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A rolling bearing fault diagnosis
method for imbalanced data based on
multi-scale self-attention mechanism
and novel loss function

Qiang Ruiru and Zhao Xiaogiang

Deep learning methods are widely used in the field of rolling bearing fault diagnosis and produce good results when
faced with datasets with roughly equal numbers of normal and faulty samples. However, real-world data often has a
serious imbalance, with the number of fault samples being significantly less than the number of normal samples. This

dataset imbalance challenges the performance of traditional deep learning methods. To address this problem, this
paper proposes an efficient imbalanced data rolling bearing fault diagnosis method. The method consists of two parts:
a deep learning network based on a multi-scale self-attention mechanism and a novel loss function. In terms of the deep
learning network, firstly, the one-dimensional vibration signal is converted into a two-dimensional image through the
Gramian angular field. This conversion maximises the inherent feature extraction capability of the network. Subsequently,
the multi-scale learning capability of the network is enhanced by implementing different expansion rates for the head
of the multi-scale self-attention mechanism. This nuanced approach allows the network to capture the underlying
information more efficiently. Finally, the inclusion of Ghost bottlenecks and feature pyramid networks (FPNs) helps to
optimise network efficiency and improve generalisation performance. A novel loss function is also proposed to make
the method more suitable forimbalanced data. During the training process, the classification of samples in each class is
analysed using the recall metric of imbalanced classification and the real-time recall is used as a weight to weaken the
dominance of the majority class. This weighting ensures the adaptability of the method to imbalanced datasets. The
proposed method is evaluated using rolling bearing datasets from Case Western Reserve University, USA, and Southeast
University, China. Comparison results with other state-of-the-art deep learning methods show that the proposed method
has a robust performance when dealing with imbalanced data.

Keywords: deep learning, rolling bearing fault diagnosis, imbalanced data,
multi-scale self-attention mechanism, novel loss function.

1. Introduction

The evolution of modern industry has led to an escalating
complexity in large industrial equipment!", Rotating machinery, a
pivotal component in various pieces of large industrial equipment,
is particularly crucial. The malfunction of rotating machinery can
lead to production halts, escalated costs and potentially catastrophic
accidents'?, Thus, the efficiency of mechanical system maintenance
can be greatly enhanced by investigating failures in rotating
machinery. Timely fault detection and effective fault diagnosis not
only prevent the exacerbation of faults but also reduce equipment
downtime, thereby improving overall productivity”. Among the
core components of rotating machinery, rolling bearings directly
influence the proper functioning of the machinery. Consequently,
research on fault diagnosis for rolling bearings holds immense
significance in modern industry!.

'The fault diagnosis methods employed for rolling bearings can be
broadly categorised into model-based and data-driven methods!*l,
Model-based methods necessitate substantial expert knowledge for
analysing failure mechanisms and constructing analytical models.
However, the intricate operating conditions of rolling bearings
make it challenging to establish specific models”. In contrast, data-
driven methods for rolling bearing fault diagnosis, relying on data

collected by sensors, have shown superior diagnostic outcomes
without the need for a priori knowledge!®”), Data-driven diagnostic
methods based on machine learning typically utilise techniques such
as support vector machines"” and extreme learning machines""\.
In recent years, the field of data-driven diagnostics has witnessed
increased attention towards rolling bearing fault diagnosis methods
based on deep learning techniques. The robust feature learning
capabilities of deep learning methods enable effective extraction of
intricate fault features, adapting well to large-scale datasets!'?),
Various researchers have proposed innovative deep learning
models for rolling bearing fault diagnosis. For instance, Jin et al"*¥
introduced a multi-layer adaptive convolutional neural network
(CNN) with improved adaptive capabilities through multi-
scale convolution and adaptive batch normalisation. Li et al'
designed a recurrent neural network (RNN) with pooled bi-level
attention, incorporating an attention mechanism for enhanced
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fault classification. Mao et al''* proposed a deep autoencoder
that fused discriminative information of multiple fault types,
introducing a relationship matrix of fault types for improved
structural representation. The self-attention mechanism, acclaimed
for its potent global learning ability, and Transformer have
been introduced into fault diagnosis. Ding et al'¥l proposed an
end-to-end fault diagnosis framework based on time-frequency
Transformer, addressing the limitations of traditional convolutional
kernel recursive structures. Xu and Zhang!"”! introduced a rolling
bearing fault diagnosis method based on the Transformer encoder
structure with one-dimensional vision, enabling end-to-end fault
diagnosis by directly inputting raw one-dimensional data into the
model.

Despite the successes of using deep learning for rolling bearing
fault diagnosis, numerous challenges persist. Existing deep
learning-based methods often require a substantial quantity of high-
quality labelled data, with the number of fault state data samples
nearly equalling that of normal state data samples!'®. However, in
industrial production reality, rolling bearings spend the majority
of their time in normal working conditions, with failure periods
being relatively short. Consequently, the number of normal state
samples far exceeds that of fault samples in realistically collected
bearing operational data. While a large number of labelled normal
samples can be accurately identified, the diagnostic outcomes for a
smaller number of faulty data samples are often unsatisfactory!'*2l,
As such, improving the performance of fault diagnosis methods for
imbalanced data becomes a pressing challenge.

In the realm of rolling bearing fault diagnosis, addressing
imbalance problems generally falls into two categories. The first
category focuses on data preprocessing methods, aiming to alter
the imbalance of the dataset at the data level®. This involves
algorithmically generating artificial samples of minority class
samples'? or reducing the number of samples from the majority
class to achieve equilibrium!®, Zhou et al*! and others utilised
generative adversarial networks (GANS) to address data imbalance
by generating additional fault samples. Han ef al* effectively
removed noisy samples by generating artificial samples using an
improved synthetic minority over-sampling technique (SMOTE)
algorithm. However, this category, though effective, consumes
considerable time in sample generation and is prone to overfitting
through the SMOTE algorithm®?”), The second category involves
introducing a penalty factor to the algorithm to undermine the
dominance of the majority class samples by adjusting the cost of
different misclassifications'***!, However, cost-sensitive approaches
often struggle to accurately define classification error costs and lack
an efficient way of evaluating the performance of cost-sensitive
classifiers. Consequently, effectively extracting features from
minority class samples in an imbalanced dataset and developing
fault diagnosis methods targeting imbalanced data pose significant
challenges®!,

In summary, while progress has been made in addressing
imbalanced sample issues in fault diagnosis, several challenges
persist. To address the imbalanced data in rolling bearing fault
diagnosis effectively, this paper proposes an imbalanced data rolling
bearing fault diagnosis method based on a multi-scale self-attention
mechanism and a novel loss function. The proposed method
transforms one-dimensional vibration signals into two-dimensional
images, which efficiently extracts shallow features with a multi-scale
self-attention mechanism. A Ghost bottleneck is used to reduce
the network computations and enhance network generalisation by
connecting different layers of features through a feature pyramid
network (FPN). The novel loss function aims to improve the

performance of handling imbalanced data by diminishing the

dominance of majority class samples and simultaneously boosting

the confidence of minority class samples.
The main contributions of this paper include:

® Enhancement of the networks multi-scale learning ability
through a multi-scale inflationary self-attention (MSIA)
mechanism, addressing the deficiency of traditional self-
attention mechanisms in multi-scale learning for shallow
features and reducing redundant computations.

® Achievement of efficient network operation by introducing
a Ghost bottleneck, which reduces model parameters and
operations, thereby improving diagnostic speed. The use of
a feature pyramid network connects low-level and high-level
features, enhancing network generalisation and ensuring
diagnostic accuracy.

® Design of a novel loss function to mitigate the dominance of
majority class samples by dynamically adjusting the weights of
the geometric mean confidence of each class. This ensures the
network is unbiased in training and more adaptable to complex
sample distributions.

The subsequent sections of this paper are structured as follows:
Section 2 provides background knowledge, Section 3 details
the proposed fault diagnosis methodology for imbalanced data,
Section 4 validates the methodology using rolling bearing datasets
and Section 5 concludes the paper.

2. Related work

2.1 Self-attention mechanism and vision
transformer

In 2017, to address the limitations of traditional RNNs and
CNNs in handling long sequential data within natural language
processing (NLP), Vaswani et al*!! introduced a groundbreaking
structure in their paper, titled: ‘Attention is all you need’: namely
the self-attention mechanism. The self-attention mechanism,
which is capable of comprehensively understanding each position
within input data while simultaneously considering information
from other positions in the sequence (ie emphasising global data
information), proves exceptionally effective in grasping the nuances
between distant words. As self-attention continues to demonstrate
remarkable performance in various NLP tasks, some researchers
have shifted their focus towards its applications in computer
vision. Remarkably, self-attention has yielded outstanding results
in image recognition, classification and image super-resolution
reconstruction34,

The structure of the conventional self-attention mechanism is
shown in Figure 1. Self-attention mechanisms are good at solving
the problem of feature interaction of input data at different
spatial locations, leading to a better understanding of contextual
information. Given a 2D feature map X of size H x W x C (H: height,
W: width, C: number of channels) as input, X is converted to a
key K = XW,, query Q = XW, and value V = XW, by embedding
matrices W,, W, and W, Notably, the implementation of the
embedding matrix s carried out usinga 1 x 1 convolution in concrete
operation. After that, the local relationship matrix R, g-HxWx(mmGy
between the key K and the query Q is given by Equation (1):

where C, is the number of heads and ® denotes the local matrix
multiplication operation used to compute the pairwise relationship
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between each query Q and the corresponding key K in the local

n x n grid in space, where n is the size of the grid in K. Thus, each Conv_
feature R, in the ith spatial location of the matrix R can be represented
by a vector of size n x n x C, and all consist of maps of relationships
(size: n x n) between all the heads C,, local queries Q and keys K.

R further enriches the location information for each 1 x n grid:

Input Output
(O]

where P denotes the 2D relative position embedding within each
n x n grid and is shared among all heads. Next, as shown in
Equation (3), the enhanced local relationship matrix R isnormalised
by applying the Softmax function to the channel dimensions of each
head to obtain the attention matrix A .

0T () (e — 3)

Conv

Output
Finally, the feature vectors at each spatial location of

\Idenﬁty/
A,, are reshaped into C, local attention matrices and aggregated ®)

with all values within each n x n grid to obtain the final Figure 2. Conventional convolution and Ghost module:
output feature map Y (H x W x C). (a) conventional convolution; and (b) Ghost module

R R R R R R R A N S R A I I S T R AT R AR

Unlike the direct generation of feature maps using ordinary
convolution shown in Figure 2(a), the Ghost module first generates
m intrinsic feature maps by conventional convolution. Then, by
performing s cheap linear operations on the intrinsic feature maps,

g g I feature maps that are similar to each other are generated and called
03 g _:H Ghost feature maps. Finally, the intrinsic feature maps are fused
A-H'-'.nﬁf’ﬂ with the Ghost feature map as the new output. In this way, the
weights S Ghost module can provide an output feature map of the same size

as the convolution with a lower number of parameters and reduced
computation time. The number of FLOPS required for the Ghost
module can be calculated as:

lerte N
Y: HxWxC

FLOPS = 1-H'-W’-C-k-k+(s—l)-%-H’-W“d-d... @)
s

where d is the kernel size for linear operations, n = m X s
and the speed-up ratio of the Ghost module with respect to
ordinary convolution is:

Figure 1. Self-attention mechanism

2.2 Ghost bottleneck —— n-H'-W-Ckk
The Ghost moduleis a novel and efficient neural network proposed ’ Z.H -W-Ckk+ (s=1)- Zwwedd
by Han et al in 2020. It aims to solve the problems of feature : § ..(8)
redundancy with highly similar feature maps and an overly large - n-k-k N s C_ s
number of parameters when using mainstream CNNs to extract 1 s—1 s+C-1
target features. This is because redundant feature maps are i Cok-kt T d-d
unavoidable in convolutional operations and neural networks also ) .
need redundant feature maps to fully understand the input data. The model parameter compression ratio is:
Rather than circumventing redundant feature maps, in the case of nCkk s C
the Ghost module it is believed that it is better to use them to reduce ratio = - 1 R | ~s..(9)
the amount of computation. The ordinary convolution operation is LGk ke —sded
shown in Figure 2(a). s s

Let the dimensions of the input data X be: H x W x C; then, the The Ghost bottleneck consists of the Ghost module, as shown
output obtained after an ordinary convolution operation is as follows: in Figure 3.

Y= X b i (5)

2.3 Feature pyramid network

FPNsP are commonly used in the field of target detection.
Compared to a traditional pyramid network, the FPN can fuse
feature maps with strong low-resolution semantic information and
high-resolution feature maps with weak semantic information but
rich spatial information with less computational increase. This allows
the features with high resolution and high semantic information to
be obtained at the same time, improving the networks perceptual
... (6) ability and detection accuracy. In addition, the FPN structure is

where * is the convolution operation, f is the convolution filter
in the convolution layer, b is the bias in the convolution and
Y e#*WxC js the output feature map with C channels, where H'
and W' are the height and width of the output data, respectively.
Let k be the size of the convolution kernel and n be the number of
convolution kernels, then the number of floating-point operations
per second (FLOPS) in the convolution process can be calculated as:

FLOPS =n-H'-W'-C-k-k

—
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simple and easy to implement and is able to match the backbone
network fusion feature map with a small amount of computation
to enhance the network feature representation capability. The FPN
fuses feature maps of different resolutions by means of top-down
paths and lateral connections to form a multi-scale feature pyramid,
as shown in Figure 4.

Ghost module

Ghost module

A\

Output

(a)

Figure 3. Ghost bottleneck for different stride lengths: (a) stride = 1;
and (b) stride =2

D N R I I R RN

Figure 4. FPN structure

3. The proposed method

In this section, the proposed method is presented in detail in
three parts. Firstly, the MSIA mechanism is introduced. Then,
the novel loss function (Rloss) is introduced. Finally, the overall
framework of the fault diagnosis model for imbalanced data is
presented.

3.1 One-dimensional data transformation
based on Gramian angular field

In recent years, some scholars have proposed a variety of methods
for converting one-dimensional signals into two-dimensional
images. These methods often rely on expert experience and expertise
while preserving fault characteristics'*”), This dependency limits the
universality of these methods. In order to address these issues, a
Gramian angular difference field (GADF)-based transformation®®®!
is used to convert 1D signals into images as a way of visualising 1D
time-series.

Let T={t,1,...,t} bea time-series with n samples. The GADF
transform of T'is divided into three steps, as follows:
Step 1: Scale the time-series by normalising the input time-series

data to the range [-1, 1):

Step 2: The normalised and scaled time-series signals are
transformed from Cartesian coordinates to polar
coordinates; this transformation preserves the temporal
information in the input signals and is calculated as follows:

¢ = arccos(?,),we (| | (11)

where ¢, is the polar coordinate of the angle.

