description algorithm

The goal of Support Vector Data Description (SVDD) algo-

rithm is to find a hypersphere with the smallest volume that

contains all or most of the training data. A relaxation factor

ji and a penalty factor C are introduced to successfully

solve outliers’ influence caused by measurement errors and

noise interference. Here, we apply SVDD algorithm to

monitor the data distribution in the projection matrix

Y = ½y1, y2, . . . , yi, . . . , yn�, and monitoring statistics are con-

structed. For the projection matrix Y of the normal working

condition data, the SVDD optimization problem is given in

equation (32)

min
R, a, ji

R2 +C
P

i

ji


 �
s:t: f xið Þ � e2
		 		ł R2 + ji

ð32Þ

where e is the center of the sphere and R is the radius of the

hypersphere ji ø 0, i= 1, 2, 3, . . . , n.
The optimization problem of equation (33) is transformed

into a dual form, shown as equation (34)

min
ai

Xi= 1
n

ai f xið Þ3 f xið Þh i �
Xi= 1

n Xj= 1
n

aiaj f xið Þ3 f xj

� �� �
s:t:
X

i

ai = 1, 0 ł ai ł C

ð33Þ

where a is the Lagrangian factor. The kernel function

K(xi3 xj) is used to replace the inner product f(xi)3 f(xj)
� �

to realize the linear conversion of the nonlinear problem in

the high-dimensional kernel space and obtain the dual equa-

tion (34)

min
ai

X
i

aiK xi 3 xið Þ �
Xi= 1

n Xj= 1
n

aiajK xi 3 xj

� �
s:t:
X

i

ai = 1, 0 ł ai ł C

ð34Þ

The radius R and the e core of the hypersphere are shown as

equations (35) and (36)

e=
Xi= 1

n

aiu xið Þ ð35Þ

R2 =K xk 3 xkð Þ � 2
Xi= 1

n

aiK xk 3 xið Þ+
Xi= 1

n Xj= 1
n

aiajK xi 3 xj

� �
ð36Þ

where xk is the support vector of SVDD.
The distance between the new sample and the center of the

hypersphere can be expressed by equation (37)

R2
new= u xnewð Þ � ek k2

=K xnew 3 xnewð Þ � 2
Xi= 1

n

aiK xnew 3 xið Þ

+
Xi= 1

n Xj= 1
n

aiajK xi 3 xj

� �
ł R2

ð37Þ

If R2
new ł R2, the sample is normal, otherwise, it is abnormal.

Monitoring process

Offline training

Step 1: Under normal working conditions, obtain training
sample set X 2 Rm 3 n, and the three-dimensional data are

unfolded according to batch-variable method and standar-
dized. The method for training sample X(I3 J3K), first,
along the batch direction, according to equation (17), a
two-dimensional matrix X(I3 JK) is obtained, and then it
is arranged as X(IK3 J) along the variable path according
to equation (18).
Step 2: According to section ‘‘Stage division based on AP
clustering,’’ AP clustering algorithm is used to divide mul-
tiple batch processes into stages, and DTW algorithm is
used to perform equal length processing on the divided
sub-stages.
Step 3: According to section ‘‘Monitoring scheme based on
ORNPE,’’ ORNPE algorithm is used for feature extraction
for each division stage to obtain the low-dimensional struc-
ture Y = ½y1, y2, . . . , yd �.
Step 4: The kernel density estimation method is used to
obtain the control limits of offline training samples.

Online monitoring

Step 1: Process data are collected online, unfolded, and
standardized by using the batch-variable method. The pre-
processed test data are obtained.
Step 2: The preprocessed data are divided into stages
according to the stage division in the offline modeling
process.
Step 3: For each stage, ORNPE algorithm is used to obtain
the low-dimensional structure ynew, in which the R2 and T2

statistics of the online data are obtained.
Step 4: The online statistics are compared with the control
limits to determine whether the limits are exceeded. If the
control limit is exceeded, the fault occurs, otherwise, go
back to Step 1.

The fault detection of batch process based on multi-stage
ORNPE algorithm includes offline modeling and online
detection process. The flow chart is shown in Figure 4.
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Case studies

In this section, the effectiveness of the multi-stage ORNPE

algorithm is verified through two examples of batch processes.

The two examples are the penicillin fermentation simulation

process and the actual semiconductor industry process—the

AI reactor corrosion process. They are typical batch pro-

cesses. A modified multi-stage GNPE method (Yao et al.,

2021), Multiway Slow Feature Analysis (MSFA; Shumei

Zhang and Zhao, 2018), MNPE (Sun et al., 2018), and

MPCA (Zhaomin et al., 2014) are used for comparison.

Penicillin fermentation simulation process

Penicillin is an antibiotic that has been widely used in clinical

medicine, and its fermentation process is a typical batch

process—the schematic diagram of the penicillin fermentation

process is shown in Figure 5. To facilitate data monitoring

analysis, the Pensim2.0 simulation platform designed by Birol

et al. (2002), Chicago Illinois Institute of Technology, USA,

is selected to simulate batch process. The simulation platform

generates batch data of different conditions by setting the ini-

tial conditions. The Pensim2.0 simulation platform can set

three types of faults: Aeration rate fault, agitator power fault,

and substrate feeding rate fault. The introduced fault signal

types include step signal and ramp signal, which can effec-

tively simulate various variables in many different types.
We select 10 process variables of 18 variables in the plat-

form as experimental test variables, as shown in Table 1.
We collect 30 batches of data under normal operating con-

ditions on this platform as training samples. The reaction time

of each batch is set to 400h, and the sampling interval is set to

1h. To get the closer actual fermentation process, we add

Gaussian white noise to the process data. A training data set

X(30 3 400 3 10) is obtained. The 30 batches of obtained

training data are unfolded into a two-dimensional matrix and

divided into stages. The results of the stage division are shown

in Figure 6. The penicillin fermentation process is divided into

three stages: the first stage is 1;43h, the second stage is

44;169h, and the third stage is 170;400h.
The corresponding fault batches are formed by adding step

and ramp disturbances into the three variables of aeration

Figure 4. Flow chart of multi-stage ORNPE algorithm.

