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Multiscale Bi-directional Transformer Network for Rolling Bearing Fault 

Diagnosis 

Qiang Ruiru1. Zhao Xiaoqiang1. 

(College of Electrical and Information Engineering, Lanzhou University of Technology, Gansu Lanzhou 730050, 

China) 

Abstract: In industrial applications, the vibration signals of rolling bearings are often subjected to strong noise 

interference, variations in operating conditions, and fluctuating rotational speeds, resulting in high signal complexity and 

challenging fault diagnosis. Recent studies have leveraged the synergy between the Transformer's multi-head self-

attention mechanism and convolutional networks to enhance feature extraction. However, these approaches often 

introduce excessive model complexity, leading to high computational costs and limiting their deployment in real-world 

industrial scenarios. To address these challenges, this paper proposes a lightweight Multi-scale Bi-directional Self-

attentive Diagnosis Method (MBSADM). First, a multi-scale attention mechanism is designed to effectively capture 

discriminative features across different scales of vibration signals. Second, a multi-scale feature extraction module 

integrates multi-scale dilated convolution blocks with the multi-scale attention mechanism, enabling a multi-local 

receptive field with reduced computational overhead and fewer model parameters. Finally, to fully exploit temporal 

dependencies, we introduce a bi-directional Transformer that leverages a reverse mechanism to construct sequence 

representations containing spatially inverted information, thereby enhancing the temporal modeling capability of 

extracted features. Extensive experiments under strong noise, different load, and fluctuating speed conditions demonstrate 

the robustness and superior classification performance of the proposed MBSADM. Compared to five state-of-the-art fault 

diagnosis methods, MBSADM achieves higher diagnostic accuracy and demonstrates stronger industrial applicability, 

making it a promising solution for real-world bearing fault detection. 

Keywords: Deep learning, rolling bearing fault diagnosis, multi-scale attention mechanism, Bi-directional Transformer 

1. Introduction 

Rotating machinery is widely used in industrial 

production, and rolling bearings, as key components, play 

a crucial role in ensuring equipment safety and stability [1, 

2]. Due to prolonged exposure to complex operating 

environments, rolling bearings are susceptible to fatigue, 

pitting, and overload, which may ultimately lead to 

mechanical failures [3, 4]. Therefore, developing efficient 

and accurate fault diagnosis methods is essential for 

mitigating production risks and reducing economic losses 

[5, 6]. 

Traditional rolling bearing fault diagnosis methods 



 

 

primarily rely on signal processing techniques and expert 

knowledge. While these methods perform well under 

specific working conditions, they struggle to adapt to 

highly dynamic environments [7]. In recent years, deep 

learning has gained widespread adoption in fault diagnosis 

due to its powerful feature extraction and automatic 

learning capabilities. Among these methods, 

convolutional neural network (CNN)-based end-to-end 

approaches eliminate the need for manual feature 

engineering [8], directly extracting key features from raw 

signals and achieving high-precision fault classification [9]. 

Guo et al[10] proposed an end-to-end fault diagnosis 

approach that integrates attention-based CNNs with 

bidirectional long short-term memory networks 

(BiLSTM). Dong et al[11] designed a one-dimensional 

attention-enhanced neural network based on empirical 

wavelet transform to address the non-stationarity and non-

linearity of rolling bearing vibration signals. Lin et al[12] 

tackled the limitations of conventional CNNs, which 

focus solely on single-scale features while neglecting 

multi-scale deep information, by proposing an improved 

multi-scale attention-based CNN for bearing fault 

diagnosis. Additionally, Jia et al[13] introduced a denoising 

strategy based on the periodic self-similarity of vibration 

signals and leveraged an end-to-end CNN model to 

suppress irrelevant noise in vibration signals. 

Although CNNs effectively extract local features from 

input data without requiring prior knowledge, they 

primarily capture localized patterns. When fault signals 

are affected by noise interference or variations in 

rotational speed, relying solely on local information 

makes it difficult to extract global fault patterns[14]. 

Furthermore, CNNs employ a shared weight mechanism, 

which lacks the ability to model long-term dependencies 

in time-series data[15]. 