Step 3: Identify temporal correlations in different time intervals by
calculating the delta function difference between the polar
coordinates of each time point and encode them into the
geometric structure of the Gramian matrix:

GADF, | = [sin(ga,—rp})]:
JI=T2. 7T \[I-72, vi, je (1,...,n}

where I is a unit row vector and T and T denote different
row vectors. The main diagonal of the matrix contains
the raw values of the time-domain signals and the angle
information. Using the main diagonal, the GADF transform
reconstructs the time-series into high-level features similar
to those used in deep learning and further transforms the
Gramian matrix into an image. The GADF transform is
non-parametric, does not require prior assumptions about
the data distribution or model and is applicable to a wide
range of time-series data. In addition, the GADF transform
captures the non-linear relationships and temporal
patterns in the pairs of data with good tableau capability
and robustness.

3.2 MSIA mechanism

Due to the complex working environment of rolling bearings
and variable working loads, the vibration signals of bearings
often have multi-scale complexity. The traditional self-attention
mechanism lacks a certain multi-scale learning ability and has
excessive redundant computation in the shallow attention matrix.
‘Therefore, an MSIA mechanism was designed for fault diagnosis,
as shown in Figure 5.

#12)

Q
Sliding window
inflationary
attention
Y: HxWxC
X: HxWxC \ = K
v L Heads
Figure 5. MSIA structure

Unlike a traditional self-attention mechanism, the MSIA
mechanism is inspired by null convolution and enables the network
to acquire multi-scale learning capabilities through the use of
sliding window inflationary attention (SWIA). SWIA uses a sliding
window of size w X w to sparsely select a key K and a value V
centred on a position (j, j) in the original feature map and then

- t,— min(r) performs self-attention. SWIA is described below:
t, = —_—,Vie (1,...,n}....(10)
max(1) — min(r) Y = SWIA(Q,K, V) eeeissssesssinns (13)
Insight - Vol 66 « No 11+ November 2024 L
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where r is the inflation coefficient, which is used to control the
sparsity, and Q is the query matrix. For the position (i, f), the
component y, corresponding to the output Y of the SWIA operation
is calculated as follows:

Yy = An( 9K, vr) =
q,KT
Soﬂmax[ LA ]V,_, 1<i<W, 1<j<H
Vi
where K and V. denote the key K and the value V selected from the
feature map and g, is a query positioned at coordinates (i, j). If the
position (i, j) is given, the sliding window selects the key K and the
value V at (i, j) for self-attention. SWIA simply makes use of the
zero-padding strategy typically used in convolution to maintain the
size of the feature map, thus querying the edges of the feature map.
By sparsely selecting query-centric keys K and values V, SWIA can
be made to satisfy locality and sparsity, thus effectively establishing
remote dependencies.

In addition to this, unlike traditional self-attention mechanisms,
for a given input X, the MSIA mechanism obtains the corresponding
query Q key K and value V by linear projection. The feature-
mapped channels are then partitioned into Num, different heads,
and SWIA is executed in different heads using different inflation
rates, thus taking full advantage of the sparsity of the self-attention
mechanism at different scales. MSIA is described as follows:

h, = SWIA( QK V,.r,), 1<i<Num, ....(15)

Y = Linear (Concat[h T ...,hm‘mh]) wistiagiias16)

where 7, is the inflation rate of the ith head and Q, K and V, denote
the feature map slices input to the ith head. The outputs of each
head are concatenated together and then output to a linear layer for
feature aggregation. By setting the inflation rate for different heads,
the MSIA mechanism efficiently aggregates the input data to focus
on the perceptual domains within different scales and effectively
reduces redundant computations without adding additional
computational cost.

3.3 Rloss

In traditional deep learning-based models for fault diagnosis,
the standard cross-entropy (CE) loss function® is usually used
for training. Higher accuracy can be achieved using CE when
the amount of data for each type of fault is roughly equal to the
amount of normal data. Let {d, ]} € {1, 2, ..., N}, where d are the
training data and _ are the labels corresponding to these data. The
expression for CE is as follows:

N c
loss cp = = Z log(P:-) =- i Z log(P:") =- Z Num _og(P°)... (17)
n=1 e=1

c=lnd, =c
where P, denotes the prediction probability of the input data d, on
all categories and P”"' denotes the probability of the ith category.
1

Pc= H P's) ™™ denotes the mean geometric confidence
nl =c n

of category ¢ and Num_ denotes the number of samples in
category c.

In reality, however, the amount of fault data for rolling bearings
is usually much smaller than the amount of normal data. When
training data with imbalanced categories are present, using only
the accuracy rate can no longer fully measure the diagnosis. Taking
the binary classification problem as an example, the confusion

matrix can be used to visualise the classification results, as s|
in Table 1. iy

Table 1. Confusion matrix
True positive (TP)
False positive (FP)

Real situation
Positive

False negative

In Table 1, the TP and TN categories represent the samples
with correct classification results and the FP and FN categories
represent the samples with incorrect classification. On this basis,
five classification metrics can be used, namely: accuracy (Ac),
G-mean value (G), precision (P), recall (R) and F, value (F), which
are calculated as follows:

Negative

4 TP+ TN (18)
cc = T e
TP TN (19
=0 TREIN THE R e )
TP
P= e
TP+ FP
ke TP @
i iy )
2X PXR
B s s (22)
PXR

From Equation (18), it is easy to see that if the number of
positive class samples is much larger than that of the negative class
samples, the classification result of the negative class does not have
a significant impact on Acc.

In fault diagnosis for imbalanced data, there is a large gap
between the numbers of normal and faulty samples. Using
Equation (17), CE uses the number of samples in each category as
a weight, thus optimising the average geometric confidence for that
category. This inevitably leads to a loss function that is biased in
favour of a category when the Num_of that category is large, which
then leads to inaccurate model predictions. In such cases, the
diagnostic results obtained from the continued use of CE would not
be satisfactory. In order to deal with the above problem of multi-
fault diagnosis with category imbalance, a CE-based variant of the
function is proposed: the recall loss function (Rloss).

As can be seen from Equation (21), there is no FP in the
denominator of R, thus providing an intuitive indication of
whether a particular class of samples has been accurately classified.
Badrinarayanan et al*® demonstrated that the inverse of the
frequency of occurrence of a certain type of sample can be used as
a weight for CE. Inspired by them, the CE was weighted using R as
a weight, as follows:

i ZC: FN,
Rloss = - ent i 1 s
7Y e
..(23)
i P, &
20 2 LSy log(P) =— = :
2| NS Rt ;(‘ R )Num _log(P)

where FN, and TP, are the FN and TP of the category ¢ sample.
In Rloss, the weights are defined as the R for that category. This
is because in imbalanced classification problems, the majority
class has a smaller FN and a larger R, so Rloss suppresses the
gradient of the majority class samples. Conversely, the gradient of a

—
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minority class would be elevated. The weights take into account the
classification performance of the network for each category in order
to better handle category imbalance.

However, in network training, the weights of each class
change following the update of network parameters. As a result,
the instantaneous performance of the network also varies with
the weights of each class. In order to react to the instantaneous
performance of the network, a time factor is introduced as follows:

C C
Rloss = — EI(I—RF)Numrlug(l") - - E. z (1-R,,Ylog(pn)... (24)
o= Snil=c
where R, is the recall of category ¢ at moment f and n:], = cis all
samples labelled ¢. With Rloss, the weights provide a different loss
contribution for each category, making the network more inclined
to improve the poorly performing categories, thus improving the
overall classification performance. The steps to implement Rloss are
shown in Table 2.
It is worth mentioning that, in practice, a zero FN and TP for
a sample type in a batch at the same time would result in a zero
denominator for the weight calculation. To prevent this, R, = 0
is made for this sample to increase the weight of the sample. The
core idea of Rloss is to integrate the factors of true positives, false
negatives and category imbalance to make the network better adapt
to complex data distributions.

3.4 Efficient rolling bearing imbalanced data
diagnosis framework based on the MSIA
mechanism and Rloss

In summary, the proposed rolling bearing fault diagnosis framework
for imbalanced data in this paper is shown in Figure 6. The steps are
as follows:

Step 1: Acquisition of rolling bearing vibration signals.

Step2: Conversion of the one-dimensional vibration signals into
a two-dimensional image using the GADF transform
and division of the data into a training set, testing set and
validation set.

Step 3: Training of the network using the training strategy shown
in Figure 6 and saving the network parameters that have
the best performance on the test set.

Step 4: Validation of the trained network using the validation set
data and outputting the diagnostic effect.

The network backbone integrates the MSIA mechanism and
Ghost bottleneck. Initially, the input image is resized to 224 x 224
and the network achieves multi-scale learning by incorporating
MSIA blocks in the lower layers. After effectively capturing low-level
information, the features are downsampled once. Subsequently,
a layer of 3 x 3 convolution, followed by two Ghost bottlenecks,
is employed to reduce computation and extract advanced data
information, generating high-level features. Feature fusion through
an FPN enhances the generalisation and robustness of the network.
Finally, a dropout operation mitigates overfitting after another layer
of convolution and average pooling.

For network training, the parameters include a 30 epoch
training cycle, an initial learning rate set to 0.001 and a batch size
of 32. Firstly, the network parameters are initialised and then the
data are used for training. The training process includes calculating
the loss function, updating the weights by backpropagation using
the Softmax classification function and optimising using the Adam
optimiser. When the epoch reaches the specified number, the
training ends and the network parameters are saved.

Table 2. Rloss implementation steps

Algorithm: Rloss

Input:  Training data D, each corresponding to the true label
the network outputs a probability distribution p

OQutput: Rloss
Start
Step 1:  Initialised number of categories

| Step2:  Determine the prediction category for each sample based on
the network’s output probability distribution p
Step 3:  Find the samples where the network prediction matches the
true label / and save them in the set TP
Step4:  Find unique category tags in the real label ! and count the
number of times they appear in the real label
' Step5:  Calculate the number of true positive samples for each
category
Step6:  Find the samples where the network prediction does not
match the true label / and save them in the set FN'
Step7:  Find unique category labels in the samples that do not match
4 the true labels and count the number of times they appear in

the mismatched samples
|Step8:  Calculate the ber of false negati ples for each
category

Step9: CalculateR ,

Step 10:  Calculation of weights

Step 11:  Apply weights to the cross-entropy loss for each sample to
obtain a weighted loss value

End

Figure 6. Schematic diagram of imbalanced rolling bearing fault
diagnosis framework based on the multi-scale self-attention
mechanism and novel loss function

R I R R R R R R R R R R RO I )
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4. Experiments and analyses

In order to verify the fault diagnosis performance of the method
proposed in this paper for imbalanced data, fault diagnosis
experiments were conducted using the Case Western Reserve
University (CWRU), USA, bearing dataset’® and the Southeast
University, China, bearing dataset in!®. The fault diagnosis
capability of the method proposed in this paper for different
imbalance rates was experimentally verified. To ensure the fairness
of the experiments, all experiments were run on an AMD Ryzen?7
5800H central processing unit (CPU) @ 3.2 GHz, Nvidia RTX 3060
(12 GB) with 16 GB random-access memory (RAM) and the
framework used for the experiments was PyTorch1.12.

4.1 Case 1
4.1.1 Dataset description

began to decline by varying degrees. This is due to the fact that the
increase in the imbalance rate meant that the network did not learn
enough about the minority type of samples and the network started
to favour the majority type of samples. When the imbalance rate
reaches 10:1 and 20:1, it can be seen that the classification accuracies
of some of the comparison methods have fallen to the lowest level,
with GhostNet even falling below 80%. At the same time, it can be
seen that MS has the shortest diagnosis time of all models thanks
to the excellent lightweighting. ResNet-34 and ACmix-ResNet
have longer diagnosis times due to the deeper network and the
complexity of the network structure due to the extensive use of the
self-attention mechanism. The proposed approach did not have the
shortest diagnosis time, due to the fact that it also uses a variant of
the self-attention mechanism, but gives the best diagnosis results.

[ T R T R R R

Table 3. Details of Case 1 data

The experimental dataset here originates from the rolling bearing )
test-bed at Case Western Reserve University, utilising an SKF 6205 Notmal "
bearing model. Bearing failures, induced artificially, are categorised % ST

into three types: ball failure (BF), inner ring failure (IF) and outer 01 BR 0007
ring failure (OF). Additionally, fault points with diameters of 02 IF 0.007
0.007", 0.014", 0.021" and 0.028" were machined using the electro- 03 OF 0.007
discharge method. These faults were further classified into 12 status BF 0,014
labels based on diverse locations and sizes, as outlined in Table 3. o ’
Acceleration sensor data were collected at a sampling rate of 05 IF 0.014
12 kHz under load conditions of 0 hp, 1 hp, 2 hp and 3 hp. For 06 OF 0.014
this study, the data under the 0 hp load condition were utilised. 07 BF 0.021
The number of sampling points was set to 128 and the normal

state data were randomly selected and converted using a GADF 08 13 a.021
to generate 1000 samples after sliding sampling. Fault data were 09 OF 0.021
selected based on varying imbalance rates, as detailed in Table 4. 10 BF 0.028
The dataset was then randomly divided into training data and a 1 IE 0.028

validation set in a ratio of 7:3. Subsequently, the training data were
further divided into a training set and a test set, maintaining a
ratio of 7:3,

4.1.2 Comparison methods

Table 4. Imbalance rate division of data for Case 1

Number of normal data | Number of fault data Imbalance rate

In order to validate the performance of the proposed method, 1000 1000 1:1
several advanced deep learning methods were selected as 1000 500 21
comparison methods, namely GhostNet, MobileNetV3-Large
(ML), MobileNetV3-Small (MS), ResNet-34 and ACmix-ResNet!!. 1000 209 s
In order to ensure the fairness of the experiment, the numbers of 1000 100 10:1
training epochs were all set to 30, the initial learning rate settings 1000 50 20:1
were all the same and the comparison methods used CE as the loss 1000 20 50:1
function. To verify the stability of the methods, each experiment

1000 10 100:1

was repeated 20 times.

4.1.3 Experimental results and

e T I T R R R I I R A S R

Table 5. Accuracy of each method at different imbalance rates

analysis
In order to initially assess the performance Imbalance ACmix-ResNet
of the method proposed in this paper, the LA method
performance of each method for different 1:1 97.50%  97.47%  97.02%  98.26% 97.65% 98.08%
imbalance rates was first evaluated in terms 21 96.88%  98.15%  9641%  97.79% 98.00% 98.10%
°fa;°s“$;"’ba: ::::“f‘r;“mn_‘rb:;lz's, N— 5:1 88.75%  92.60%  89.17%  95.20% 95.31% 97.92%
inbalariceratewas1sa, allmethodsschieved a 10:1 7842%  88.10%  8238%  85.71% 88.41% 98.25%
high accuracy because the number of samples 20:1 7742%  88.39%  87.53%  92.47% 93.55% 98.27%
of each type of faulty data was approximately 50:1 8743%  9235%  91.80%  95.63% 92.62% 99.18%
equal to the number of samples of normal 1001 9249%  95.50%  9429%  96.69% 96.99% 99.09%

data. When the imbalance rate rose to 5:1,
the accuracies of the comparison methods

—
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It is worth noting that as the imbalance
rate rose still further, the data were already
in a highly imbalanced state. At this point,
the accuracies of the comparison algorithms
started to gradually increase and even
when the imbalance rate reached 100:1,
some of the comparison methods, such as
ResNet-3¢ and ACmix-ResNet, achieved

Training loss (log scale)
5

5

3

b3

Validation loss (log scale)

roughly the same accuracy as when the
imbalance rate was 1:1, However, this does
not mean that the diagnostic results of both
methods were excellent. To further assess
the diagnostic effectiveness, the precision P,
recall R, G-mean and F,-value achieved
by each method were calculated for comparison when the
imbalance rate was higher than 5:1, as shown in Figure 7.