Figure 5. Schematic diagram of the penicillin fermentation process.
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rate, agitator power, and substrate feeding rate, as shown in

Table 2. To make the process data closer to the actual fermen-

tation process, all data variables are added Gaussian white

noise.
The detection rates of MPCA, MSFA, MNPE, multi-stage

GNPE, and multi-stage ORNPE algorithms for the faults F1

and F6 in Table 2 are shown in Table 3. We can see that fault F1

and fault F2 are the easiest to be detected, and all algorithms can

fully detect them. The proposed algorithm in this paper has the

highest detection rates for faults F3–F6. Ramp fault disturbances

are more challenging to be detected due to the slow changes of

the variables. The fault caused by the substrate feeding rate vari-

able is more difficult to be detected, this is because the propaga-

tion speed of the reaction substrate is slow.
Figure 7 shows the fault monitoring results of fault F4 by

using MPCA, MNPE, MSFA, multi-stage GNPE, and the

multi-stage ORNPE algorithm. Fault F4 is agitation rate, and

it added a ramp disturbance with a fault amplitude of 4%

between 300;400h, Figure 7(a) is the statistics T2 and SPE
monitoring diagram of MPCA under fault F4, and it can be
seen that the fault is detected at the 322h and 309h, respec-
tively, and the fault false alarm is serious under normal oper-
ating conditions. Figure 7(b) is the statistics T2 and SPE

monitoring diagram of MNPE algorithm under fault F4, and
it can be seen that the fault is detected at the 345h and 323h,
respectively, and compared with MPCA algorithm, the fault
false alarm is more miniature. But when the fault is detected,
the time is delayed, which means that the fault cannot be
detected in time. Figure 7(c) is the statistics S2 and SPE moni-
toring diagram of MSFA algorithm under fault F4, and it can
be seen that the fault is detected at the 336h and 322h respec-
tively, which the fault false alarms are fewer than MPCA

Figure 6. Results of stage division of penicillin fermentation process.

Table 1. Detection variables.

No. Process variables

1 Aeration rate (L/h)

2 Agitator power (r/min)

3 Substrate feed flow rate (L/h)

4 Substrate feed flow temperature (K)

5 Substrate concentration (L/h)

6 Dissolved oxygen concentration (%)

7 Reactor volume (L)

8 Fermentation temperature (K)

9 PH

10 CO2 (%)

Table 2. Fault batch samples.

Fault no. Fault variable name Disturbance type Amplitude (%) Fault introduction period

F1 Aeration rate Step 4 100–300 h

F2 Aeration rate Ramp 2 300–400 h

F3 Agitator rate Step 2 250–350 h

F4 Agitator rate Ramp 4 300–00 h

F5 Substrate feeding rate Step 3 200–300 h

F6 Substrate feeding rate Ramp 0.8 250–400 h

Table 3. Fault detection rate of each fault batch by different methods.

Fault no. MPCA MNPE MSFA multi-stage GNPE multi-stage ORNPE

T2 SPE T2 SPE S2 SPE T2 SPE T2 R2

F1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

F2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

F3 0.556 0.621 0.596 0.684 0.699 0.732 0.745 0.809 0.911 0.932

F4 0.780 0.910 0.550 0.770 0.640 0.780 0.920 0.940 0.980 0.990

F5 0.357 0.383 0.543 0.497 0.552 0.649 0.675 0.773 0.717 0.803

F6 0.903 0.908 0.931 0.944 0.933 0.940 0.951 0.955 0.971 0.972
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Figure 7. Monitoring results for the penicillin fermentation process of the fault F4: (a) MPCA, (b) MNPE, (c) MSFA, (d) multi-stage GNPE, and (e)

multi-stage ORNPE.
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algorithm, and the fault is detected earlier than MNPE algo-

rithm. Figure 7(d) is the statistics T2 and SPE monitoring dia-

gram of multi-stage GNPE algorithm under fault F4, and it

can be seen that the fault is detected at the 308h and 306h,

respectively, and due to the multi-stage characteristic of the

penicillin fermentation process, multi-stage GNPE algorithm

performs modeling and monitoring in stages to reduce fault

false alarms under normal operating conditions. Multi-stage

algorithm can detect the occurrence of faults in a timely man-

ner than single-stage algorithms. Figure 7(e) is the statistics

T2 and R2 monitoring diagram of the proposed algorithm in

this paper under fault F4, and it can be seen that the fault is

detected at the 302h and 301h, respectively. There are few

fault false alarms under normal operating conditions, and

compared to other algorithms, the proposed algorithm can

detect the fault earlier and have a better monitoring effect.
For process data, fault detection is delayed due to the

dynamic characteristic of the data. The proposed algorithm

uses SFA to extract dynamic characteristic and effectively

deal with the influence of dynamic characteristic on detection

delay. In addition, the proposed algorithm also considers the

stage characteristic of the data. For the stage of fault occur-

rence, the calculation of statistics is more in line with the

actual situation. Therefore, the real-time performance of fault

detection is better.
Figure 8 is a bar graph that compares the average fault

detection rates of selected fault batches. From Figure 8, we

can see the superiority of the proposed algorithm for the fault

detection of the penicillin fermentation process.

Semiconductor industry process

The semiconductor industry process—AI reactor corrosion

process is applied to compare the performances of different

fault detection algorithms. The data are derived from the

Table 4. Test variables.

No. Measured variables No. Measured variables

1 BCI3 Flow 10 RF power

2 CI2 Flow 11 RF impedance

3 RF bottom power 12 TCP tuner

4 Endpoint A Detector 13 TCP phase error

5 Helium pressure 14 TCP impedance

6 Chamber pressure 15 TCP top power

7 RF tuner 16 TCP load

8 RF load 17 Vat valve position

9 Phase error — —

Figure 8. Graph of average fault detection rate of fault batches during

penicillin fermentation.

Table 5. Fault detection rates of each fault type by different algorithms.

Fault type MPCA MNPE MSFA Multi-stage GNPE Multi-stage ORNPE

T2 SPE T2 SPE S2 SPE T2 SPE T2 R2

TCP+ 50 0.323 0.351 0.379 0.382 0.401 0.442 0.698 0.833 0.794 0.820

RF-12 0.310 0.368 0.336 0.402 0.399 0.437 0.599 0.779 0.801 0.812

BCl3+ 5 0.322 0.372 0.411 0.454 0.405 0.532 0.671 0.831 0.779 0.802

Pr-2 0.347 0.389 0.421 0.436 0.368 0.452 0.757 0.884 0.852 0.915

Cl2-5 0.331 0.441 0.401 0.427 0.399 0.411 0.597 0.644 0.799 0.852

He Chuck 0.348 0.339 0.397 0.422 0.402 0.541 0.661 0.689 0.833 0.901

Figure 9. Results of stage division of semiconductor industry process.
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Figure 10. Monitoring results for semiconductor industry process of the Pr-2: (a) MPCA, (b) MNPE, (c) MSFA, (d) multi-stage GNPE, and (e) multi-

stage ORNPE.
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actual data of the semiconductor production process of Texas

Instruments (Azamfar et al., 2020). It is a typical complex

multi-stage batch process. The data set is composed of 107

normal batches and 20 fault batches, and the fault batch con-

tains Tape Carrier Package (TCP) power fault, Radio

Frequency (RF) power fault, pressure fault, CI2 fault or BCI3
flow fault. We select 17 variables from 40 measured variables

as test variables, as shown in Table 4.
In this experiment, we select 50 normal batches for model-

ing, and each batch is 95 hours in length. We select 17 vari-

ables to monitor process status. The three-dimensional

normal sample modeling data matrix is X(50 3 17 3 95).