To enhance global feature extraction, Transformer models 

have recently been introduced into the fault diagnosis 

domain. By leveraging the self-attention mechanism, 

Transformers effectively model long-range dependencies 

and have achieved remarkable success in natural language 

processing (NLP)[16] and computer vision (CV)[17]. Some 

studies have attempted to apply Transformers to rolling 

bearing fault diagnosis. For example, Hou et al[18] 

proposed a fault diagnosis model combining fast fourier 

transform (FFT) with Transformer networks, while Tang 

et al[19] employed discrete wavelet transform to 

decompose vibration signals into sub-signals across 

different frequency bands, which were then fed into 

independent Transformer models for diagnosis. However, 

Transformers require large-scale data for training, 

whereas vibration signal datasets are typically limited in 

size[20], making it challenging for the model to learn 

complex fault patterns effectively. Additionally, 

Transformers struggle with capturing fine-grained local 

details, limiting their ability to extract multi-scale features 

from bearing vibration signals[21]. 

To address the respective shortcomings of CNNs and 

Transformers, researchers have proposed hybrid CNN-

Transformer approaches, which leverage CNNs for local 

feature extraction and Transformers for global modeling. 

For instance, Gao et al[22] developed a fault diagnosis 

model that integrates CNNs with a dual-channel 

Transformer to achieve collaborative extraction of local 

and global features. Liu et al[23] proposed a lightweight 

diagnostic framework based on multi-scale convolution 

and broadcast self-attention, designed to handle varying 

rotational speeds. 

In summary, although CNN-Transformer-based fault 

diagnosis methods have demonstrated promising results, 

several challenges remain: (1) CNNs require additional 

convolutional kernels to extract multi-scale features, 

significantly increasing computational complexity; (2) 

existing attention mechanisms often focus on single-scale 

features while overlooking the complex spatiotemporal 

dependencies in vibration signals; and (3) most methods 

adopt a unidirectional modeling approach that only 

considers historical information, failing to fully utilize 

future contextual information to enhance fault pattern 

representation. 

To address these issues, this paper proposes a multi-scale 

bidirectional self-attention fault diagnosis method. The 

proposed method directly processes raw data without 

requiring any preprocessing, reducing dependence on 

domain-specific signal processing expertise. Furthermore, 

by constructing a multi-scale feature extraction module 

and a bidirectional Transformer module, our approach 

effectively captures features across different scales and 

learns richer contextual information. The main 



 

 

contributions of this paper are as follows: 

(1) Construction of a multi-scale attention mechanism 

using squeeze-and-excitation networks and convolutional 

neural networks. Specifically, to enable the attention 

mechanism to aggregate information from different 

spatial scales, we first utilize the squeeze-and-excitation 

(SE) module and convolutional modules to extract multi-

scale spatial information separately, followed by mutual 

weighting. Then, the spatial attention maps from both 

scales are summed to generate weights that are applied to 

the original features. 

(2) Proposal of a multi-scale feature extraction module 

combining dilated convolutions and multi-scale attention 

mechanisms. By incorporating dilated convolutions, the 

network's feature learning capability is enhanced while 

effectively reducing the computational cost of 

convolution operations. 

(3) Construction of a bidirectional transformer (Bi-

Transformer) for temporal feature enhancement. By 

leveraging rolling bearing time-series data from both past 

and future time steps, the proposed Bi-Transformer 

enhances the temporal modeling capability of the network. 

This allows the model to capture both historical and future 

temporal contexts within vibration signals, leading to 

more comprehensive fault pattern representation.  

The rest of the paper is organized as follows. Section 2 

presents the theoretical background involved in the 

proposed method. Section 3 presents the multiscale bi-

directional self-attentive fault diagnosis method. Section 

4 presents an experimental evaluation of the proposed 

method. Section 5 concludes the paper. 