(b) validation loss

|
Our
method

Figure 7. Failure classification metrics for different methods at
different imbalance rates: (a) 10:1; (b) 20:1; (c) 50:1; and (d) 100:1

P N N N R N R R R R R IR )

Epoch

(a) (b)
Figure 8. Comparison of loss functions for an imbalance ratio of 10:1: (a) training loss; and

P R T I R R I R R R R R R R R R I R R R R R R

Meanwhile, taking the imbalance ratio of 10:1 as an example, the
iterative curves of the loss function were plotted for different models,
as shown in Figure 8. It can be seen that all the algorithms completed
convergence within 30 epochs, among which the proposed method
converged the fastest and had the lowest final loss value.

To further demonstrate the reliability of the proposed method,
it was picked alongside GhostNet and ResNet-34, the receiver
operating characteristic (ROC) curves? were plotted and the
average area under the ROC curve (AUC) values was calculated to
show the classification performance when the imbalance rate was
higher than 5:1. When a certain class of samples are considered as
a positive class of samples, the rest of the samples are all negative
classes. ROC curves can only reflect a binary classification problem,
so the false positive rate (FPR) was plotted as the horizontal
coordinate of the ROC curve and the true positive rate (TPR)
was plotted as the vertical coordinate (see Figures 9-12). These
quantities were calculated as follows:

FP
FPR = ——— oo (25)
FP+TN
TP
TPR = — s (26)
TP+ FN

The AUC value represents the area under the ROC curve and is

Combining Table 5 with Figure 7, it can be
seen that the P, R, G and F, values obtained
using the comparison methods were lower
than 0.9 when the imbalance rate was 10
and the accuracies obtained using them
were also lower than 90%. As the imbalance
rate increased further, although the average
accuracies of some of the comparison methods
increased, the classification performance of
the comparison methods gradually decreased,
as can be seen from the remaining four
metrics. This suggests that the comparison
methods were unable to accommodate highly
imbalanced data distributions and were less
diagnostic. The proposed method showed a
stable performance for different imbalance
rates and even when the data were in a highly
imbalanced state, the classification indices
could reach more than 95%. This verifies that
the proposed method not only has better
feature learning ability but it also has better
imbalanced classification ability after weighting
the minority class samples using Rloss.

P—

mainly used to measure the generalisation performance of a model.
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Figure 9. ROC curves for fault classification by different methods at an imbalance rate of
10:1: (a) GhostNet; (b) ResNet-34; and (c) our method
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Figure 10. ROC curves for fault classification by different methods at an imbalance rate of
20:1: (a) GhostNet; (b) ResNet-34; and (c) our method
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Figure 11. ROC curves for fault classification by different methods at an imbalance rate of
50:1: (a) GhostNet; (b) ResNet-34; and (c) our method
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while TE-SAMB-NN"! is an integrated multi-
task rolling bearing diagnosis method based
on representation learning for imbalanced
sample conditions.

4.2.1 Data description

Bxperimental data were obtained from the
driveline power simulator at the School
of Mechanical Engineering, Southeast
University, China'®, The system operating
condition is 20 Hz (1200 r/min)-0 V and
there are five sample types, which are normal,
rolling body failure (BF), compound failure
(CP), inner ring failure (IF) and outer ring
failure (OF), as shown in Table 7. As for Case 1,
this case took 1000 samples of normal data
and took different fault data according to
imbalance rates of 10:1, 20:1 and 50:1. The

W W
False positive rate

(b)

W 3
Falso positive rate

(@)

Figure 12. ROC curves for fault classification by different methods at an imbalance rate of

100:1: (a) GhostNet; (b) ResNet-34; and (c) our method

As shown in Figures 9-12, the AUC value takes the range of [0,1].
When 0.5 < AUC < 1, the classifier has some predictive value and
the larger the AUC value, the higher the model reliability. When
AUC = 0.5, it means that the classifier relies on random guesses
for classification and the model has no predictive value. When
AUC < 0.5, it means that the classifier is worse than a random
classification and is not reliable. Since this case used ROC curves
to judge the effectiveness of multi-class fault diagnosis, when a class
was considered as a positive class, all the remaining classes were
considered as negative. This operation produced 12 ROC curves for
each method and the average AUC values for each method were
calculated at different imbalance rates, as shown in Table 6.

e s s e s s e e s s es e s et st s s s et ss st es s

Table 6. Mean AUC values for each method at different imbalance
rates

Imbalance rate GhostNet ResNet-34 Our method

10:1 0.9689 0.9901 0.9993
20:1 0.9520 0.9956 0.9998
50:1 0.9762 0.9973 0.9999
100:1 0.9746 0.9967 0.9995

Combining Figures 9-12 with Table 6, this again proves that
the proposed method can achieve better diagnostic results for
fault diagnosis for imbalanced data. The method had the highest
troubleshooting accuracy and the best stability for different
imbalance rates. In summary, the proposed method has a significant
advantage over advanced deep learning algorithms in terms of fault
diagnosis performance in experiments with different imbalance
rates.

4.2 Case2

In order to verify the state-of-the-art of the proposed method,
ResNet-34 was retained while also selecting two new rolling
bearing fault diagnosis methods for imbalanced data as
comparison methods. Among them is the generative adversarial
network based on deep feature enhancement (DFEGAN)")

training set, test set and validation set were
divided in the same way as in Case 1.

4.2.2 Experimental results and
analysis

The accuracy rates obtained for different
imbalance rates are shown in Table 8. It can be seen that when the
imbalance rate was 10:1, DFEGAN had the highest accuracy rate
of 95%. When the imbalance ratio was 20:1, DFEGAN and the
prosposed method achieved equal accuracies of 96.39%, which is
significantly better than the other two compared methods. When
the imbalance rate was 50:1, the prosposed method achieved
the highest accuracy of 97.79%, which is higher than 97.22% for
DFEGAN, 94.44% for ResNet-34 and 95.68% for TF-SAMB-NN.

Table 7. Details of Case 2 data

Class label

Sample size
(50:1)

Fault
location

Sample size

Sample size
(20:1)

(10:1)

00 Normal 1000 1000 1000
01 BF 100 50 20
02 CF 100 50 20
03 IF 100 50 20
04 OF 100 50 20

Table 8. Accuracy of each method at different imbalance rates

Our
method

TE-SAMB-NN
ratio
10:1 87.38%  95.00% 93.33% 94.52%
20:1 9111%  96.39% 95.28% 96.39%
50:1 94.44%  97.22% 95.68% 97.79%
Average 340565 4256785 21374 183.595
time

In order to analyse the classification results of all methods more
intuitively, the fault diagnosis results were analysed by introducing
confusion matrices, as shown in Figures 13-15, where the horizontal
coordinates represent the predicted labels and the vertical
coordinates represent the true labels. It can be seen that ResNet-34,
trained on data with three different imbalance rates, had a large
number of sample classification errors in the validation set,
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and the diagnostic results were unsatisfactory. Combining
Figures 13-15 with Table 8, it can be seen that the remaining three
methods performed better at the three imbalance rates. Among
them, DFEGAN had the best diagnostic effect when the imbalance
rate was 10:1. When the imbalance rate was 20:1, DFEGAN and
the prosposed method were not only optimal in terms of accuracy,
but there were three types of sample in the confusion matrix with
classification accuracy higher than 90%. When the imbalance rate
was 50:1, the prosposed method and DFEGAN had a classification
accuracy higher than 95% for two types of sample and 80% for
two types of sample. Compared to TE-SAMB-NN, a smaller
classification error rate was achieved for the composite fault (CF)
type. The excellent performance of DFEGAN was due to the large

w0

& L4 &
Predicted labels
(c) (d)
Figure 13. Confusion matrices for fault classification by different
methods at an imbalance ratio of 10:1: (a) ResNet-34; (b) DFEGAN;
(c) TF-SAMB-NN; and (d) our method
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Figure 14. Confusion matrices for fault classification by different
methods at an imbalance ratio of 20:1: (a) ResNet-34; (b) DFEGAN;
(c) TF-SAMB-NN; and (d) our method

p

number of training samples generated by DFEGAN. However,
training DFEGAN requires at least 100 epochs to be set up, which
will take a lot of time and computer resources. In contrast, the
prosposed method does not need to generate artificial samples and
the time required for diagnosis is greatly reduced.

In summary, considering the time required for diagnosis and
the diagnostic effect, the prosposed method has a certain degree of
sophistication,
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Figure 15. Confusion matrices for fault classification by different
methods at an imbalance ratio of 50:1: (a) ResNet-34; (b) DFEGAN;
(c) TE-SAMB-NN; and (d) our method
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4.3 Ablation experiments

In order to verify the impact of Rloss on the results in fault diagnosis,
the experimental data from the first two cases was used, trained
with CE and Rloss, respectively, so as to compare the impact of the
two loss functions on the classification results. In order to ensure
the stability of the experiment, each loss function was performed 20
times and averaged. The accuracy results are shown in Table 9 and
the comparisons of precision rate P and other indices are shown in
Tables 10-13.

Table 9. Comparison of accuracy achieved with different loss
functions

Case_1 Data

94.13% 93.54%
97.93% 98.49%

Case_2 Data

89.29%
93.81%

90.83%
95.56%

95.68%
96.63%

It can be seen that when the network used CE as the loss function,
the diagnostic effect was similar to that of ResNet-34 when combining
the various classification metrics. This shows that the network is
not inferior to good deep learning networks in terms of feature
extraction capability. However, the use of CE makes the network

Insight « Vol 66 -+ No 11 - November 2024
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ill-equipped to handle imbalanced data and, as the imbalance rate
increases, the problem of degradation of classification performance
arises. Better diagnostic results can be achieved when Rloss is used
as the loss function. This again proves that the use of Rloss can
indeed be effective in improving the classification performance of
the network for imbalanced data, making the network better handle
the data under realistic working conditions.

Table 10. Comparison of precision obtained with different loss
functions

Case_1 Data
mbcerse | 102 | ot

0.8972 0.8333 0.7639
0.9639 0.9611 0.9444
_
0.8301 0.7962 0.5979
0.8567 0.926 0.8293

et e s s s s s s sssss st s st assssserressssssereenS

Table 11. Comparison of recall achieved with different loss
functions

0.9132 0.8512 0.8906
0.9657 0.9617 0.9554

0.7891 0.8076 0.5786
0.8955 0.8709 0.7886

Table 12. Comparison of G-mean values obtained with different
loss functions

0.9501 0.9146
0.9815 0.9797
Case_2 Data

[ 2 ]
0.8713 0.6661
0.9102 0.8539

I

0.9367
0.9760

Table 13. Comparison of F, values obtained with different loss
functions

Case_1 Data

0.8892 0.8304 0.7778
0.9639 0.9607 0.9450

Case_2 Data

0.8093 0.7979 0.5798
0.8687 0.8878 0.7902

5. Conclusion

The method proposed in this paper can be used for rolling bearing
fault diagnosis for imbalanced data. One-dimensional vibration
signals are converted into two-dimensional images using the GADF
transform, thus taking full advantage of the feature extraction
capability of convolutional neural networks. In the network design,
a multi-scale inflationary attention mechanism is introduced to
enhance the network’s multi-scale learning ability for shallow features
and reduce redundant computation. Then, a Ghost bottleneck
module is added to ensure the network learning ability while
reducing the number of network parameters and computing time.
The generalisation of the network is then improved by connecting
low-level features with high-level features through an FPN module.
Finally, novel loss functions are proposed so that the network can be
trained to handle imbalanced data more efficiently. The reliability of
this method has been effectively verified using the CWRU dataset
and the Southeast University dataset for experimental analyses in
comparison with state-of-the-art deep learning methods. Future
work will focus on the lightweighting of the model and the data
imbalance between different working conditions.
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Abstract

The vibration signals of rolling bearings are inevitably affected by noise and working con-
ditions. The use of one-dimensional raw signals converted into images for rolling bearing
fault diagnosis has achieved good results, but ignores the large model and diagnostic speed,
and thus it is not suitable for practical fault diagnosis. To address this problem, we propose
a method based on Ghost module and adaptive weighting module. The method utilizes
Ghost modules and coordinated attention to make the model lightweight while improving
the network’s ability to extract features of the input data. Additionally, in order to effec-
tively utilize the similar feature maps generated by convolution, an adaptive weighting
module is proposed to further simplify the learning process and reduce the network train-
ing time. The validation using the datasets from Case Western Reserve University and the
Association for Mechanical Failure Prevention Technology demonstrates the effectiveness
of the proposed method. Under the same conditions, our method achieves 98.62% accuracy
with only one-tenth of the parameters of classical neural networks. In noise environment
simulations, our method exhibits strong noise immunity with 98.64% accuracy, along with
robust diagnostic and generalization performance under various loads. Compared to the
advanced fault diagnosis algorithms, our method boasts a 4% higher average accuracy and
has its superiority in rolling bearing fault diagnosis.
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1 Introduction

In modern industrial systems, mechanical rotating body has evolved towards high speed,
mass and integration, and plays a vital role in aviation, industrial production and high-
speed railways [1]. Rolling bearings, as important parts of mechanical equipment, play a
role in supporting the rotating body. reducing friction and driving the transmission. If a
bearing failure occurs, it would lead to an unexpected stoppage of the mechanical rotating
body or even the entire mechanical equipment. thus causing serious casualties and eco-
nomic losses [2, 3]. As rolling bearings are in a working environment with frequent load
changes, short start-stop cycles and many sources of interference for long periods of time
[4], therefore, the study of rolling bearing fault diagnosis has been a hot topic of research
[5].

The current mainstream methods for rolling bearing fault diagnosis can be divided into
two types: fault diagnosis methods based on fault mechanisms and data-driven fault diag-
nosis methods [6]. The fault mechanism-based diagnosis methods analyze the vibration
characteristics of a damaged bearing by studying fault mechanism and building a kinetic
model [7], which usually require extensive a priori knowledge and accurate system models,
they are difficult to implement for complex systems. The data-driven methods do not rely
on fault generating mechanisms and allow fault diagnosis to be carried out in the absence
of a priori knowledge. As a result, some classical machine learning methods have been pro-
posed, such as KNN [8], plain Bayesian [9], SVM [10, 11] and artificial neural networks
[12]. These methods are also known as traditional data-driven methods. However, they still
require a priori knowledge of the domain for fault extraction and the shallower network
structure limits the fault diagnosis performance. In recent years, machinery and equipment
inspection and fault diagnosis have entered the "era of big data analysis". Deep learning
has received a lot of attention from researchers due to its powerful feature extraction capa-
bility. He et al. [13] used Fractional Fourier Transform (FRFT) and Deep Belief Network
(DBN), and obtained good diagnostic results. Gao et al. [14] used multi-channel continu-
ous wavelet transform (MCCWT) followed by joint long and short-term memory network
(LSTM) to mine temporal features and local features. Kong et al. [15] combined the differ-
ent types of features obtained by training several deep self-encoders (DAE) with different
activation functions into a single feature pool, and then evaluated the features to construct a
classifier. Zhang et al. [16] developed an enhanced Wasserstein GAN with a gradient pen-
alty to generate high quality synthetic samples for faulty sample sets, thus solving the data
imbalance problem.