The new batch of test data is Xtest(95 3 17). The semiconduc-

tor industry process is divided into four stages: 0;5h, 6;43h,

44;60h, and 61;95h. The results of the stage division are

shown in Figure 9.
This experiment selects TCP+50, RF-12, BCl3+5, Pr-2,

Cl2-5, and He chuck pressure fault batches to introduce faults

in all periods of each batch. Table 5 shows the fault detection

rates of six types of faults under different algorithms. It can

be seen from Table 5 that although the fault detection rate

fromMPCA, MNPE to MSFA has increased in turn. Because

they are single-stage detection algorithms, the overall detec-

tion effects of various faults are poor. Multi-stage GNPE

algorithm has a higher detection rate than the single-stage

algorithms, multi-stage ORNPE algorithm proposed in this

paper has a higher detection rate than multi-stage GNPE

algorithm.
Figure 10 shows the fault monitoring results of the fault

batch Pr-2 by using MPCA, MNPE, MSFA, multi-stage

GNPE, and multi-stage ORNPE algorithm. It can be seen

from Figure 10(a)–(c), three algorithms have seriously missed

fault alarms during the fault detection process, and more

faults are not detected. It can be seen from Figure 10(a)–(c)

that the fault detection effect is gradually getting better. The

detection effect of statistic SPE is better than the statistics T2/

S2. Still, MPCA, MNPE, and MSFA belong to single-stage

detection algorithms, so their detection effects for batch pro-

cess are poor. The detection algorithms used in Figure 10(d)

and (e) are multi-stage detection algorithms. Figure 10(d) is

the statistical monitoring chart of multi-stage GNPE algo-

rithm. Figure 10(e) is the statistical monitoring chart of multi-

stage ORNPE algorithm proposed in this paper, which has

better detection results than the multi-stage GNPE algorithm

of Figure 10(d). The main reason is that the proposed algo-

rithm preserves the dynamic global details of the data while

considering the local information of the process data.
Figure 11 is a bar graph that compares the average fault

detection rates of selected semiconductor industrial process

for detection algorithms under multiple fault batches. The

fault detection effect of the multi-stage ORNPE algorithm is

better than other four algorithms. The proposed algorithm

can better monitor the process.

Conclusion

In this paper, we propose a fault monitoring strategy based

on multi-stage ORNPE for batch process. First, after the ini-

tial division of each batch of data into stages, the same stages

of different batches are processed in equal length. Second, on

the basis of NPE which can reveal the local structure infor-

mation and lose global information of data, a global objective

function is established by cross-entropy optimized SFA to

extract both essential features and dynamic global informa-

tion of the process data. Finally, the statistics are built to

monitor batch process. The penicillin fermentation process

and a real semiconductor process are adopted to verify the

effectiveness and superiority of the proposed algorithm. For

the penicillin fermentation process, the average fault detection

rates of statistics T2 and R2 of the proposed algorithm are

0.95 and 0.93, the average detection rates of statistics T2 and

R2 of the semiconductor process are 0.85 and 0.81, respec-

tively. The detection rates are higher than other comparison

algorithms. Compared with the comparison algorithms, the

proposed algorithm in this paper increases the calculation

amount, but the computational complexity still is O(n2) since

the proposed algorithm only considers fault detection and

does not consider the identification of fault variables. In the

future, based on improving the effect of fault detection, the

further research on fault diagnosis and fault prediction will

be carried out.
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Abstract
The traditional fault monitoring methods assume that batch process is stationary, but the actual batch process variables are 
stationary and nonstationary mixed distribution. The fault information is easily submerged in the normal nonstationary 
signals, causing difficulty in fault monitoring. In this paper, we propose a joint stationary-nonstationary Bayesian statistical 
indicator monitoring algorithm based on weighted orthogonal principal component analysis-exponential global neighborhood 
preserving embedding (WOPCA-EGNPE) with variable division. Firstly, the augmented dickey-fuller (ADF) test divides the 
stationary space and the nonstationary space through the stationarity of variables; secondly, nonstationary variables obtain 
a stationary residual series by the cointegration analysis method, and for the stationary residual series, exponential global 
neighborhood preserving embedding (EGNPE) algorithm constructs the model, which considers both global and local infor-
mation of the data, and highlights the important global and local data information through an exponential transformation; 
then, weighted orthogonal principal component analysis (WOPCA) algorithm construct the model in the stationary space; 
finally, a joint monitoring index is established by using Bayesian inference method to realize the process monitoring. The 
penicillin fermentation process is applied to verify the effectiveness of the proposed algorithm.

Keywords  Batch process · Fault monitoring · Nonstationarity · Variable division · Joint statistics

Introduction

For the urgent market requirements of multi-species, multi-
standard, and high-quality products, batch production with 
its small production volume and high added value is widely 
used in plastic products, integrated circuit manufacturing, 
pharmaceutical, food processing, chemical production, and 
other fields(Wang et al. 2020; Zhang et al. 2020; Zhao and 
Mou 2021). At the same time, with the rapid development of 
batch processes, there is a more urgent need for the efficient 
operation of batch processes. To ensure the safe operation of 
batch process, process monitoring and timely fault detection 

are of great importance (Li et al. 2021; Nawaz et al. 2021; 
Peng and Ruiwei 2021; Hanyuan Zhang et al. 2021a).

In recent years, multivariate statistical process monitoring 
(MSPM) methods are widely used in process monitoring 
(Yunus et al. 2020; Yu et al. 2019; Muñoz et al. 2018; He 
and Wang 2018; Wang et al. 2018). In the MSPM meth-
ods, for process monitoring, PCA and PLS have significant 
results (Chen and Liu 2001; Gunther et al. 2009), MPCA 
and MPLS with multi-directional data expansion strate-
gies are applied in industrial processes (Monroy et al. 2011; 
Stubbs et al. 2013). These methods explore the basic char-
acteristics of the process by projecting the observed data 
into a low-dimensional space, build monitoring statistics 
based on low-dimensional space and use them to imple-
ment anomaly detection. The traditional MSPM methods 
are easy to conceal useful information when normal data 
are used for training. The fluctuation of the process variable 
data is submerged, and the ability of detection fault is poor. 
Huang et al. (2017) proposed a weighted principal compo-
nent analysis method for sensor fault detection and isola-
tion based on the fault sensitivity of each main direction in 
which the same fault occurred on a certain sensor. However, 
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the non-orthogonal weight vectors easily led to local spatial 
distortion structure. Neighborhood preserving embedding 
algorithm is a linear dimensionality reduction algorithm in 
manifold learning (He et al. 2005). Its advantage is that it 
can maintain the local neighborhood structure of the data 
on the manifold, but it ignores the global information of 
the data in the feature extraction process. Zhao et al. (2016) 
proposed a Global Neighborhood Preserving Embedding 
(GNPE) algorithm, which fully considered global and local 
information, and applied it to fault monitoring in batch pro-
cess. When it obtained global and local information, some 
important features of the data were concealed, and the data 
could not be used effectively.