2. Theoretical background 

2.1. Convolution and Depth Separable Convolution 

CNN have made very significant achievements in the field 

of image processing[24, 25]. In order to solve the rolling 

bearing fault diagnosis problem, the researchers converted 

2D CNN to 1D CNN to analyze 1D timing signals. For 

conventional 1D CNNs, the width of the input features is 

assumed to be W , the size of the convolutional kernel is 

k , and inC  and outC  are the number of channels for the 

input and output data, respectively. The operation of one-

dimensional convolution is described as follows: 

 in outk C C W    (1) 

Depth separable convolution[26] consists(DSC) of depth 

convolution (DW) and pointwise convolution (PW), 

where PW convolution is the traditional convolution with 

convolution kernel 1. Each convolution channel in DW 

convolution is 1. Therefore, DW convolution requires 

convolution of each channel of the input data, and the 

number of channels of the output data is equal to the 

number of channels of the input data. Once the output 

features are obtained using DW convolution, the number 

of output data channels is customized using PW 

convolution. The operational cost of DS convolution is the 

sum of DW convolution and PW convolution, described 

as follows: 

 in in outk C W C C W  +    (2) 

Compared with the traditional 1D convolution, the 

computational cost of DS convolution is 
1 1

outC k
+  times 

less than that of traditional convolution, which reduces the 

computational cost and realizes the lightweighting of the 

model. 

2.2. Dilated Convolution 

Receptive field is an important concept in CNNs, which 

represents the process in which a neuron receives a portion 

of the input image and performs feature extraction based 

on this information[27]. In layman's terms, the receptive 

field is the ratio of the individual pixels of the feature map 

to the pixels of the original image during the convolution 

process. The larger the receptive field, the richer the 

information in the original image contained in the feature 

map. The dilation convolution changes the receptive field 

by introducing a hyperparameter "dilation rate" to control 

the spacing of neighboring samples of the convolution 

kernel. As shown in Figure 1, the receptive field of a 

conventional one-dimensional convolution with a kernel 

size of 3 1   is 3. When the dilation rate is 2, the 

receptive field of the same 3 1   convolutional kernel 

dilates from 3 to 7. The same receptive field size requires 

a convolution kernel of 5 to do so, but the number of 

parameters in the dilation convolution is much smaller 

than that of the traditional convolution, which greatly 

reduces the computational cost. 

 

Figure 1. 1D dilation convolution 

2.3. Self-attention mechanism (SA) 



 

 

Attention mechanisms are widely used in CNNs for image 

processing tasks. The aim is to give CNN the ability to 

focus on and understand key regions of an image similar 

to the human eye. The core idea of the attention 

mechanism is to allow CNN to focus on important 

information in the input data while ignoring unimportant 

details. The self-attention mechanism[28] (SA) has 

achieved excellent results in tasks in the field of NLP since 

its proposal. Due to its excellent contextual understanding, 

SA began to be introduced by researchers into the field of 

computer vision. 

The structure of SA is shown in Figure 2. Let X be the 

input data, the query Q , the key K  and the value V  

are obtained by linear transformation. Subsequently, for 

each position i   in the sequence, the attention score 

between it and all positions j   in the sequence is 

computed, described as follows: 

 
T

i j

ij

k

Q K
Score

d
=  (3) 

where the scaling factor kd  is the dimension of the key 

vector used to stabilize the gradient of the softmax 

function. Then, the scores calculated above are converted 

to probability distribution by softmax function to get the 

attention weight matrix. The description is as follows: 

 Softmax

T

i j

i

k

Q K
a

d

 
=  

 
 

 (4) 

Finally, based on the computed attention weight matrix, 

the V   of all positions are weighted and summed to 

obtain the contextual representation of the current position. 

The description is as follows: 

 
1

n

ij j

j

C a V
=

=  (5) 

 

Figure 2. Self-attention mechanism 

3. Proposed method 

This section will be divided into two parts, the first part 

describes the main components of the method and the 

second part describes the overall method architecture and 

flow. 

3.1. Module Composition 

3.1.1. Multi-scale attention mechanisms 

The traditional attention mechanism serves to strengthen 

the learning ability of CNNs on input data. Such as SE-

Net focuses on different weights for the feature channels. 

The convolutional block attention module (CBAM) can 

focus on both channel and spatial attention. However, all 

of these attention mechanisms focus only on single-scale 

features and ignore feature representation in multi-scale 

spaces[29]. In order to compensate for the lack of attention 

to multi-scale space of existing attention mechanisms, we 

proposed a multi-scale squeeze-excitation attention 

module (MSSE).  