Convolutional neural network (CNN) is one of the most important models in deep
learning. With its powerful feature extraction capability, CNN has achieved significant
results in fields, such as image classification, surface defect detection [17], speech rec-
ognition [18] and text translation. Eren et al. [19] introduced CNN to the field of fault
diagnosis by using a one-dimensional convolutional neural network to train a deep learn-
ing model directly on the original signals. Zhang et al. [20] used a deep convolutional
network with a wide first layer (WDCNN) to extract and suppress high-frequency noise
to improve diagnostic accuracy. Zhang et al. [21] used a neural network with a residual
structure, which greatly improved the flow of information throughout the network. Hoo-
gen et al. [22] proposed a model built on the WDCNN framework to improve the perfor-
mance of classification of fault types by using multivariate time series data. Although
the above methods have achieved good results in dealing with rolling bearing fault diag-
nosis problems. However, they don’t take into account the complex characteristics of
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vibration signals on different time scales. Multiscale learning allows access to feature
information at different time scales, thus improving the feature learning capability of
the network [23]. Shi et al. [24] combined the concept of multiscale learning with atten-
tion mechanisms and residual learning to enable the network to extract richer fault fea-
tures directly from the original vibration signals. Wang et al. [25] established a con-
volutional neural network with multi-scale feature fusion, thus solving the problem
of noise interference and workload variation. Although the above works have yielded
good results in terms of fault diagnosis. However, in the era of big data, problems such
as data diversity lead to the fact that the 1D CNNs used in the above methods cannot
fully utilize the feature extraction capability of the CNNs, thus affecting the diagnos-
tic results of the network. Therefore, rolling bearing fault diagnosis researchers have
begun to convert fault signals into image data, thus taking full advantage of the special
diagnostic extraction capabilities of CNNs. Liang et al. [26] used wavelet variations to
convert one-dimensional vibration data into two-dimensional time—frequency maps as
input data for CNN, thus enabling composite fault diagnosis of rolling bearings. Zhang
et al. [27] used the time—frequency map obtained by using Short Time Fourier Trans-
form (STFT) as the input data for CNN and achieved good diagnostic results. Yao et al.
|28] used an efficient neural network combined with the CBAM attention mechanism to
achieve fault diagnosis of bearings in urban railways. Wang et al. [29] proposed a new
method based on erosion operations (EOSTI) to convert time-domain vibration signals
into RGB images, and verified the feasibility of the method using AlexNet-based CNN.
The above methods make full use of the performance of CNNs by converting 1D signals
into 2D images, but with little consideration of the model size and diagnostic efficiency.
This results in such methods generating a large number of redundant features during
computation, severely wasting the computational resources of the device and consuming
a large amount of time, rendering the above methods inapplicable under practical condi-
tions [30].

In order to solve the above problems, we first convert one-dimensional vibration sig-
nals into grey-scale images, so as to reduce the interference of noise in the original sig-
nals. The Ghost bottleneck is improved by using coordinate attention (CA) to enhance
its performance. In addition, we propose an adaptive weighting module to avoid spend-
ing a lot of computational resources while making the model understand the input sig-
nals more comprehensively. Finally, the learned features are fed into the global average
pooling and the Softmax function is used to achieve fault diagnosis of rolling bearings.
The proposed method is validated by using the datasets of Case Western Reserve Uni-
versity (CWRU) and the Mechanical Failure Prevention Technology Society (MFPT).
The experimental results show that the method proposed in this paper has high accu-
racy, good noise immunity, small model size and good diagnostic efficiency. The contri-
butions of this paper are summarized as follows:

(1) One-dimensional vibration signals are converted into grey-scale images as inputs to
reduce the interference of noise. We use CA to improve the Ghost bottleneck and
introduce it into the model. Reducing the number of model parameters and diagnosis
time while improving the network’s ability to focus on 2D image coordinates improves
the generalization of the network.

(2) We propose an adaptive weighting module based on dynamic convolution to efficiently
process the redundant feature maps generated by the network. The representational
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power of the network is improved by changing the existing equal processing of attention
and by constructing adaptive weighting modules to dynamically learn signal features.

(3) The experiments on the CWRU and MFPT datasets show that the proposed method
has good noise immunity and generalization capability, and has a small model size and
a short diagnostic time. It is demonstrated that the method proposed has a high fault
diagnosis performance and can accurately classify the types of faults under various
loads.

The remainder of this paper is organized as follows. Section 2 introduces GhostNet, the
coordinate attention mechanism, and dynamic convolution. Section 3 describes the pro-
posed method in detail. Section 4 evaluates the proposed method through the experiments
and analyses the results. The conclusions of this paper are given in Sect. 5.

2 Theoretical background

The main content of this section is a brief introduction to the Ghost module, dynamic con-
volution and the coordinate attention mechanism.

2.1 Ghost module

GhostNet[31] was a novel efficient neural network proposed by Han et al. in 2020. Ghost-
Net solves the redundancy problem in mainstream CNNs by embracing rather than avoid-
ing redundancy. Instead of discarding redundant feature mapping, GhostNet generates a
few initial feature maps and then produces similar ones through inexpensive linear opera-
tions, termed Ghost feature maps. These Ghost feature maps are then fused with the initial
ones to create the final output.

As shown in Fig. 1(a), for the input data X € R**_where ¢ is the number of chan-
nels of the input data, and h and w are the height and width of the input data, the output
obtained after the ordinary convolution operation is as follows:

Y=Xx*f+b (1)

where, * is the convolution operation, f € Re¥=kxn ig the convolution filter in the layer, &
is the bias term in the convolution, and ¥ € R"**"*" is the output feature map with n chan-
nels. In addition, & is the size of the convolution filter, » is the number of filters, A/ and w7
are the height and width of the output feature map, respectively. It follows that the FLOPs
in this convolution process can be calculated as:

— Cony

N
§_
\_

I Tagant

Chatpat {a) \I i .--."/_.- - Ouiput (b}

Fig.1 Ordinary convolution and Ghost module: (a) Ordinary convolution, (b) Ghost module

lipsut
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FLOPs =n-h"-w -¢-k-k (2)

Although redundant feature maps introduce a large number of parameters and compu-
tational effort into the convolution, this does not mean that redundant feature maps are
useless. In fact, convolutional network requires redundant feature maps to provide a more
comprehensive view of the data.

In the Ghost module, as shown in Fig. 1(b), the convolution filter in the convolution
kernel is F7 € R¥%*m where m < n. To simplify the operations, the convolution in the
Ghost module omits the bias term. The hyperparameters for filter size, stride and padding
are the same as in Eq. 1. By the first convolution, m feature maps are generated and are
referred to as intrinsic feature maps. Next, the Ghost module performs a series of cheap
linear operations on each intrinsic feature map, so that each intrinsic feature map gen-
erates s ghost feature maps, thus expanding the feature maps to n, where n = m - 5. The
average kernel size for each linear operation is d, and the number of linear operations is
m-(s—1)= E - (s — 1). From this, the FLOPs required for the Ghost module can be cal-
culated as:

FLOPs = = -t -wt-c k-k+(s—1)-=-ht-wh-d-d 3)

A} A

According to Egs. 2 and 3, the acceleration ratio of the Ghost module to the ordinary
convolution is:

ratio. — n-htowit-c-k-k
£ htwrckek(s—1)- hrowr-d-d
_ n-k-k ~ 5 (4}
I
The compression ratio of the model parameters is:
ratio . = n-ck-k N~ 2C oy
© - — ~ v " -~
Dok k+ i g.d s+e—1 &)
F ¥

The Ghost bottleneck consists of the Ghost module, shown in Fig. 2.
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Fig. 2 Ghost bottleneck
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2.2 Dynamic convolution

Dynamic convolution came about with the introduction of the concept of dynamic learning
to deep learning for the first time by Jia et al. [32]. Compared to a single convolution kernel
in normal convolution, dynamic convolution adapts the convolution parameters to the input
and integrates multiple parallel convolution kernels via the Softmax function. Dynamic
Convolution is fused in a non-linear form through an attention mechanism, which not only
provides greater expressiveness but also allows for more efficient computation without the
need to adjust the depth and width of the network [33]. The ordinary convolution formula
is defined as: y = g( W+ b] where W denotes the weight, b is the bias term, and g(-)
denotes the activation function, the dynamic convolution is formulated as follows.

y= g(ﬁ"rx + 3)
W) = 35 moW;
b =3X, xk{x)(?;)k
Yo, m0=1.0< 0 <1

(6)

where f‘lﬁx} and E(x) denote the weighted convolutional kernel and bias term, respectively,
W, and b, denote the kth convolutional kernel and bias term, respectively, and z; denotes
the attentional weight of the k th convolutional kernel. Figure 3 shows the framework dia-
gram of dynamic convolution.

2.3 Coordinate attention

The attention mechanism, inspired by human vision research, focuses processing resources
on relevant visual information [34]. In CNNss, it’s an additional neural network that assigns
different weights to input information to highlight important parts and boost model per-
formance. Common attention mechanisms include Squeeze-and-Excitation (SE) [35],

Attention

Conv, Convs Conv,

L3 W s *

.
-

-
| L -

Model date flow
_________ - Maodel parameter flow

Fig.3 dynamic convolution
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Bottleneck-Attention-Module (BAM) [36], and Convolutional-Block-Attention-Module
(CBAM) [37]. However, SE overlooks spatial location importance, while BAM and CBAM
try to capture location information through global pooling. CBAM’s weight considers local
regions but lacks global context.

Coordinate attention [38] decomposes channel attention into two 1D feature encoding
processes, which aggregate the features along two spatial directions, respectively. In this
way, remote dependencies can be captured along one spatial direction, while retaining pre-
cise location information along the other. In simple terms, coordinate attention is achieved
by averaging pooling horizontally and vertically, then encoding the spatial information,
and finally fusing the spatial information in a channel-weighted manner. This approach
is flexible and lightweight, and can easily be inserted into existing networks to enhance
model performance. Figure 4 shows the structure of the coordinate attention.

( Input )
CxH*xW

Residual
CxHx1 X Avg Pool Y Avg Pool Cx1xW

Concat+Conv2d C/rx 1(W+H)
)
BatchNorm+Non-linear C/rx1x(W+H)
' split '
CxHx1 Conv2d Conv2d Cx1xW

Re-weight

Fig.4 Coordinate attention

CxH*W
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3 The proposed method

This section presents a fault diagnosis method for rolling bearings based on Ghost mod-
ule and attention mechanism. First, the process that one-dimensional vibration signals
converted into a greyscale image is introduced, then the structure of the network model
is shown, and finally the training strategy for the model is given.

3.1 Conversion of 1D vibration signals to image

In order to reduce the effect of noise in the 1D signals and to better exploit the advan-
tages of CNN in image classification, the 1D signals are converted into a 2D image,
which consists of 3 steps:

Step 1: Assumed that an image of size N x N is ultimately obtained, N columns of sub-
signals of length N are selected in the one-dimensional vibrational signals by using slid-
ing window fetching.

Step 2: Combine the randomly selected sub-signals from step 1 to obtain an N X N col-
umn of signals. The intensity of each signal is noted as L(i),i = 1,2, .....N2.

Step 3: The signals combined in step 2 are converted to a greyscale image in the follow-
ing manner:

(7

P(j, k) = mumi{ LG-HxN+b - Mind) 255}

Max(L) — Min(L)

where round(-) represents the rounding function which normalizes all pix-
els to the range of 0 to 255, which is the range of pixel values in a grayscale
map.P(j, k),j = 1.....N,k = 1.....N denotes the pixel value of each image after transfor-
mation. The transformation process is shown in Fig. 5. The result of data conversion is
shown in Fig. 6.

Figure 5 shows a sample of the generated images, with image size N set to 32 in this
paper.

3.2 Network model structure

The construction of the model consists mainly of the Ghost bottleneck sequence with the
addition of coordinate attention and the adaptive weighting module proposed in this paper.

3.2.1 Improved Ghost bottleneck
Figure 7 represents the improved Ghost bottleneck. In the improved Ghost bottle-
neck, coordinate attention is added to model the relationship between channels, while

remote dependencies are captured by using precise positional information as a means of
improving the performance of image classification.
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Fig.5 Transformation process
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Fig.6 Vibration image sample of (a) Normal sample, (b) Rolling body fault sample, (¢) Sample of inner
ring failures, (d) Sample of outer ring failures

3.2.2 Adaptive weighting module

The input data are passed through the improved Ghost bottleneck when the ghost fea-
ture map is generated by a series of cheap linear calculations. Studies have shown that
the information in low-resolution images is rich in low-frequency and valuable high-
frequency components. In order to avoid spending a lot of computational resources
while making full use of the information contained in similar feature maps, an adaptive
weighting module (AWM) is proposed in this paper. AWM contains three branches: the
pixel attention branch, the channel attention branch and the adaptive weighting fusion
branch, as shown in Fig. 8.

The input is X,,_,. The pixel attention branch contains a I X 1 convolution kernel pixel
attention block (PA). In the channel attention branch, a 1 X 1 convolution kernel and a
channel attention block (CA) are used, followed by feature recombination using a 1 X 1

@ Springer



Multimedia Tools and Applications

‘ Ghost module Ghost module ‘
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Fig.7 Improved Ghost bottleneck of (a)Stride= 1, (b)Stride=2

convolution for weight fusion with the adaptive weight fusion branch. At the same time,
two cross structures are added into the two attentional branches (as shown in Fig. 9)
to compensate for the features that are overlooked between the different attentions by
means of feature reuse. Inspired by the literature [20] and similar to dynamic convo-
lution, the adaptive weights branch is divided into a third branch of the module. This
branch uses weighted summation to assign the weights to the pixel attention branch and
the channel attention branch, automatically discard some unimportant attention features
to achieve dynamic balance between the two branches. The output X, of the pixel atten-
tion branch and the output X, of the channel attention branch are feed into the 1 x 1
convolution layer to adjust the number of channels respectively, then are multiplied by
different weights A“* and A" for corresponding element summation, and finally feed
into 1 X 1 convolution layer and output, and summed with the adaptive module residu-
als to obtain the final output X,. AWM uses adaptive weighting to fuse the branches to
dynamically adjust the weight share of two branches, improving the representational
power of the network.