A lot of research works on fault monitoring assume that 
the production process is stationary (Aggoun and Chet-
ouani, 2021; Gao et al. 2020; Jiang et al. 2019; Li et al. 
2017; Zhang et al. 2017, 2021b). Due to equipment wear, 
unknown disturbances, human factors, and changes in work-
ing conditions, industrial processes often have an obvious 
nonstationary characteristic, which makes traditional multi-
variate statistical methods unfavorable for fault monitoring. 
For the nonstationary characteristic of the process, Chen 
et al. (2009) introduced cointegration analysis into the field 
of process monitoring as an effective method to study the 
long-term balance relationship between nonstationary vari-
ables. Li et al. (2014) extracted multiple stationary residual 
series to establish a monitoring model through a cointegra-
tion analysis and establish the monitoring indicators based 
on the nonstationary multivariate latent structure to effec-
tively detect the occurrence of abnormality. Sun et al. (2017) 
distinguished and separated nonstationary variables from 
stationary variables so that a cointegration analysis model 
was constructed to describe the long-term equilibrium rela-
tionship between nonstationary variables. In the actual pro-
cess, some of the variables have nonstationary characteris-
tic, and some of the variables have stationary characteristic, 
therefore, the process has the characteristic of the stationary 
and nonstationary mixing distribution, for such characteris-
tic, it is difficult to extract high-dimensional characteristic 
of process monitoring variables. And the overall modeling 
is not conducive to effective process monitoring. Zhao and 
Huang (2018) proposed a new full-state monitoring strategy 
based on cointegration analysis (CA) and slow feature analy-
sis (SFA) to build multiple monitoring statistics in different 
spaces to monitor the overall status of the process. However, 
Simultaneous detection of multiple statistics increases the 
burden of process monitoring to a certain extent.

Aiming at the above problems, we propose a WOPCA-
EGNPE fault monitoring algorithm of batch process based 
on variable division. The algorithm divides the original pro-
cess data into two subspaces by division variables method: 
stationary subspace and nonstationary subspace. In the non-
stationary subspace, a stationary residual series containing 

the nonstationary characteristic of the variables is obtained 
through the theory of cointegration, and the obtained sta-
tionary residual series considers both global and local infor-
mation, we adopt the exponential transformation method to 
highlight the global and local important information, so the 
EGNPE model is established. We use the EGNPE model 
to extract the features of nonstationary subspace data, and 
build monitoring statistics; in the stationary subspace, we 
use the inverse variance to weight PCA, the WOPCA model 
is obtained by orthogonalizing the weight matrix. The opti-
mal dimensionality reduction mapping matrix is obtained 
by the WOPCA model, further the optimal low-dimensional 
features are obtained and the monitoring statistics are con-
structed. We establish a joint statistic by Bayesian inference 
method to achieve joint monitoring. The effectiveness and 
superiority of the algorithm are verified by the penicillin 
simulation experiment. The novelties of this paper are given 
as follows:

(1)	 The algorithm divides the original process data into 
two subspaces by division variables method: stationary 
subspace and nonstationary subspace.

(2)	 WOPCA and EGNPE models are established in station-
ary and non-stationary spaces respectively, and moni-
toring statistics are established.

(3)	 A joint statistic is established by Bayesian inference 
method to realize joint monitoring and monitor batch 
process.

Preliminaries

Cointegration analysis (CA)

As an effective method to describe the relationship between 
nonstationary variables, cointegration analysis (Granger 
2004) can combine the advantages of short-run and long-run 
models in time series analysis, and provide a better solution 
for nonstationary time series in the modeling process.

F o r  a  n o n s t a t i o n a r y  t i m e  s e r i e s 
�(m × n) =

[
�1, �2,⋯ , �t,⋯ , �n

]
 , where �t =

(
z1, z2,⋯ , zm

)
 , 

n is the number of nonstationary time series, and m is the 
number of sampling points, the nonstationary time series has 
a long-run equilibrium relationship, then there exists a vec-
tor �=

(
�1, �2,⋯ , �n

)T such that the linear combination of 
the nonstationary time series has the following relationship:

where �t denotes the smooth residual series, � is the coin-
tegration matrix, and �i is the cointegration variable.

(1)

�t = �1z1 + �2z2 +⋯ + �nzn

= �T�t

(t = 1,⋯ ,m)
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�t of the vector autoregressive (VAR) model is built as:

where at(n × n) is the coefficient matrix, �t(n × 1) is the 
white noise vector with Gaussian distribution, �(n × 1) is the 
constant vector, and p is the order of the VAR model.

The error correction model of formula (3) is obtained by 
subtracting �t−1 from the left and right ends of formula (2).

where �= − ��+
p∑

i = 1

ai,�i = −
p∑

j=i+1

aj, i = 1, 2,⋯ , p − 1.

� can be decomposed into two matrices which are full-
rank columns �=��T , where �(n × r) , �(n × r) . Then for-
mula (3) can be transformed as:

The residual series �t−1 can be obtained from formula (5):

Formula (4) is taken into formula (5), the calculation for-
mula of the residual sequence �t−1 can be further obtained 
as shown formula (6):

Since �t is a first-order single integer, Δ�t and Δ�t−i are 
stationary, and then the elements on the right-hand side of 
formula (5) are all stationary. �T�t−i denotes a nonstationary 
linear combination, then � is the covariance matrix.

Neighborhood preserving embedding (NPE)

Neighborhood preserving embedding (NPE) (Xiaofei 
He et  al. 2005) is a local manifold learning algorithm. 
This algorithm obtains a low-dimensional space dataset 
� =

(
�1, �2,⋯ , �n

)
 by linearly reconstructing the high-

dimensional original data �
(
�1, �2,⋯ , �n

)
∈ RD to reduce 

the dimensionality, the relationship between � and � satis-
fies:� = ��� , where �(�1, �2,… , �d),(d ≤ D) is the reduced 
projection matrix. NPE uses the k-nearest neighbor algo-
rithm to find the nearest neighbors in the original data � . 
The samples are connected to the corresponding nearest 
neighbor points to form the neighborhood map. The recon-
struction is carried out through the linear combination of 
the sample points and their nearest neighbors. The weight 
matrix � is calculated by minimizing the reconstruction 
error through formula (7).

(2)�t = a1�t−1 +⋯ + ap�t−p + � + �t

(3)Δ�t =

p−1∑
i=1

�iΔ�t−i + ��t−1 + �t

(4)Δ�t =

p−1∑
i=1

�iΔ�t−i + ��T�t−1 + �t

(5)�t−1 = �T�t−1

(6)�t−1 =
(
�T�

)−1
�T

(
Δ�t −

p−1∑

i=1

�iΔ�t−i − �t

)

The projection matrix � can be obtained by minimizing 
the cost function of formula (8) as follows:

where the constraint is: �T� = �T��T� = 1 , the solution 
of formula (8) can be transformed into the problem of find-
ing the generalized eigenvalue of formula (9).

where,� = (� −�)T(� −�) , the eigenvectors corre-
sponding to the first d minimum eigenvalues of the solution 
form the mapping matrix �.

WOPCA‑EGNPE algorithm of fault 
monitoring with stationary‑nonstationary 
variables

In this paper, a WOPCA-EGNPE fault monitoring algorithm 
is proposed. We divide the stationary and nonstationary 
subspaces into two subspaces by judging the stationarity 
of the variables by ADF test and establish the EGNPE and 
WOPCA models based on improved NPE and PCA, which 
are applied to the two subspaces respectively. The Bayesian 
method is used to establish joint statistics to achieve fault 
monitoring.

Division between stationary‑nonstationary 
variables

We utilize augmented dickey-fuller test(ADF) (Ajewole 
et al. 2020) to determine whether the variables are stationary 
or not, and divide the variables into different subspaces. The 
regression model for the time series �t = (t = 1, 2,… , T) is 
developed as formula (10):

where c is the constant, et is the random error, It and the 
process variables satisfy independent identical distribution. 

(7)

Φ(�) = min

n∑
i=1

||�i −
n∑
j=1

�ij�j||2

n∑
j=1

�ij = 1

(8)
f (�) = min

n∑
i=1

(
�i −

n∑
j=1

�ij�j

)2

= min �T(� −�)T(� −�)�

= min �T�(� −�)T(� −�)�T�

(9)���T� = ���T�

(10)�t = �yt−1 +

l∑
k=1

bkΔyt−k + c + et
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Δ is the difference operation, then, Δ� = �t − �t−1 , and l is 
the time lag term.

The estimation of the regression coefficient � by least 
squares is as follows:

where � =
[
�1, �2,⋯ , �T

]T , T  is the number of sampling 
points and the matrix � is shown as formula (12):

The null hypothesis test �0 ∶ � = 1 is used to determine 
whether the series is nonstationary. If the test statistic is 
greater than the critical threshold, the original hypothesis 
is accepted, and the time series � has nonstationary char-
acteristic at this time; conversely, the original hypothesis is 
rejected, and the series is stationary within a certain confi-
dence level.

The process monitoring variables are divided into sta-
tionary and nonstationary subspaces by the judgment of 
stationarity of variables, that is, stationary space ΩS and 
nonstationary space ΩNS.

Fault monitoring with stationary‑nonstationary 
variables based on WOPCA‑EGNPE algorithm

The variables are divided into two subspaces, ΩS and ΩNS by 
ADF test. We adopt weighted orthogonal principal compo-
nent analysis to calculate monitoring statistics T2

S
 and SPES 

in subspace ΩS , and adopt exponential global neighborhood 
preserving embedding to calculate monitoring statistics T2

NS
 

and SPENS in subspace ΩNS . To consider the influence of 
stationary space and nonstationary space on process moni-
toring at the same time, we use Bayesian inference method 
to create a joint monitoring metric.

Weighted orthogonal Principal component analysis 
(WOPCA)

Principal component analysis uses linear combinations of 
variables in the high-dimensional data to form principal 
components for most of the high-dimensional data, and such 
principal components provide information about the com-
plexities of the simplified raw data. When PCA is used for 
dimensionality reduction in space ΩS , the inverse variance 
weighting is applied to highlight key information, and the 
WOPCA model is built. For the original data �=

n∑
i=1

�i , we 

(11)
[
�̂, �̂, b̂1, b̂1, b̂2,⋯ , b̂l

]
=
(
�T�

)−1
�T�

(12)�=

⎡⎢⎢⎢⎣

1 �0 Δ�0 ⋯

1 �1 Δ�1 ⋯

⋮ ⋮ ⋮ ⋱

1 �T−1 Δ�T−1 ⋯

Δ�1−t
Δ�2−t
⋮

Δ�T−t

⎤⎥⎥⎥⎦

use the WOPCA model to reduce the dimensionality process 
as follows.

The original data � can be decomposed as:

where, � =
[
�1, �2,⋯ , �n

]
 is the feature matr ix, 

�=
[
�1, �2,⋯ , �n

]
 is the load matrix, and � is the residual 

vector.
The features and load matrices are obtained by con-

structing the covariance matrix S , shown as formula (14):

where, � is the diagonal matrix composed of the eigen-
values of the covariance matrix � , and the eigenvectors 
corresponding to the eigenvalues form the load matrix �.

The covariance matrix � uses the inverse variance 
weighting manner to highlight key information, and a 
new weighted covariance matrix � is obtained, shown as 
formula (15).

where, �2
i
 is a variance of the column direction of �.

Since the new weighted covariance matrix � is not 
orthogonal, we orthogonalize the covariance matrix as 
shown in formula (16), �� is the weighted covariance 
matrix after orthogonalization.

where, � is the sample mean.
By taking the eigenvalues and eigenvectors of the 

weighted orthogonal matrix �� , we obtain the eigenma-
trix � and the load matrix of the WOPCA model. The 
process data vectors are projected into two orthogonal 
subspaces (principal and residual spaces) by the WOPCA 
model, and the statistics T2

S
 and SPES are constructed in 

each subspace, shown as formula (17) and formula (18).

where, � is the covariance matrix of the original data 
after dimensionality reduction data � , and � is the unit 
matrix.

The control limits T2
S lim

 and SPES lim of the statistics T2
S
 

and SPES are obtained by using kernel density estimation.