3.2.3 Network model structure

In summary, considering the limited data samples used, we use two improved Ghost bot-
tleneck and two adaptive weight modules as the backbone of the network and name the
proposed model in this paper as Coordinate-Ghost-Adaptive-Net (CGA-Net). The network
structure is shown in Fig. 10, so that the size of the input image is 32 x 32, which is trans-
formed and resized to 224 x 224. The transformed image enters the Ghost bottleneck after
the first 3 x 3 convolution to generate the Ghost feature map, and then enters the adaptive
weight layer. After two iterations, the model is made to fully integrate the features of the
input signals. To avoid overfitting, the Dropout operation is used after a final layer of 3 x 3
convolution layers and average pooling, and the value of the Dropout parameter is set to 0.5.
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Fig.9 Double cross structure m_X7

Fig. 10 Network model structure
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3.3 Fault detection model framework and training strategy

The proposed method in this paper is shown in Fig. 11, which can be divided into 3 parts.
The first part is data acquisition, where one-dimensional vibration signals are obtained
by means of experimental equipment and sensors, which are then converted into 32 x 32
ereyscale image, and the image dataset is divided into a training set and a test set accord-
ing to scale. The second part is model training, the training epoch is set to 30, the initial
learning rate is set to 0.001 and each batch is set to 64. With the model established in this
paper, the model parameters are initialized and then CGA-Net is trained by using the data.
The training process includes: calculating the loss function, updating the weights by back
propagation by using the Softmax classification function, and using the Adam optimizer
to optimize. Finally, when the epoch reaches the specified number, the training ends and

Fig. 11 The flow chart of CGA-
Net for fault diagnosis

Collect vibration signal

Obtain vibration image

Initializes network
parameters and set max
training epochs N

l

The i epoch of CNN
training

Test data l

Train CGA-Net using

back propagation
No
Yes

Finish training

Trained CGA-Net

Fault classification
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the model is saved. The third part is fault diagnosis, where the test dataset is fed into the
trained model and finally the fault classification results are output.

4 Experiments and results

In this section, we evaluate the fault diagnosis performance of CGA-Net by using two roll-
ing bearing datasets and experimentally validate the noise immunity, generalization and
fault diagnosis capabilities of the method. The deep learning framework used in all simu-
lations is Pytorch, with an AMD Ryzen 7 5800H CPU, an NVIDIA GeForce RTX 3060
GPU, and 16 GB RAM.

4.1 Case1
4.1.1 Dataset description

The experimental data from operating SKF 6205 rolling bearings at Case Western Reserve
University (CWRU), USA, which experimental platform is shown in Fig. 12, consist of
four types: normal, ball failure (BF), inner ring failure (IF), and outer ring failure (OF).
Each fault type is further categorized by size into 0.007, 0.014, 0.021, and 0.028 inches,
resulting in 12 labels. The dataset encompasses the data collected under four loads labeled
A, B, C, and D. Sampling is done at 12 kHz for 10 s, resulting in 406 sampling points per
cycle. Each data sample is set to 2048 sampling points to ensure fault data reliability. With
150 samples per fault type under each load condition, totaling 1800 samples per load, the
dataset comprises 7200 samples across the four loads, and is divided into a 7/3 training/test
set ratio (Table 1 and 2).

4.1.2 Comparison methods

To verify the superiority of CGA-Net, we select the classic lightweight neural network
model MobileNetV3 and various deep learning models for experimental comparison with
CGA-Net, including GhostNet, AlexNet, ResNet34, and GoogLeNet. The initial hyper-
parameters for all models were set as follows: learning rate=0.001, Batch size=32,
Epochs =30, and Optimizer as Adam optimizer.

Fig. 12 Rolling bearing test
bench
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Table 1 Description of the
dataset under the same load

Table 2 Description of the four

types of load data

Class label Fault location Fault size(in) MNumber
of sam-
ples

00 Normal / 150

01 BF 0.007 150

02 IF 0.007 150

03 OF 0.007 150

04 BF 0.014 130

05 IF 0.014 150

06 OF 0.014 130

07 BF 0.021 150

08 IF 0.021 150

09 OF 0.021 150

10 BF 0.028 150

11 IF 0.028 130

Dataset Load(hp) Sample size of Training set/Test set

the dataset

A Ohp 1800 1260/540

B 1hp 1800 1260/540

C 2hp 1800 1260/540

D 3hp 1800 1260/540

4.1.3 Performance testing of the original signals

In this experiment, as can be seen from Table 3 and Fig. 13,we evaluate six methods using
original bearing signals for classification. CGA-Net consistently achieves accuracy rates
of 97% or higher across all datasets, with an average accuracy of 98.62% and the short-
est running time. Notably, CGA-Net achieves over 99% correct classification in Dataset
C and Dataset D, which indicates that it has exceptional performance. While ResNet34
exhibits comparable accuracy (97.87%), it runs 7.4 times slower than CGA-Net. AlexNet's

Table 3 Accuracy of the six methods at the original signal

Algorithms  Dataset A Dataset B Dataset C Dataset D Average Average time Number of

parameters
CGA-Net 97.19%  98.94%  99.04%  99.3% 98.62% 124.19s 0.84 MB
GhostNet 90.71%  93.13%  9531%  97.2% 94.09% 326.18 s 548 MB
AlexNet 76.21% T4.18% 83.66% 88.79% B0.71% 13485 61 MB
ResNet34 95.48%  97.98%  98.74%  9929%  97.87 91853 s 4751 MB
MobileNetV3 93.36% 96.36% 97.66% 08.91% 96.57 343265 396 MB
GoogLeNet  81.21%  85.94%  86.91%  9031%  86.09 319.64 5 7MB

Bold text represents the best diagnostic with the smallest number of model parameters
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Fig. 13 (a) Test Accuracy, (b) Test losses

poor diagnostic results are attributed to gradient explosion from its large parameter count.
CGA-Net's advantage lies in its small model size of 0.84 MB. Compared to GhostNet,
CGA-Net outperforms due to improved feature extraction capabilities, particularly with the
Ghost bottleneck and AWM. Overall, CGA-Net demonstrates satisfactory feature extrac-
tion capabilities.

4.1.4 Performance testing in noisy environments

In real-world rolling bearing environments, noise from vibration and friction is inevi-
table and can interfere with diagnostic accuracy when it is picked up by sensors along
with original vibration signals. To simulate varying noise intensities, Gaussian white
noise with different signal-to-noise ratios (SNR) is added to the original signals. The
original signals serve as the training set, while the samples with added noise form the
test set, allowing assessment of the proposed method’s noise immunity across different
noise levels. SNR is defined as:

Psigna!
P .

norse

SNR; = 10log( ) (8)

where P, and P, denote the powers of the original signals and the noise signals
respectively. In this experiment, we use dataset B to train the model and add 3 dB, 6 dB,
9 dB and 12 dB of Gaussian white noise to the original signals for the test set. The results
of the noise signal addition and image transformation for the 0.007" inner ring fault sample
are shown in Fig. 14.

Table 4 and Fig. 15 compare CGA-Net's diagnostic performance with other methods
under various noise levels. CGA-Net consistently achieves higher diagnostic accuracy
across all noisy environments, with the shortest diagnostic time. When SNR =9, CGA-
Net exceeds 99% accuracy. ResNet34 follows with the second-highest accuracy, indicat-
ing its stability and feature extraction capability, however, its longer runtime limits prac-
ticality. Compared to GhostNet, CGA-Net improves accuracy by 4.64% while reducing
diagnostic time to 2/5. This highlights CGA-Net’s enhanced feature extraction with the
Ghost bottleneck and AWM, showcasing its noise immunity, versatility, and robustness.
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Fig. 14 Results of image conversion with different SNR. (a) SNR=3, (b) SNR=6, (¢) SNR=9, (d)
SNR=12

Table4 Accuracy of the six methods with added noise

Algorithms 3dB 6dB 9dB 12dB Average Average time
CGA-Net 97.06% 98.65% 99.18% 99.8% 98.67% 119.76 s
GhostNet 90.47% 93.36% 96.01% 96.26% 94.03% 305.22s
AlexNet 73.48% 71.38% 84.57% 85.55% 80.25% 135.5s
ResNet34 96.05% 96.33% 98.59% 99.45% 97.61% 888.17 s
MobileNetV3 92.7% 94.53% 97.27% 98.63% 95.78% 324.09 s
GoogLeNet 71.61% 81.9% 85.59% 89.1% 83.55% 314.68 s
Fig. 15 Diagnostic results with 1.0 —
different SNR b < .
v i .
. .
<
s
-
o <
§ 08 |
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4.1.5 Performance testing under different working conditions

Rolling bearings operate in noisy environments under varying loads, presenting complex
troubleshooting challenges. To simulate these conditions, we add Gaussian white noise under
different loads to the CWRU drive-end bearing dataset, and divide the dataset as training
set A and test sets B, C, and D to evaluate the adaptability of CGA-Net. The experimental
results show that GhostNet, ResNet34, MobileNetV3, and GoogleNet perform poorly when
SNR =3, with average accuracies ranging from 73.39% to 86.73%, as shown in Fig. 16a.
Although the accuracy of CGA-Net is lower than 90% under the three variable conditions,
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Fig. 16 Diagnostic results for variable working conditions with different SNR. (a) SNR=3, (b) SNR=6.
(¢) SNR=9, (d) SNR =12, (¢) Without noise
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its average accuracy is 90.94%. which is the highest among all the tested methods, indicating
its strong adaptive ability. When the load difference between the training set and the test set
is large, the overall diagnostic accuracy decreases due to the changes in signal characteris-
tics. However, CGA-Net consistently outperforms the other methods, as shown Fig. 16d and
Fig. 16e. The average accuracy is 95.74% at SNR=12 and 96.62% at SNR=0, indicating
that there is almost no effect on the model performance when the noise is weak.

4.2 Case2
4.2.1 Dataset description

To verify the generalization performance of CGA-Net, the experimental data are obtained
from the American Society for Mechanical Failure Prevention Technology (MFPT). The bear-
ing type used in this dataset is NICE. In the dataset, there are 3 normal data with a load of 270
Ibs and 3 outer-raceway fault data with a load of 270 Ibs. In addition, the MFPT dataset has 7
outer ring failure data and 7 inner-raceway failure data with an input shaft speed of 25 Hz and
a sampling frequency of 48,828 sps for 3 s, corresponding to the loads of 25 Ibs, 50 Ibs, 100
Ibs, 150 Ibs, 200 Ibs, 250 Ibs and 300 Ibs. We select seven inner-raceway failure data and seven
outer-raceway failure data as experimental data, and the details of data are shown in Table 5.
1000 samples are collected for each type of fault data, with a training set/test set of 7/3.

4.2.2 Performance testing of the original signals

To further validate the performance of CGA-Net, we use a multi-scale lightweight-based roll-
ing bearing fault diagnosis model(MLFD) [30], a lightweight ResNet rolling bearing fault
diagnosis model(LResNet) [40]. and a multi-scale residual fault diagnosis model as com-
parative algorithms(MRSCNN) [41], with each method run 20 times. We use the confusion
matrix to represent the experimental results of CGA-Net in the test set, as shown in Fig. 17.
Meanwhile, the results of the comparison algorithm experiments are shown in Fig. 18.

As shown in Fig. 17, for both inner and outer-raceway faults, CGA-Net can achieve the
highest accuracy rates of 98.97% and 96.72% respectively. From Fig. 18, it can be seen that
the performance of CGA-Net has a significant advantage over the comparison algorithms.
This shows that CGA-Net has good generalization performance and achieves good classifi-
cation accuracy for all types of bearing datasets.

Table 5 Description of the

MEPT dataset Fault Inner-raceway
Load(Ibs) 0 50 100 150 200 250 300
Label 00 01 02 03 04 05 06
Train 700 700 700 700 700 700 700
Test 300 300 300 300 300 300 300
Fault Outer-raceway
Load(Lbs) 0 50 100 150 200 250 300
Label 00 01 02 03 04 05 06
Train 700 700 700 700 700 700 700
Test 300 300 300 300 300 300 300

@ Springer



Multimedia Tools and Applications

Confusion matrix Confusion matrix

0.00% 0.00% 0.33% 0.00% 1] 0.00% 0.00% 0.00% 0.00% 0.00%

0 0.00% os 0 16™% 0.00% 08
a2 0.00% 02 4 0.00% 0.00%
» 06 ﬁ a8
S0 0.00% 5 03 {000% 0.00%
1 ®
= 04 - o4

0.00% 04 40.33%

g

05 4 0.33% 02 05 4 067% 0.00% 0.67% L

06 {0.00% 0.00% 0.00% 0.00% 0.33% 06 {0.00% 0.00% 000% 0.00% 0.33% 1

00
& [ & & &+ & & & [ & & - & &
Predicted Labels (a) (b) predicted Labels

o0

Fig. 17 Confusion matrix results of CGA-Net for fault classification in the test set (a) inner-raceway, (b)
outer-raceway

Fig.18 MFPT dataset diagnostic 1o}
results

Accuracy
=
o0

Inner Outer

[ JcGA-Net [ JMLFD[_JLResNet[ ] MRSCNN

4.2.3 Performance testing in noisy environment

Similarly, to further analyze the noise immunity of CGA-Net versus the comparative meth-
ods. We still add Gaussian white noise with different signal-to-noise ratios to the seven
inner and seven outer-raceway faults in the MPTF dataset as experimental data. As in Case
1, we use the dataset without added noise as the training set, and set the data with added
noise as the test set, and the experimental results are shown in Table 6, it can be seen
that compared with advanced rolling bearing fault diagnosis algorithms, CGA-Net still has
more obvious advantages. Whether it is a strong noise environment with a signal-to-noise
ratio of 3 dB or a weak noise environment with a signal-to-noise ratio of 12 dB, the accu-
racy of faults obtained by CGA-Net is above 90%. The accuracy of LResNet is lower than
85% in the case of strong noise with a signal-to-noise ratio of 3 dB. which shows that its
noise immunity is poor. MLFD and MRSCNN have better noise immunity due to their
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Table 6 MPTF dataset variable

noise data tests Algorithms Inner-raceway diagnostic accuracy (%)
3dB 6dB 9dB 12dB
CGA-Net 90.78% 94.45% 95.89% 97.14%
MLFD 88.17% 91.45% 92.19% 96.24%
LResNet 82.15% 86.58% 88.73% 91.08%
MRSCNN 89.89% 92.46% 93.28% 96.09%
Algorithms Outer-raceway diagnostic accuracy (%)
3dB 6dB 9dB 12dB
CGA-Net 90.04% 92.12% 94.36% 95.69%
MLFD 85.79% 89.53% 91.87% 94.13%
LResNet 83.26% 83.49% 86.61% 90.22%
MRSCNN 86.72% 88.91% 91.45% 93.98%

multi-scale network structure, but their diagnostic performance is not as good as that of
CGA-Net. To summarize, CGA-Net still has a performance advantage over the advanced
fault diagnostic algorithms.

4.3 Ablation experiments

In order to explore the impact of each part of CGA-Net, we perform ablation experi-
ments on GA-Net, CG-Net, and G-Net using the CWRU dataset. Among them, the spe-
cific details of the branching structure of the comparison network are shown in Table 7,
and to ensure the fairness of the experiment, all training parameters are kept consistent
with CGA-Net.