(13)�=�1�
T
1
+ �2�

T
2
+⋯ + �n�

T
n
= ��T

+ �

(14)� =
1

n − 1
�T�

(15)� =

n∑
i=1

1

�2
i

�

(16)�� =

⎡⎢⎢⎣
diag

⎛⎜⎜⎝

����1

n

n�
i=1

�
�i − �

�2⎞⎟⎟⎠

⎤⎥⎥⎦

−1

(17)T2
S
=����−1�T�

(18)SPES = �
(
� − ��T

)
�T
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Exponential global neighborhood preserving embedding 
(EGNPE)

NPE algorithm only considers the local manifold structure 
in the modeling process and ignores the global information 
of the data. Therefore, we consider the global and local 
information of the data at the same time, and highlight the 
important global and local data information through expo-
nential transformation, which important information of the 
data becomes larger and non-important information of the 
data becomes smaller, the EGNPE model is established in 
space ΩNS . For sample � =

n∑
i=1

�i , the dimensionality 

reduction projection is performed by EGNPE algorithm to 
obtain � =

n∑
i=1

�i and � = �T� , where � is the mapping 

matrix from high-dimensional space to low-dimensional 
space.

The modeling process is as follows:
The objective function of the global structure is shown 

as formula (19):

where, � =
n∑

i = 1

�
�i − �

��
�i − �

�T
, � =

1

n

n∑
i=1

�i, � =
1

n

n∑
i=1

�i.

Then the objective function of the exponential global 
structure is:

where, � = exp
(
�C
i

)
 , and �C

i
 denotes the ith eigenvalue 

of matrix �.
The objective function of the local structure is shown 

as formula (21).

where, � = �(� −�)
T
(� −�)�T.

Then the objective function of the exponential local 
structure is:

where, � = exp
(
�
Q

i

)
 , and �Q

i
 denotes the ith eigenvalue 

of matrix �.

(19)

JG = max

n∑
i=1

‖‖�i − �‖‖2

= max

n∑
i=1

�T
(
�i − �

)(
�i − �

)T
�

= max�T��

(20)JEG = max�T��

(21)
JNPE = min

n∑
i=1

(
�i −

n∑
j=1

�ij�j

)2

= min�T�(� −�)
T
(� −�)�T�

= min�T��

(22)JENPE = min�T��

The objective function of the EGNPE model can be 
obtained by combining the global and local structures, 
shown as formula (23):

Formula (16) is solved through Laplace transform as 
shown in formula (24).

After dimensionality reduction, the space ΩNS is divided 
into the feature space and the residual space, and the statis-
tics T2

NS
 and SPENS are constructed in the two divided spaces. 

For the online data �new , which dimensionality reduction is 
represented as �new = �T�new , the statistics are constructed 
as shown in formulas (25) and (26).

where, �−1
=

1

n−1

n∑
i=1

�i�
T
i
 , and � is the covariance matrix 

of data � after dimensionality reduction of the original data.

The control limits T2
NS lim

 and SPENS lim of the statistics T2
NS

 
and SPENS are obtained by using kernel density estimation.

The method of kernel density estimation: given a univari-
ate kernel function is shown in the following formula (27):

where, j is the sample data, ji is the observation value, � 
is the window width, n is the number of observation values, 
and K is the kernel function. In this paper, the Gaussian 
kernel function is selected, and the test level � = 0.95 can be 
obtained by formula (28) and (29) to find the control limits.

(23)JEGNPE = max
�T��

�T��

(24)�� = ���

(25)T2
NS

= �new�
−1�T

new

(26)SPENS=
‖‖�new − ��new

‖‖2

(27)f (j) =
1

n

n∑
i=1

Kh

(
j − ji

)
=

1

n�

n∑
i=1

K

(
j − ji

�

)

(28)

∫
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Bayesian joint monitoring

The statistics T2
S
 , SPES , T2

NS
 and SPENS constructed in the two 

divided subspaces ΩS and ΩNS are implemented to monitor 
each subspace, and a joint statistic is established by Bayesian 
inference to consider the overall monitoring of the process.

In space ΩS , the fault probability of T2
S
 is shown in for-

mula (30):

where, N  and F represent normal and fault conditions 
respectively, the conditional probabilities PT2

S
N=� and 

PT2
S
F= 1−� , � is confidence probability, PT2

S (ΩS|N) and 
PT2

S (ΩS|F) are conditional probabilities calculated as shown 
in formula (31) and formula (32):

where, T2
S lim

 is the control limit of the statistic T2
S
 by using 

kernel density estimation.
According to the same principle, we can obtain the 

follows:
(1) In space ΩS , the fault probability of SPES is PSPES(F|XS)

;
(2) In space ΩNS , the fault probability of T2

NS
 is PT2

NS(F|XNS)

;
(3) In space ΩNS , the fault probability of SPENS is 

PSPENS(F|XNS);
The Bayesian statistic is obtained from formula (33):

where, the control limit of the statistic BIC is 1 − � , and 
� takes the value of 0.95.

Monitoring steps of batch process based 
on WOPCA‑EGNPE algorithm

Batch process monitoring based on WOPCA-EGNPE algo-
rithm includes two parts: offline modeling and online moni-
toring. The monitoring flowchart is shown in Fig. 1.

(30)PT2
S (F|XS) =

PT2
S (ΩS|F)PT2

S
F

PT2
S (ΩS|N)PT2

S
N + PT2

S (ΩS|F)PT2
S
F

(31)PT2
S (ΩS|N)= exp

(
−

T2
S

T2
S lim

)

(32)PT2
S (ΩS|F)= exp

(
−
T2
S lim

T2
S

)

(33)

BIC =

P2

T2
S
(F|XS)

+P2

SPES(F|XS)
+P2

T2
NS
(F|XNS)

+P2

SPENS(F|XNS)

PT2
S (F|XS)+PSPES(F|XS)+PT2

NS(F|XNS)+PSPENS(F|XNS)

Offline modeling

Step1: Under normal working conditions, sample data are 
collected to form a training sample set � ∈ Rm×n , and � is 
unfolded into two-dimensional data in a batch-variable man-
ner. That is, for �(I × J × K) , we unfold it along the batch 
direction to get a two-dimensional matrix �(I × JK) , and 
then it is arranged along the variable direction as �(IK × J) 
( I represents the batch of process data, J represents the 
number of variables, K represents the number of sampling 
points).

Step 2: ADF test is used to determine whether the vari-
able is nonstationary, and the preprocessed sample data are 
divided into the nonstationary space ΩNS and the stationary 
space ΩS.

Step 3: In the nonstationary space ΩNS , the method of 
cointegration analysis is used to obtain the cointegration var-
iables � and a stationary residual series � . For the obtained 
stationary residual series � , we perform EGNPE algorithm 
to obtain the feature mapping matrix �NS , thereby obtaining 
the low-dimensional representation of the high-dimensional 
series: �NS = �T

NS
�.

Step 4: In the stationary space ΩS , WOPCA algorithm is 
performed to get the feature mapping matrix �S and obtain 
the low-dimensional representation: �S = �S�S.

Step 5: Kernel density estimation method is used to cal-
culate the control limits T2

NS lim
 and SPENS lim of the statistics 

T2
NS

 and SPENS in the nonstationary space; similarly, we find 
the control limits T2

S lim
 and SPES lim of the statistics T2

S
 and 

SPES in the stationary space ΩS.
Step 6: According to Bayesian inference, the Bayesian 

statistic BIC and control limit BIClim can be obtained by 
formula (33).

Online monitoring

Step 1: The collected online data �new are preprocessed.
Step 2: According to the variable division of the offline 

process, the online data are divided into two subspaces: non-
stationary space ΩNSnew and stationary space ΩSnew.

Step 3: In the nonstationary space ΩNSnew , we use the 
cointegration variables � obtained offline to calculate the 
online stationary residual series �new , and use the feature 
mapping matrix �NS obtained offline to obtain the low-
dimensional representation of the online stationary residual 
series: �NSnew = �T

NS
�new.

Step 4: In the stationary space ΩSnew , we obtain the low-
dimensional representation from the offline mapping matrix 
�S : �Snew = �T

S
�Snew.

Step 5: The statistics T2
NSnew

 and SPENSnew are calculated 
in the space ΩNSnew , and the statistics T2

Snew
 and SPESnew are 

calculated in the space ΩSnew . According to Bayesian infer-
ence, we calculate the Bayesian statistic by formula (33).
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Step 6: If BICnew is larger than BIClim , it indicates that the 
fault has occurred; otherwise, it is normal.

The results and analysis of the penicillin 
fermentation process simulation experiment

As an antibiotic, penicillin has a wide range of clinical 
medical value, and its production process is a typical batch 
process. In this paper, we use the Pensim2.0 simulation plat-
form to generate penicillin fermentation process data. The 
platform is a simulation software for modeling, monitoring, 
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Fig. 1   Flow chart of WOPCA-EGNPE algorithm
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and controlling the penicillin fermentation process indepen-
dently developed by the research team of Professor Cinar of 
Illinois State Institute of Technology in the United States in 
2002 (Birol et al. 2002). We apply the platform to generate 
30 batches data under normal operating condition, and the 
reaction time of each batch is set to 400 h, the sampling time 
is set to 1h , and 16 process variables are selected as moni-
toring variables. Parameter setting of initial conditions of 
penicillin fermentation process is set, as shown in Table 1. 
To simulate the noise disturbance of actual process, Gauss-
ian white noise are introduced to all variables.

For the process data, in the case of a 5% confidence 
threshold, the threshold is − 1.9414, ADF test is used to 
determine the stationarity of the variables, as shown in 
Table 2.

According to Table 2, variables 5, 14, 15, and 16 are 
stationary, and other variables are nonstationary, that is, 

stationary space ΩS=
(
x5, x14, x15, x16

)
 and nonstationary 

space ΩNS=
(
x1,⋯ , x4, x6,⋯ , x13

)
.

In this paper, we generate 4 batches of fault data by 
setting different fault types and amplitudes, as shown in 
Table 3, the fault data also introduce noise disturbances to 
simulate the real process.

Table 4 is the detection rates of MPCA, MNPE, and the 
proposed WOPCA-EGNPE for different faults.

Table 5 is the false alarm rates of MPCA, MNPE, and 
WOPCA-EGNPE for different faults.

From Table 4, for MPCA and MNPE algorithms, we can 
see that the detection rates of statistic T2 are low, which 
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Fig. 2   Monitoring diagram of statistics in stationary space under fault F1

Table 1   Parameter setting of initial conditions in penicillin fermenta-
tion process

No Process variables Set value Variable unit

1 Substrate concentration 15 g/L
2 Dissolved oxygen concentration 1.16 g/L
3 Bacteria initial concentration 0.1 g/L
4 Penicillin concentration 0 g/L
5 Culture volume 100 L
6 CO2 concentration 0.5 mmol/L
7 pH 5 /
8 Temperature 298 K
9 Aeration rate 8.6 L/h
10 Agitator power 30 W
11 Substrate feed rate 0.042 L/h
12 Substrate feed temperature 296 K
13 Temperature set point 298 K

Table 2   ADF test of process variables

No Process variables ADF test value Stationarity

1 Aeration rate (L/h) − 0.0504 Nonstationary
2 Agitator power (W) 0.0306 Nonstationary
3 Substrate feed flow rate (L/h) 0.0293 Nonstationary
4 Substrate feed flow temperature 

(K)
− 0.3460 Nonstationary

5 Substrate concentration (L/h) − 11.1379 stationary
6 Dissolved oxygen concentra-

tion (%)
− 0.7465 Nonstationary

7 Biomass concentration (g/L) 5.3686 Nonstationary
8 Penicillin concentration (g/L) 12.1669 Nonstationary
9 Reactor volume (L) 20.2279 Nonstationary
10 CO2 (mmol/L) 0.3956 Nonstationary
11 PH 0.0689 Nonstationary
12 Fermentation temperature (K) 0.0068 Nonstationary
13 Generated heat (kcal/h) 5.3694 Nonstationary
14 Acid flow rate (ml/h) − 10.5589 Stationary
15 Base flow rate (ml/h) − 4.2308 Stationary
16 Cold water flow rate (L/h) − 12.0209 Stationary
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indicate that the variable relationship under normal work-
ing condition represented by these two statistical models 
is destroyed and the working condition changes are not 
obvious; for the proposed WOPCA-EGNPE algorithm, the 
statistics T2

S
 and SPES of fault F1 and fault F2 in the sta-

tionary space ΩS are almost 0, which indicate that the fault 
change of the agitator rate would not cause the changes of 
working conditions in the stationary space, that is, no fault 
occurs in the stationary space. The monitoring diagram of 
statistics in the stationary space under fault F1 is shown in 
Fig. 2. It can be seen from Fig. 2 that a few points exceed 
the control limit and cause fault false alarms, the main rea-
son is that we simulate the actual fermentation process and 
introduce Gaussian white noise to each variable, which 
leads to fault alarms in the monitoring process.

For the proposed WOPCA-EGNPE algorithm in this 
paper, the statistics T2

S
 and SPES of fault F3 and fault F4 in 

the stationary space ΩS have higher detection rates. Since 
fault F3 and fault F4 are substrate feeding rate faults of dif-
ferent signal types, the substrate feeding rate faults would 
cause the variable relationship changes in the stationary 
space ΩS . From Fig. 3, for stationary space variables, we 
can see that the occurrence of substrate feeding rate fault 

would cause the acid flow rate, base flow rate, and cold water 
flow rate to change. The acid flow rate changes significantly 
after about 325h , which results in a large number of false 
alarms after this time. Figure 4 is the monitoring diagram of 
statistics in the stationary space under fault F3, which shows 
that the fault can be better detected when the fault occurs. A 
large number of fault alarms occur during the 300 ∼ 400h 
period, and the main reason is that the substrate feeding rate 
fault causes a large change of the acid flow rate.