4.3.1 Performance testing of the original signals

The experimental design is the same as 4.1.3 and the results are shown in Table §,
it can be seen that the performance of CGA-Net is better than the four methods.
GA-Net uses the Ghost bottleneck without CA, and the model size does not change,
but the performance shows a significant degradation, with the average accuracy
dropping to 92.23%. This proves that CA does not enhance the size of the model, but
can significantly improve the model performance. CG-Net uses CA’s improved Ghost
bottleneck, but drops AWM. It can be seen that the model size is reduced to one-half of

Table7 Details of the branching |~

. Coordinate Attention Mecha- Adaptive
structure of the ablation

. nism weighting
experiment module
CGA-Net Yes Yes
GA-Net No Yes
CG-Net Yes No
G-Net No No
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Table 8 Accuracy of four variants on original signals

Algorithms  Dataset A Dataset B Dataset C  Dataset D Average  Average time  Number of

parameters
CGA-Net 97.19% 98.94% 99.04% 99.3% 98.62%  124.19s 0.84 MB
GA-Net 92.71% 92.37% 91.26% 92.98% 92.33%  113.35s 0.84 MB
CG-Net 84.37% 84.93% 85.19% 84.29% 84.6% 97.06 s 0.4 MB
G-Net 80.59% 80.14% 79.38% 80.14% 80.06%  93.73s 0.4 MB

CGA-Net, and the diagnostic time is significantly reduced. However, CG-Net shows a
significant decrease in performance. This demonstrates that although AWM boosts the
size of the model and extends the diagnostic time, it has a higher impact on the model
performance than CA’s improved Ghost bottleneck. G-Net does not use AWM and CA’s
improved Ghost bottleneck, and the performance is the worst, with an average accuracy
of only 80.06%. In conjunction with 4.1.3, the experiments demonstrate that by using
CA’s improved Ghost bottleneck and AWM, the performance and timeliness of CGA-
Net has a very significant advantage.

4.3.2 Performance testing in noisy environment

The experimental design is the same as 4.1.4 and the results are shown in Table 9. The
average accuracy of G-Net is only 76.29%, this is due to the fact that it cannot under-
stand the input data well without reasonable improvement in the case of insufficient net-
work depth of the model. CGA-Net has good noise immunity and the average accuracy
is 22% higher than G-Net. It can be seen that using CA’s improved Ghost bottleneck and
AWM allow the model to learn the input data better, resulting in a huge improvement in
the model’s noise immunity.

In summary, CGA-Net contains both CA and AWM modules and has the best per-
formance.GA-Net contains only AWM without CA and has a higher performance than
CG-Net.This shows that the gain of AWM on model performance is greater than the
gain of CA on model performance. With the help of CA and AWM, CGA-Net is able to
perform better feature extraction, better utilize spatial information as well as get better
robustness.

Table 9 Noise immunity experiments with four branching variants

Algorithms 3dB 6dB 9dB 12dB Average Average time
CGA-Net 97.06% 98.65% 99.18% 99.8% 98.67% 119.76 s
GA-Net 82.19% 83.18% 86.27% 90.14% 85.95% 117425
CG-Net 72.64% T74.21% 77.96% 82.14% 76.74% 98.58 s
G-Net 70.61% 72.56% 73.48% 78.52% 73.79% 92.16 s
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5 Conclusion

The CGA-Net proposed in this paper can be used for fault diagnosis in noisy environments,
load variation conditions. The vibration signal is first converted into an image and adequate
feature extraction is performed using a 2D CNN. Then, in order to reduce the number of
model parameters and enhance the model representation, coordinate attention is introduced
into the Ghost bottleneck, which significantly reduces the model computation. Finally,
AWM is designed to characterize the input information more efficiently by dynamically
exploiting the features generated by the convolution. We validate the proposed CGA-Net
by using the CWRU and MFPT datasets, respectively. In the CWRU dataset, the results
demonstrate that CGA-Net can efficiently mitigate the degradation of diagnostic perfor-
mance of diagnostic networks due to noise interference and variable operating conditions.
In the MFPT dataset experiments, CGA-Net still has high diagnostic accuracy in the face
of large data variability, and has a strong feature learning capability and satisfactory diag-
nostic results while greatly reducing the size of the model. In summary, CGA-Net has good
fault identification and generalization performance under different operating conditions.
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Table 3 Bearing fault diagnosis results for case 1

. 10RT BB ETERE % SEETALEERE%
MobileNetV3 ResNel34 GhostNet MobileNetV3 ResNel34 GhostNet
bk 6] 71.67 68.23 63. 54 63.75 62.91 62.29
CGAN 94. 31 91.77 90. 73 91. 08 8813 89,59
WGAN 94.21 92,44 93.76 93.79 90. 13 89.58
WGAN-GP 95.98 94. 83 94. 10 94.01 92.75 93.03
XhFE 99. 33 96. 35 96. 25 97.74 94. 96 93.79
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Fig. 9 Confusion matrix of different methods with 5 samples
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Table 4 Details of experimental data for case 2
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Table 6  Fault diagnosis results of different data conversion

methods
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A Small Sample Rolling Bearing Fault Diagnosis Method Based on
Gramian Angular Difference Field and Generative Adversarial Network

QIANG Ruiru  ZHAO Xiaoqiang

((:nHﬁgrnF Electrical and Information Engineering, Lanzhou University of Technology . Lanzhou 730050, Gansu, China)
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combined with Wasserstein GAN with gradient penalty (WGAN-GP) to construet a novel generative adversaral network,
which enhances the model training stability by conditional auxiliary information with gradient penalty and designs
dynamie coordinate attention mechanism to enhance the spatial perception of the model. so as to generate high-quality
samples. Finally, the generative samples were used to train the classifier, and the diagnosis results were obtained on the
validation set. Two sets of bearing fault diagnosis experiments in a small sample environment were conducted using the
Southeast University dataset and the Case Western Reserve University dataset. respectively. The results show that,
compared with traditional generative adversarial networks as well as advanced small-sample fault diagnosis methods, the
proposed method can obtain the best results in five fault diagnosis metries, including accuracy and precision, and can
accurately diagnose the type of bearing faults under small-sample conditions.

Key words: small sample bearing fault diagnosis; Gramian angular difference field; generative adversarial net-

work ; attention mechanism
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Multiscale Bi-directional Transformer Network for Rolling Bearing Fault

Diagnosis

Qiang Ruiru'. Zhao Xiaogiang'.
(College of Electrical and Information Engineering, Lanzhou University of Technology, Gansu Lanzhou 730050,
China)

Abstract: In industrial applications, the vibration signals of rolling bearings are often subjected to strong noise
interference, variations in operating conditions, and fluctuating rotational speeds, resulting in high signal complexity and
challenging fault diagnosis. Recent studies have leveraged the synergy between the Transformer's multi-head self-
attention mechanism and convolutional networks to enhance feature extraction. However, these approaches often
introduce excessive model complexity, leading to high computational costs and limiting their deployment in real-world
industrial scenarios. To address these challenges, this paper proposes a lightweight Multi-scale Bi-directional Self-
attentive Diagnosis Method (MBSADM). First, a multi-scale attention mechanism is designed to effectively capture
discriminative features across different scales of vibration signals. Second, a multi-scale feature extraction module
integrates multi-scale dilated convolution blocks with the multi-scale attention mechanism, enabling a multi-local
receptive field with reduced computational overhead and fewer model parameters. Finally, to fully exploit temporal
dependencies, we introduce a bi-directional Transformer that leverages a reverse mechanism to construct sequence
representations containing spatially inverted information, thereby enhancing the temporal modeling capability of
extracted features. Extensive experiments under strong noise, different load, and fluctuating speed conditions demonstrate
the robustness and superior classification performance of the proposed MBSADM. Compared to five state-of-the-art fault
diagnosis methods, MBSADM achieves higher diagnostic accuracy and demonstrates stronger industrial applicability,
making it a promising solution for real-world bearing fault detection.

Keywords: Deep learning, rolling bearing fault diagnosis, multi-scale attention mechanism, Bi-directional Transformer

1. Introduction

Rotating machinery is widely wused in industrial
production, and rolling bearings, as key components, play
a crucial role in ensuring equipment safety and stability [
3, Due to prolonged exposure to complex operating

environments, rolling bearings are susceptible to fatigue,

pitting, and overload, which may ultimately lead to
mechanical failures > 4. Therefore, developing efficient
and accurate fault diagnosis methods is essential for
mitigating production risks and reducing economic losses

[5. 6]

Traditional rolling bearing fault diagnosis methods



primarily rely on signal processing techniques and expert
knowledge. While these methods perform well under
specific working conditions, they struggle to adapt to
highly dynamic environments ). In recent years, deep
learning has gained widespread adoption in fault diagnosis
due to its powerful feature extraction and automatic
learning  capabilities. =~ Among  these  methods,
convolutional neural network (CNN)-based end-to-end
approaches eliminate the need for manual feature

engineering ¥, directly extracting key features from raw

signals and achieving high-precision fault classification ).

Guo et all' proposed an end-to-end fault diagnosis
approach that integrates attention-based CNNs with
bidirectional long short-term memory networks
(BiLSTM). Dong et al''l designed a one-dimensional
attention-enhanced neural network based on empirical
wavelet transform to address the non-stationarity and non-
linearity of rolling bearing vibration signals. Lin et al('?!
tackled the limitations of conventional CNNs, which
focus solely on single-scale features while neglecting
multi-scale deep information, by proposing an improved
multi-scale attention-based CNN for bearing fault
diagnosis. Additionally, Jia et all'*! introduced a denoising
strategy based on the periodic self-similarity of vibration
signals and leveraged an end-to-end CNN model to
suppress irrelevant noise in vibration signals.

Although CNNs effectively extract local features from
input data without requiring prior knowledge, they
primarily capture localized patterns. When fault signals
are affected by noise interference or variations in
rotational speed, relying solely on local information
makes it difficult to extract global fault patterns!'4l.
Furthermore, CNNs employ a shared weight mechanism,
which lacks the ability to model long-term dependencies
in time-series datal'®l,

To enhance global feature extraction, Transformer models
have recently been introduced into the fault diagnosis
domain. By leveraging the self-attention mechanism,
Transformers effectively model long-range dependencies
and have achieved remarkable success in natural language
processing (NLP)!'! and computer vision (CV)!'7). Some
studies have attempted to apply Transformers to rolling
bearing fault diagnosis. For example, Hou et all'®

proposed a fault diagnosis model combining fast fourier

transform (FFT) with Transformer networks, while Tang
et al' employed discrete wavelet transform to
decompose vibration signals into sub-signals across
different frequency bands, which were then fed into
independent Transformer models for diagnosis. However,
Transformers require large-scale data for training,
whereas vibration signal datasets are typically limited in
size®’l, making it challenging for the model to learn
complex fault patterns effectively. Additionally,
Transformers struggle with capturing fine-grained local
details, limiting their ability to extract multi-scale features
from bearing vibration signals??!.

To address the respective shortcomings of CNNs and
Transformers, researchers have proposed hybrid CNN-
Transformer approaches, which leverage CNNs for local
feature extraction and Transformers for global modeling.
For instance, Gao et al?? developed a fault diagnosis
model that integrates CNNs with a dual-channel
Transformer to achieve collaborative extraction of local
and global features. Liu et al™®! proposed a lightweight
diagnostic framework based on multi-scale convolution
and broadcast self-attention, designed to handle varying
rotational speeds.

In summary, although CNN-Transformer-based fault
diagnosis methods have demonstrated promising results,
several challenges remain: (1) CNNs require additional
convolutional kernels to extract multi-scale features,
significantly increasing computational complexity; (2)
existing attention mechanisms often focus on single-scale
features while overlooking the complex spatiotemporal
dependencies in vibration signals; and (3) most methods
adopt a unidirectional modeling approach that only
considers historical information, failing to fully utilize
future contextual information to enhance fault pattern
representation.

To address these issues, this paper proposes a multi-scale
bidirectional self-attention fault diagnosis method. The
proposed method directly processes raw data without
requiring any preprocessing, reducing dependence on
domain-specific signal processing expertise. Furthermore,
by constructing a multi-scale feature extraction module
and a bidirectional Transformer module, our approach
effectively captures features across different scales and
contextual information. The main

learns richer



contributions of this paper are as follows:

(1) Construction of a multi-scale attention mechanism
using squeeze-and-excitation networks and convolutional
neural networks. Specifically, to enable the attention
mechanism to aggregate information from different
spatial scales, we first utilize the squeeze-and-excitation
(SE) module and convolutional modules to extract multi-
scale spatial information separately, followed by mutual
weighting. Then, the spatial attention maps from both
scales are summed to generate weights that are applied to
the original features.

(2) Proposal of a multi-scale feature extraction module
combining dilated convolutions and multi-scale attention
mechanisms. By incorporating dilated convolutions, the
network's feature learning capability is enhanced while
effectively reducing the computational cost of
convolution operations.

(3) Construction of a bidirectional transformer (Bi-
Transformer) for temporal feature enhancement. By
leveraging rolling bearing time-series data from both past

and future time steps, the proposed Bi-Transformer

enhances the temporal modeling capability of the network.

This allows the model to capture both historical and future
temporal contexts within vibration signals, leading to
more comprehensive fault pattern representation.

The rest of the paper is organized as follows. Section 2
presents the theoretical background involved in the
proposed method. Section 3 presents the multiscale bi-
directional self-attentive fault diagnosis method. Section
4 presents an experimental evaluation of the proposed
method. Section 5 concludes the paper.

2. Theoretical background

2.1. Convolution and Depth Separable Convolution

CNN have made very significant achievements in the field

of image processing!?* 2%,

In order to solve the rolling
bearing fault diagnosis problem, the researchers converted
2D CNN to 1D CNN to analyze 1D timing signals. For
conventional 1D CNNs, the width of the input features is
assumed to be W , the size of the convolutional kernel is
k,and C,, and C,, arethe number of channels for the
input and output data, respectively. The operation of one-
dimensional convolution is described as follows:
kxCj, xCyyp xW (1

Depth separable convolution®®! consists(DSC) of depth

convolution (DW) and pointwise convolution (PW),
where PW convolution is the traditional convolution with
convolution kernel 1. Each convolution channel in DW
convolution is 1. Therefore, DW convolution requires
convolution of each channel of the input data, and the
number of channels of the output data is equal to the
number of channels of the input data. Once the output
features are obtained using DW convolution, the number
of output data channels is customized using PW
convolution. The operational cost of DS convolution is the
sum of DW convolution and PW convolution, described
as follows:
kxCj, xW +C;, xCpp xW 2)

Compared with the traditional 1D convolution, the

. .. 1 1.
computational cost of DS convolutionis —— +— times
out

less than that of traditional convolution, which reduces the
computational cost and realizes the lightweighting of the
model.

2.2. Dilated Convolution

Receptive field is an important concept in CNNs, which
represents the process in which a neuron receives a portion
of the input image and performs feature extraction based
on this information®”). In layman's terms, the receptive
field is the ratio of the individual pixels of the feature map
to the pixels of the original image during the convolution
process. The larger the receptive field, the richer the
information in the original image contained in the feature
map. The dilation convolution changes the receptive field
by introducing a hyperparameter "dilation rate" to control
the spacing of neighboring samples of the convolution
kernel. As shown in Figure 1, the receptive field of a
conventional one-dimensional convolution with a kernel
size of 3x1 1is 3. When the dilation rate is 2, the
receptive field of the same 3x1 convolutional kernel
dilates from 3 to 7. The same receptive field size requires
a convolution kernel of 5 to do so, but the number of
parameters in the dilation convolution is much smaller
than that of the traditional convolution, which greatly

reduces the computational cost.