According to Tables 3 and 4, the statistics BIC of the 
proposed WOPCA-EGNPE algorithm has a higher fault 
detection rate, a lower fault false alarm rate, and a better 
monitoring effect.

Figure 5 is the statistical monitoring diagram of MPCA, 
MNPE, and the proposed WOPCA-EGNPE algorithm under 
fault F1. Fault F1 is a step disturbance with an amplitude of 
2% added to the agitator rate between 200–300 h. Figure 5a 
is the monitoring diagram of statistics T2 and SPE of MPCA 
algorithm, it can be seen that statistic T2 has very few fault 
false alarms and the detection rate is also very low, while 
statistic SPE has a high detection rate and the fault false 
alarms are serious and the monitoring effect is not good; 
Fig. 5b is the monitoring diagram of statistics T2 and SPE 
of MNPE algorithm, it can be seen that the detection of the 
two statistics have very few faults false alarms, but the fault 
miss alarms are serious; Fig. 5c is the statistical monitoring 
diagram of the proposed WOPCA-EGNPE algorithm, which 
has a better monitoring effect than other algorithms.

Figure 6 is the statistical monitoring diagram of MPCA, 
MNPE, and the proposed WOPCA-EGNPE algorithm under 
fault F2. Fault F2 is a ramp disturbance with an amplitude of 
4% added to the agitator rate between 300–400 h. Figure 6a 
is the monitoring diagram of statistics T2 and SPE of MPCA 
algorithm, it can be seen that the fault is detected at 342 h 

Table 3   Fault batches in the 
penicillin fermentation process

Fault No Fault variable name Disturbance type Amplitude (%) Fault 
introduction 
period

F1 Agitator power Step 2 200–300 h
F2 Agitator power Ramp 4 300–400 h
F3 Substrate feeding rate Step 6 100–300 h
F4 Substrate feeding rate Ramp 0.8 250–400 h

Table 4   Fault detection rate of 
each fault by different methods

Fault no MPCA MNPE WOPCA-EGNPE

T
2 SPE T

2 SPE T
2

S
SPE

S T
2

NS
SPE

NS
BIC

F1 0.10 0.98 0.17 0.21 0.02 0.00 0.31 0.85 0.98
F2 0.78 0.91 0.55 0.76 0.06 0.00 0.64 0.89 0.94
F3 0.85 0.97 0.53 0.61 0.83 0.91 0.67 0.72 1.00
F4 0.88 0.90 0.92 0.94 0.90 0.92 0.92 0.94 0.96

Table 5   False alarm rate of each fault by different methods

Fault no MPCA MNPE WOPCA-
EGNPE

T
2 SPE T

2 SPE BIC

F1 0.02 0.49 0.11 0.00 0.10
F2 0.23 0.28 0.13 0.12 0.02
F3 0.25 0.43 0.17 0.01 0.23
F4 0.09 0.29 0.13 0.36 0.08
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(a) Substrate concentration (b) Acid flow rate

(c) Base flow rate (d) Cold water flow rate
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Fig. 3   Stationary variable curve under fault F3 (a substrate concentration, b Acid flow rate, c Base flow rate, and d Cold water flow rate)
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Fig. 4   Monitoring diagram of stationary space statistics under fault F3
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and 309 h, respectively, and there is a large delay in fault 
monitoring; Fig. 5b is the monitoring diagram of statistics 
T2 and SPE of MNPE algorithm, which has a lower fault 
false alarm rate than MPCA algorithm, and the fault detects 
at 335h and 324h respectively; Fig. 6c shows the statistical 
BIC monitoring diagram of the proposed WOPCA-EGNPE 

algorithm, which detects the fault at 304h , and has more 
timely fault detection, higher detection rate and smaller false 
alarm rate.

Figure 7 is the statistical monitoring diagram of MPCA, 
MNPE, and the proposed WOPCA-EGNPE algorithm under 
fault F3. Fault F3 is the substrate feeding rate added a step 
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(c) WOPCA-EGNPE
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Fig. 5   Statistics monitoring diagram under fault F1 (a MPCA, b MNPE, and c WOPCA-EGNPE algorithm)
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disturbance with an amplitude of 6% between 100 ∼ 300h . 
We can see that the proposed WOPCA-EGNPE algorithm 
has the better monitoring effect. However, the proposed 
algorithm also has higher false alarm rate after 300h , the 
reason is that the acid flow rate significantly changes after 

300h under fault F3. In general, the monitoring effect of our 
proposed algorithm is better than other algorithms.

Figure 8 is the stacked histogram of the average fault 
detection rate and the average false alarm rate under the 
four faults. The horizontal coordinates 1, 2, 3, 4, and 5 

(a) MPCA

(b) MNPE

(c) WOPCA-EGNPE
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indicate the statistics of MPCA, MPCA, MNPE, MNPE, 
and WOPCA-EGNPE, respectively, while the blue color 
shows the average detection rate of different methods and 
the red color shows the average false alarm rate of dif-
ferent methods. It can be visualized that the proposed 
WOPCA-EGNPE algorithm has a better fault detection 

rate and a lower fault false alarm rate in the penicillin 
fermentation process, and has a better fault monitoring 
effect.
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(c) WOPCA-EGNPE
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Fig. 7   Statistics monitoring diagram under fault F3 (a MPCA, b MNPE, and c WOPCA-EGNPE algorithm)
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Conclusion

We propose a WOPCA-EGNPE algorithm based on vari-
able division for fault monitoring in batch process. Since 
the variables of batch process have the characteristic of 
stationary and nonstationary mixture distribution, the vari-
ables are divided into the stationary space and nonstation-
ary space by judging their stationarity. WOPCA algorithm 
and EGNPE algorithm are used to model in the stationary 
space and the nonstationary space respectively, the fault 
detection statistics in two spaces are obtained respectively, 
and Bayesian method is utilized to construct a joint sta-
tistical indicator to realize process monitoring. Compared 
with MPCA algorithm and MNPE algorithm, the moni-
toring results verify that the fault detection effectiveness 
of the proposed algorithm in the penicillin fermentation 
process is better. Because a variable fault often affects the 
other related variable fault, resulting in multiple faults, in 
the future research, corresponding monitoring and diagno-
sis technologies will be studied to identify multiple faults.
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