“‘—— C®00080

Figure 1. 1D dilation convolution

2.3. Self-attention mechanism (SA)



Attention mechanisms are widely used in CNNs for image
processing tasks. The aim is to give CNN the ability to
focus on and understand key regions of an image similar
to the human eye. The core idea of the attention
mechanism is to allow CNN to focus on important
information in the input data while ignoring unimportant
details. The self-attention mechanism?®! (SA) has
achieved excellent results in tasks in the field of NLP since
its proposal. Due to its excellent contextual understanding,
SA began to be introduced by researchers into the field of
computer vision.

The structure of SA is shown in Figure 2. Let X be the
input data, the query Q, the key K and the value V
are obtained by linear transformation. Subsequently, for
each position i in the sequence, the attention score
between it and all positions | in the sequence is

computed, described as follows:

.
QKj
&

where the scaling factor d, is the dimension of the key

3)

Score; =

vector used to stabilize the gradient of the softmax
function. Then, the scores calculated above are converted
to probability distribution by softmax function to get the

attention weight matrix. The description is as follows:

T
QKj
Ja,

Finally, based on the computed attention weight matrix,

a, = Softmax

“4)

the V of all positions are weighted and summed to
obtain the contextual representation of the current position.

The description is as follows:
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Figure 2. Self-attention mechanism
3. Proposed method
This section will be divided into two parts, the first part
describes the main components of the method and the
second part describes the overall method architecture and
flow.
3.1. Module Composition
3.1.1. Multi-scale attention mechanisms
The traditional attention mechanism serves to strengthen
the learning ability of CNNs on input data. Such as SE-
Net focuses on different weights for the feature channels.
The convolutional block attention module (CBAM) can
focus on both channel and spatial attention. However, all
of these attention mechanisms focus only on single-scale
features and ignore feature representation in multi-scale
spaces?”l. In order to compensate for the lack of attention
to multi-scale space of existing attention mechanisms, we
proposed a multi-scale
module (MSSE).
MSSE consists of 3 branches: the SE branch, the
convolution branch and the residual branch.
The SE branch has the same structure as SE-Net. The

squeeze-excitation attention

feature map is first compressed by global average pooling
(GAP), thus preserving the global information of the
features. Second, the compressed vectors are fully
concatenated twice, the first layer is used to reduce the
dimensionality and extract important features, and the
second layer is activated using the ReLU activation
function followed by normalization using the Sigmoid
function to generate a dynamic weight vector. Finally, this
weight is multiplied point-by-point with the original
feature map to achieve re-weighting of the original
features. Convolutional branch constructs another scale of
spatial modeling by extracting contextual features of the
input data through a 3x1 convolution. Since then, SE
branch and convolutional branch have different scales of
spatial representation.

Different from the information fusion methods such as
summing and splicing in traditional attention mechanisms,
we use a new information fusion method that allows
MSSE to aggregate information in different scale spaces.
The output of the SE branch is first subjected to a batch
normalization

operation (batchnorm), then it is

normalized using the softmax function, and finally the



normalized channel representations are subjected to a
matmul operation with the output that has been convolved
with 3x1. Unlike the point-by-point multiplication in
SE-Net, matmul is equivalent to weighted summation of
all channels at each pixel point to obtain a total channel
feature. This operation is equivalent to tweaking the 3x1
convolution result using the output of the SE. Similarly,
the same operation is performed in the convolution branch,
using the weights generated by the 3x1 convolution to
adjust the output of the SE. Finally, the original features
are weighted by summing the spatial attention of the two
scales and generating weights using Sigmoid again.

The structure of MSSE is shown in Figure 3.
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Figure 3. Structure of MSSE

3.1.2. Multi-scale feature extraction module

Since different dilation rates can bring different receptive
fields to the convolution, different receptive fields can
bring different feature scales. Therefore, we propose an
dilated convolution based multi-scale feature extraction
module (MSFE). The structure of MSFE is shown in
Figure 4.
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Figure 4.Structure of MFSE

MSFE consists of two main branches: the multiscale

extraction branch and the residual branch. In this case, the

multi-scale extraction branch divides the channel of input
features into four branches, and features in each branch
are extracted using dilated convolutions with different
dilation rates. Through experiments, we set up four dilated
convolution branches, and the dilation rate of each branch
is set to 1, 2, 4, and 8, respectively. Input features are
passed through the MSSE module after four branches,
which are stitched together and passed through the MSSE
module using concat. Finally, the output of the multiscale
branch is summed with the residual branch. The MSFE
module extracts a richer representation of the features
using a smaller number of parameters.

3.1.3. Bi-directional Transformer for Time Signals
Rolling bearings, due to their complex operating
environment, make bearing signals often present as
complex time series. These complex time series are not
only reflected in previous bearing operating cycles, but
can also indicate impending fault. Therefore, capturing bi-
directional temporal dependencies from the context in
time-series signals of rolling bearings is important for
accurate fault diagnosis.

Transformer was originally designed to handle tasks
within the NLP field by using a multi-heads self-attention
mechanism that essentially models remote dependencies
in sequences. However, Transformer tends to focus only
on the context prior to the current position while encoding,
ignoring subsequent positions. To address this problem,
inspired by Bi-LSTM and bi-directional gated recurrent
unit (Bi-GRU), we extend the Transformer and introduce
a Bi-Transformer. The Bi-Transformer can utilize time
series from previous and subsequent rolling bearings,
which can be used to augment the temporal relationships
in the extracted features of the model. Since the input to
the Bi-Transformer is feature information extracted from
previous convolutional layers that encode high-level
spatial information, they will serve as valuable contextual
information for subsequent temporal relation learning. Bi-
Transformer introduces an reverse mechanism that
generates a sequence of reversed spatial information
containing information about the input sequence as
additional input. This allows Bi-Transformer to consider
both past and future contexts when predicting a specific
location. By combining outputs from both directions, our
richer contextual understanding,

approach enables



effectively capturing complex relationships in sequences.
The structure of Bi-Transformer is shown in Figure 5.

Applying the SA to the transformation of input feature
maps. The input feature map is projected into the query

Q, key K and value V for each header by linear

mapping. The description is as follows:

h h

o :WQ -m
mg =W, -m (6)
mvh :th'm

where m is the input feature map, mg ) mﬂ, and m',‘

arethe Q, K,and V matricesonthe h, head. WQh,

W, , and W, are the projection matrices on the h,
head. The self-attention mechanism on each head is then
utilized to obtain the attention weights. The description is
as follows:
A" = Attention (mg, mg,m; ) =
T
my(mg) |, (7)
sl LLLY
Ja,

where d, is the size of the m} of the h, head. The

softmax

multi-head attention(MHA) mechanism obtains the final
output by concatenating the results of all heads and
applying another linear projection. The description is as

follows:

MHA(m, m, m) = Concat( A", A>... A" )-W,, (8)

where MHA(m,m,m) denotes the MHA’s output and

W, is the output projection matrix of the final multi-head
attention output.

The key operation of the Bi-Transformer is the
introduction of bi-directional attention. To accomplish
this, we reverse the input feature map to account for past

and future information. The description is as follows:
m,[i, j]=x[i.d - j—1] ©)

In general, the transformer encoder consists of L identical
layers. Each of these layers has two sub-layers: the MHA
and the fully connected feed-forward network. Thus, the
above operation needs to be performed L times. Each layer

in such a stack processes the input data m in turn, i.e., the

operations from Eq. (6) to Eq. (10), thus capturing a more
detailed representation of the context. In this way the
dependencies in the input data are learned hierarchically.

The output of each layer in the Bi-Transformer serves as
an input to the subsequent layers, thus gradually extracting
complex patterns. The final output of the Bi-Transformer
is obtained by stepwise extraction of the input feature map.

The description is as follows:

Bi —Transformer (m) =
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Figure 5.Structure of Bi-Transformer

3.2. Multi-scale bi-directional self-attentive diagnosis
method framework

The framework of the multiscale bi-directional self-
attentive diagnosis method (MBSADM) proposed in this
paper is shown in Figure 6. The diagnostic steps are as
follows:

Stepl: Collect rolling bearing timing signals under
different working conditions;

Step2: Crop the timing signal using a horizontal sliding
window to construct the dataset;

Step3: Divide the dataset into training set, validation set
and test set;

Step4: Train MBSADM using training set and test set to
learn sample features;

Step5: Validate the model diagnosis results using the
validation set.

In particular, the backbone of MBSADM consists of the
MSFE module and the Bi-Transformer. First, DSW is used
and one spatial downsample is performed using maxpool.
Then, the MSFE module is stacked twice for multi-scale
feature extraction. Subsequently, the data is reversed to

capture the contextual relationships in the data using Bi-



Transformer. After using one convolution, the results are
finally output through a fully connected layer.

4. Experimentation and analysis

In order to validate the fault diagnosis performance of
MBSADM, we conduct experiments using three rolling
bearing datasets so as to verify the noise immunity, hybrid
fault diagnosis
MBSADM. The device configuration used for all
experiments was AMD Ryzen7 5800H CPU@3.2GHz,
NVIDIA RTX3060 (12G) and 16G RAM, and the

framework used for the experiments was pytorchl.12.

capability, and generalization of

4.1. Comparison methods
In order to validate the performance of the proposed

model, we chose advanced deep learning methods as

Convformer NSEP2, Among them, MobileNetV2 is a
mature deep learning model. transformerlD combines
CNN and Transformer and is used as a model for fault
diagnosis. CLFormer is a lightweight Transformer based
on convolutional embedding and linear self-attention
(LSA). Liconvformer is a fault diagnosis model based on
separable multiscale modules with broadcast self-

attention modules. Convformer NSE uses sparse-
corrected multi-self attention and constructs a novel senet
(NSE) for channel adaptive learning.

To ensure the fairness of the experiments, the training
epochs were all set to 50, and the initial learning rates were
all set to 0.0003. To verify the stability of the method, each

experiment was repeated 20 times.

comparison  methods, including  MobileNetV2,
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Figure 6. Fault diagnosis model framework

4.2. Case 1

4.2.1. description of the dataset

Experimental data were obtained from Case Western
Reserve University (CWRU)331. As shown in Figure 7,
bearing type SKF 6205 is used. Artificial failures were
categorized into three types: ball faults (BF), inner-ring
faults (IF), and outer-ring faults (OF), each of which in

turn contained points of failure with diameters of 0.007

inches, 0.014 inches, and 0.021 inches. A total of 10 fault
labels (including 1 health label and 9 fault labels) were
obtained by combining the fault type and size
permutations. Additionally, we use bearing data collected
under three different loads (1 hp, 2 hp, and 3 hp,
corresponding to forces of 416.7 N, 833.4 N, and 1250.1
N, respectively) to evaluate the model's generalization

capability under complex operating conditions. The



sampling frequency of the CWRU dataset is 12,000 Hz,
and the bearing rotates at 1,797 r/min, generating
approximately 400 samples per revolution. To ensure the
reliability of the samples, we apply a moving window of
length 1,024 to extract samples, ensuring that each sample
contains sufficient information. Furthermore, we split the
dataset into training, validation, and test sets in a 7:2:1
ratio. The detailed data distribution is presented in Tables
1 and 2.

Figure7. Rolling bearing test bench
Table 1.Fault label details

Class label Fault location Fault size(in) Load(hp) Dataset

00 Normal / 1,2,3 A,B,C,
01 BF 0.007 1,23 A,B,C,
02 IF 0.007 1,23 A,B,C,
03 OF 0.007 1,23 A,B,C,
04 BF 0.014 1,2,3 A,B,C,
05 IF 0.014 1,2,3 A,B,C,
06 OF 0.014 1,23 A,B,C,
07 BF 0.021 1,2,3 A,B,C,
08 IF 0.021 1,2,3 A,B,C,
09 OF 0.021 1,23 A,B,C,

Table 2. Details of dataset division

Sample Dataset A Dataset B Dataset C Dataset D
Training 1631 1631 1631 1631
Validation 466 466 466 466
Test 233 233 233 233

4.2.2. Evaluation of MBSADM performance with original
signals

In order to make a preliminary assessment of the feature
extraction capability of MBSADM, we conducted
diagnostic experiments on dataset A, B and C using
MBSADM with the comparison method, and the results
of the experiments are shown in Table 3. In the three
datasets, MBSADM achieved an average accuracy of over
99%, with an average accuracy of 99.81%. This means

that MBSADM categorizes almost every sample correctly.

In dataset A, the advantages of MBSADM are most
obvious. In dataset C, Liconvformer had the best
diagnostic performance at 99.49%, but still differed from
MBSADM by 0.48%. The above experimental results
show that MBSADM has excellent feature extraction
capability and can extract better features in the original
signal.
Table 3.Accuracy of the six methods under the original
signal(%)
Dataset Dataset Dataset
B Average Time
MobileNetV2  96.52 97.31 98.79 97.54 15.47s
Transformer1D 9598 97.82 98.51 97.44 14091s
CLFormer 9736 98.97 99.21 98.51 12.74s
Liconvformer 98.45 99.31 99.49 99.08 9.53s
Convformer NSE 97.84 9898 99.05 98.62 13.32s
MBSADM 99.56 99.91 99.97 99.81 27.5l1s

methods

4.2.3. Performance evaluation in noisy environments

In the actual working environment of rolling bearings, the
interference of strong noise is often accompanied, which
challenges the performance of the fault diagnosis method.
In this experiment, we utilize the original signals for
experiments and add Gaussian white noise with different
signal-to-noise ratios to the data in the test set to simulate
the ambient noise, so as to verify the noise immunity of
the model. In this experiment, we utilize the original
signals for training and add Gaussian white noise with
different signal-to-noise ratios(SNR)1*¥ to the data in the
test set to simulate the ambient noise, so as to verify the
method's noise immunity. SNR is defined as follows:

P.
SNRg =10log(—29™) (11)

noise

and P

where P.  oise

signal denote the power of the

original and noise signals, respectively. From the above
equation, it can be seen that when SNR<0, the noise power
is greater than the original signal power, and when SNR>0,
the noise signal power is less than the original signal
power. In this experiment, we use the data in dataset A to
do the training and add -6db, -3db, -2db, 3db and 6db
Gaussian white noise signals of 5 SNRs to the test set to
test the noise immunity performance of the proposed

method. The experimental results are shown in Table 4.



Table 4.Accuracy of 6 methods in noisy environment(%)
methods -6dB  -3dB -2dB  3dB 6dB
MobileNetV2  70.80 7534 77.67 9432 96.88
TransformerlD 6257 7029 72.13 8192 86.16
CLFormer 79.61 8141 8354 87.68 89.12
Liconvformer  77.32 8291 8592 89.46 93.52
Convformer NSE 82.57 86.78 89.82 93.03 97.76
MBSADM 8548 89.69 93.74 97.64 99.17

As can be seen from Table 4, the accuracy of MBSADM
in the five noise environments is significantly higher than
the other compared methods. In particular, MBSADM can
still obtain more than 85% accuracy at SNR=-6dB, which
is 3.89% higher than that of Convformer NSE, which
indicates that MBSADM still possesses obvious
advantages in strong noise environments, and such noise-
resistant performance makes MBSADM have a strong
application value in practical application environments. It
is worth noting that the Liconvformer, which performed
sub-optimally in the original signal performance test, did
not exhibit excellent noise immunity when encountering
strong noise (SNR = -6dB, SNR = -3dB). This is because
Liconvformer was designed with lightweight in mind and
neglected to dig deeper into the abstract features of the
input data. In contrast, MBSADM can understand the
input signal more comprehensively as it is designed for
multi-scale convolution while also utilizing the multi-
scale attention mechanism to extract features from the
input signal, and finally using Bi-Transformer to capture
the bi-directional time dependence and extract features
layer by layer. In addition, experiments with
Transformer1D have shown that using only a simple
combination of CNNs + Transformer does not provide
noise immunity for the method. MobileNetV2 cannot
achieve satisfactory diagnostic results when SNR<O0, but
it can achieve better diagnostic results when SNR>0. This
indicates that MobileNetV2 cannot resist the interference
of strong noise, but it can achieve better results under
weak noise. In summary, it can be seen that MBSADM
with both multi-scale convolution, multi-scale attention
mechanism and Bi-Transformer can extract richer and
more comprehensive features from complex vibration
signals, which makes MBSADM have good noise

immunity.

4.2.4. Performance Evaluation in Different Loading
Conditions

Rolling bearings and rotating machinery often operate
under varying load fluctuations. The rolling bearing data
under different loads do not have the same feature
distribution in the feature space. This requires that the
fault diagnosis methods needs to overcome the difficulty
of inconsistency not only in the feature space and class
space, but also in the feature distribution. In this
experiment, we choose three loaded data as training set
respectively, while the other two datasets are used as test
sets, so as to verify the load domain adaptation of the
method. That is, when we choose dataset A as th9e
training set, B,C are done as the test set respectively. The
experimental results are shown in Figure 8. It can be
observed that in the different loading experiments
MBSADM also achieved the smallest average standard
deviation while obtaining the highest average accuracy.
MobileNetV2 had the most pronounced fluctuations, with
an accuracy of 99.55% in the AB group of experiments
and only 76.78% in the CA group of experiments.
MobileNetV2 had the most pronounced fluctuation in
performance, with 99.55% accuracy in the AB group of
experiments and only 76.78% accuracy in the CA group
of experiments. Meanwhile CLFormer achieved the worst
results in the CA group of experiments, while MBSADM
achieved an average accuracy of 96.26% in this group of
experiments, which suggests that MBSADM can
difficulty of

distributions to some extent. Furthermore, Liconformer

overcome the inconsistent  feature
achieved the second highest accuracy in this experiment,
which demonstrates that the design of multi-scale modules
allows the method to overcome feature inconsistencies.
From this experiment, we can get the following two
conclusions: (a) when the load gap between the two
datasets is larger, the feature similarity of the data is
smaller, and the diagnosis is more difficult; (b) when the
load gap between the two datasets is smaller, the feature

similarity is smaller, and better diagnosis can be achieved.
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Figure 8. Accuracy of 6 methods in different loading
environment

4.2.5. Performance Evaluation Under Limited Training
Samples

Since rolling bearings operate in a healthy state for most
of their lifespan, fault data is difficult to obtain. The
limited number of fault samples fails to comprehensively
represent the fault characteristics, and directly using such
data for training hinders the generalization capability of
fault diagnosis models to the validation set, leading to
suboptimal diagnostic performance. Therefore, a key
challenge in rolling bearing fault diagnosis is how to
extract effective features from limited training data and
achieve accurate classification. To evaluate the
performance of MBSADM under limited training samples,
we randomly reduced the CWRU dataset to one-fifth of
its original size before partitioning it into training,
validation, and test sets for experiments. The experimental
results under limited samples are presented in Table 5.

Table5. Accuracy of the six methods under the Limited

Training Samples

methods Dataset A Dataset B Dataset C Average
MobileNetV2 92.16 91.98 93.1 92.41
Transformer1D 86.21 84.87 85.64 85.57
CLFormer 91.55 92.03 91.44 91.67
Liconvformer 91.97 92.31 92.08 92.12
Convformer NSE  92.25 93.59 93.15 92.99

MBSADM 98.34 97.92 98.46 98.24

A comparison between Table 3 and Table 5 reveals that all
six methods experience a certain degree of performance
degradation when faced with limited training data. This is
because the insufficient training samples hinder the fault
diagnosis models from effectively generalizing the
learned features to the validation set. Among all methods,
MBSADM exhibits the least performance decline,
achieving an average accuracy of 98.24%, with only a
1.57% decrease. In contrast, the accuracy of MobileNetV2,
TransformerlD, CLFormer,
Convformer NSE decreases by 5.13%, 11.87%, 6.84%,
6.96%, and 5.63%,
demonstrate that MBSADM can still capture deep features

Liconvformer, and

respectively. These results
from input data and generalize effectively to the validation
set even when the training set is limited in size.

4.3. Case 3

4.3.1. Data set description

The homemade dataset was experimented and collected
on an MFS test bed manufactured by Spectrum Quest
Incorporated (SQI). The experimental equipment is
shown in Figure 9. The test data uses data from the bearing
drive end. Four fault types were simulated under normal
conditions by laser etching: ball fault (BF), inner-ring
fault (IF) and outer-ring fault (OF), and Composite fault
(CF). The signals were collected in groups for four
rotational speeds of 1130r/min, 1251r/min, 1378r/min and
14491/min with a sampling frequency of 15.6Khz. The
experimental equipment was loaded by applying a radial
load of 50N through a 5.1kg rotor disk mounted between
two bearings. The vibration signals were collected by
connecting the signal collector and acceleration sensor
using a 1-channel data cable and transferring the signals
to a computer via the USB interface. We set the data into
four sets A,B,C,D according to the four rotational speeds.
The training set, validation set and test set are made as in
Case 1. The detailed data are shown in Table 6 and Table7.
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Table6. Fault label details for homemade dataset

Class label Fault location Speed(r/min) Dataset

00 BF 1130,1251,1378,1449 A,B,C,D
01 CF 1130,1251,1378,1449 A,B,C,D
02 IF 1130,1251,1378,1449 A,B,C,D
03 OF 1130,1251,1378,1449 A,B,C,D

Table7. Details of the division of the homemade dataset

Sample Dataset A Dataset B Dataset C Dataset D

Training 714 714 714 714
Validation 204 204 204 204
Test 102 102 102 102

4.3.2. Performance evaluation under original signal

To preliminarily evaluate the performance of MBSADM
under this dataset, we use the confusion matrix to obtain
the classification results at four rotational speeds, as
shown in Figure 10(a)-(d). The vertical coordinate of the
graph represents the real fault labels and the horizontal
coordinate represents the predicted fault labels. The
sample size of the test set for each fault is 102. The
accuracy of each fault type can be observed from the main
diagonal. From Figure 10, it can be seen that MBSADM
achieves high accuracy for fault identification at four
different rotational speeds. It can be seen that in the
experiment with a rotational speed of 1378 r/min, the fault
classification accuracy is 100% except for the 4 good label
misclassification. In the other RPM experiments, all fault
labels were not misclassified and the diagnostic accuracy
was 100%. The above results demonstrate the good fault
classification performance of MBSADM in homegrown

datasets.
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Figure10. Confusion matrix results for fault classification at (a)
1130r/min, (b) 1251r/min, (c) 1378r/min, (d) 14491/min.

4.3.3. Evaluation of performance in a noisy environment

Same as Case 1, we use the training set of dataset A for
training, and at the same time add the Gaussian white
noise signals with five SNRs of -6db, -3db, -2db, 3db and
6db to the test set to test the noise immunity of the
proposed method, respectively. The experimental results

are shown in Figure 11.
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Figure 11. Accuracy of comparison methods in noisy



environment
As can be seen in Figure 11, even though the homemade
dataset has only four fault labels, experiments in noisy
environments still pose a challenge to the comparison
methodology. When SNR < 0, the accuracy of the
comparison methods are all less than 80%, which
indicates that the comparison methods are less noise-
resistant on the homemade dataset. Also the accuracy of
MBSADM was significantly higher than the comparison
methods.
MBSADM is 100% when SNR>0 and the diagnostic
accuracy is also above 80% when facing strong noise with

SNR<0. Combined with Case 1, we demonstrate that our

In particular, the accuracy achieved by

design idea can effectively improve the noise immunity of

the network and has strong robustness and generalization.

4.3.4. Performance evaluation under composite operating
conditions

Rolling bearings operate not only in noisy environments,
but also at different speeds. In order to realize the fault
diagnosis of rolling bearings under compliant operating
conditions, we select the dataset with different rotational
speeds as the training set under two different strong noise
environments (SNR=-6,-3), and use the remaining three
datasets as the test set, that is, we use the data A as the
training set, and the other three datasets as the test set, so
as to validate the fault diagnosis performance of the
MBSADM for the composite operating conditions of
different rotational speeds under different noises. fault
diagnosis performance under different noises. The
experimental results are shown in Figure 12. From Figure
12(a), it can be seen that Transformer1D, CLFormer, and

MobileNetV2 have poor domain adaptation when SNR =

-3, with average accuracies of 75.09%, 80.73%, and 91.04%

for the 12 cases. In contrast, the average accuracy of
MBSADM was 97.48%, which is a significant advantage
over the comparison methods. It is worth noting that most
of the methods achieve good accuracy when the difference
in rotational speed between the training set and the test set
is small (e.g., when a dataset A with a rotational speed of
1130r/min is used as the training set and a dataset with a
rotational speed of 1251r/min is used as the test set).
However, the accuracy of all these methods decreases
when the RPMs of the training and test sets differ

significantly. This suggests that the gap between the data
features in the two RPM domains that differ by a large
amount is also large, and this gap poses a challenge to the
adaptive nature of the fault diagnosis methodology. And
MBSADM shows a very stable performance in the
experiments and achieves an average accuracy of 88.54%
even in the cross-domain experiments of A-D. This
verifies that MBSADM possesses strong adaptivity. In
Figure 12(b), it can be seen that despite the further
enhancement of noise that causes a certain degree of
decrease in the accuracy of the various methods,
MBSADM still achieves the highest average fault
accuracy of 97.48%, which verifies that MBSADM
possesses better stability than the other methods. In
summary, MBSADM can achieve the highest accuracy in
cross-domain fault diagnosis in both strong noise
indicating that MBSADM has obvious

advantages in fault diagnosis performance.
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Figure 12. Accuracy of different speed experiment under (a)
SNR=-3, (b) SNR=-6
4.4. Ablation experiments
In order to validate the network module structure
proposed in this paper in MBSADM, we perform ablation
experiments on MBSADM using the homemade dataset



in Case 2. The details of the contrasting network structures
are shown in Table 8. where SADM uses ordinary
convolution instead of MSFE module and traditional self-
attention mechanism instead of Bi-Transformer.BSADM
does not contain MSFE module but contains Bi-
Transformer module. MSADM contains MSFE module
but uses traditional self-attention mechanism instead of
Bi-Transformer.

Table 8. ablation experimental model branching details

model MSFE Bi-Transformer
SADM No No
BSADM No Yes
MSADM Yes No
MBSADM Yes Yes

4.4.1. original signal set performance evaluation

We used a dataset with a rotational speed of 1251 r/min
for the experimental data, and experiments were
conducted using four variants of the method, and all four
methods were able to achieve an average accuracy of
100%. In this case, in order to visualize and more
intuitively show the features learned by the network, we
use the t-SNE visualization technique to show the
distribution of features as the data passes through the last
layer of the network. This technique is commonly used to
validate the effectiveness of fault diagnosis methods. The
t-SNE visualization results are shown in figure 13. In
figure 13, the coordinates of each point represent the
location of the point in the 2D space, and different labels
represent different fault types. It can be seen that although
SADM, BSADM and MSADM can all separate fault
points, the three methods are unable to cluster some fault
points well together, and there is a clear intra-class
separation. And through figure 13(d) it can be seen that
MBSADM separates the four fault types completely and
clusters them best. This illustrates the enhancement of

modeling capability by MSFE and Bi-Transformer.

"

\

@ )

' 4

’

Ve Bl

f. oA
e\ ‘ f‘ 5
e 1%

)
Figure 13. t-SNE visualization of the 4 methods on raw data
4.4.2 Evaluation of performance in a noisy environment
As in Case 2, we use the training set of dataset B for
training, while adding -6db, -3db, -2db, 3db, and 6db of
Gaussian white noise signals with five SNRs to the test set
to test the method's noise immunity performance,
respectively. The experimental results are shown in Table
9. Combined with Case 2, it can be seen that the accuracy
of SADM is very similar to that of Transformer1D, due to
the fact that the network structure of SADM is very
similar to that of TransformerlD after using ordinary
convolution in place of MSFE as well as using the
conventional Transformer module in place of Bi-
Transformer, and therefore similar diagnostic results.
BSADM and MSADM, on the other hand, are not as good
in terms of noise immunity due to the lack of MSFE and
Bi-Transformer modules, respectively. This is because the
lack of MSFE prevents BSADM from analyzing the input
data at multiple scales, while the lack of Bi-Transformer
in MSADM prevents a better understanding of the context.
Table 9.4 Accuracy of the methods in a noisy environment(%)
Methods -6dB  -3dB  -2dB 3dB 6dB
SADM 5742 62779 6495 8324 9196
BSADM 70.59 73776  75.89 8891 9345
MSADM 7243 7439 7634 8736 9492
MBSADM 82.09 8535 87.61 99.46 100

We similarly induced the t-SNE technique to visualize the
classification results, with the experimental context of a
test set noise of -2 dB, as shown in Fig. 14. It can be seen
that SADM, BSADM and MSADM all show significant
class overlap, with SADM having the worst clustering
effect. In figure 14(b)-(c) it can be seen that BSADM and
MSADM only cluster the faults better for two categories,
and the other two categories have a very severe overlap of
fault points. This shows that SADM, BSADM and
MSADM are not able to fulfill the fault diagnosis task

well in the strong noise environment. At the same time, it



can be seen that MBSADM has the best clustering effect,
although there will be individual point overlapping
phenomenon, but the number is not large. It shows that
with the help of MSFE and Bi-Transformer module,
MBSADM has better noise immunity and robustness.
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Fig. 14. t-SNE visualization of the 4 methods in a noisy
environment

5. Conclusion

This paper proposes a novel fault diagnosis method,
MBSADM, which demonstrates exceptional robustness
under noisy environments and varying rotational speeds.
The method directly takes raw one-dimensional data as
input and achieves efficient feature learning through
Multi-Scale (MSFE) and a
Bidirectional Transformer (Bi-Transformer). Specifically,
MSFE employs Multi-Scale Subspace Encoding (MSSE)

to capture features at different scales and integrates an

Feature Extraction

attention mechanism to enhance the extraction of critical
information. Meanwhile, Bi-Transformer incorporates a
reversal mechanism to strengthen the modeling of
temporal dependencies. Experimental results on the
CWRU bearing fault dataset and a self-developed
complex working condition dataset show that MBSADM
maintains high accuracy even under strong noise and
varying loads. Moreover, it exhibits robust fault
recognition capabilities in extreme noise conditions.
Ablation studies further validate the key roles of MSFE
and Bi-Transformer in feature extraction and temporal
modeling. Overall, MBSADM demonstrates superior
fault diagnosis performance, noise resistance, and
generalization ability across different working conditions,

making it a reliable solution for intelligent maintenance

and equipment health monitoring systems.
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