MSSE consists of 3 branches: the SE branch, the 

convolution branch and the residual branch. 

The SE branch has the same structure as SE-Net. The 

feature map is first compressed by global average pooling 

(GAP), thus preserving the global information of the 

features. Second, the compressed vectors are fully 

concatenated twice, the first layer is used to reduce the 

dimensionality and extract important features, and the 

second layer is activated using the ReLU activation 

function followed by normalization using the Sigmoid 

function to generate a dynamic weight vector. Finally, this 

weight is multiplied point-by-point with the original 

feature map to achieve re-weighting of the original 

features. Convolutional branch constructs another scale of 

spatial modeling by extracting contextual features of the 

input data through a 3 1   convolution. Since then, SE 

branch and convolutional branch have different scales of 

spatial representation. 

Different from the information fusion methods such as 

summing and splicing in traditional attention mechanisms, 

we use a new information fusion method that allows 

MSSE to aggregate information in different scale spaces. 

The output of the SE branch is first subjected to a batch 

normalization operation (batchnorm), then it is 

normalized using the softmax function, and finally the 



 

 

normalized channel representations are subjected to a 

matmul operation with the output that has been convolved 

with 3 1  . Unlike the point-by-point multiplication in 

SE-Net, matmul is equivalent to weighted summation of 

all channels at each pixel point to obtain a total channel 

feature. This operation is equivalent to tweaking the 3 1  

convolution result using the output of the SE. Similarly, 

the same operation is performed in the convolution branch, 

using the weights generated by the 3 1  convolution to 

adjust the output of the SE. Finally, the original features 

are weighted by summing the spatial attention of the two 

scales and generating weights using Sigmoid again. 

The structure of MSSE is shown in Figure 3. 

 

Figure 3. Structure of MSSE 

3.1.2. Multi-scale feature extraction module 

Since different dilation rates can bring different receptive 

fields to the convolution, different receptive fields can 

bring different feature scales. Therefore, we propose an 

dilated convolution based multi-scale feature extraction 

module (MSFE). The structure of MSFE is shown in 

Figure 4. 

 

Figure 4.Structure of MFSE 

MSFE consists of two main branches: the multiscale 

extraction branch and the residual branch. In this case, the 

multi-scale extraction branch divides the channel of input 

features into four branches, and features in each branch 

are extracted using dilated convolutions with different 

dilation rates. Through experiments, we set up four dilated 

convolution branches, and the dilation rate of each branch 

is set to 1, 2, 4, and 8, respectively. Input features are 

passed through the MSSE module after four branches, 

which are stitched together and passed through the MSSE 

module using concat. Finally, the output of the multiscale 

branch is summed with the residual branch. The MSFE 

module extracts a richer representation of the features 

using a smaller number of parameters. 

3.1.3. Bi-directional Transformer for Time Signals 

Rolling bearings, due to their complex operating 

environment, make bearing signals often present as 

complex time series. These complex time series are not 

only reflected in previous bearing operating cycles, but 

can also indicate impending fault. Therefore, capturing bi-

directional temporal dependencies from the context in 

time-series signals of rolling bearings is important for 

accurate fault diagnosis. 

Transformer was originally designed to handle tasks 

within the NLP field by using a multi-heads self-attention 

mechanism that essentially models remote dependencies 

in sequences. However, Transformer tends to focus only 

on the context prior to the current position while encoding, 

ignoring subsequent positions. To address this problem, 

inspired by Bi-LSTM and bi-directional gated recurrent 

unit (Bi-GRU), we extend the Transformer and introduce 

a Bi-Transformer. The Bi-Transformer can utilize time 

series from previous and subsequent rolling bearings, 

which can be used to augment the temporal relationships 

in the extracted features of the model. Since the input to 

the Bi-Transformer is feature information extracted from 

previous convolutional layers that encode high-level 

spatial information, they will serve as valuable contextual 

information for subsequent temporal relation learning. Bi-

Transformer introduces an reverse mechanism that 

generates a sequence of reversed spatial information 

containing information about the input sequence as 

additional input. This allows Bi-Transformer to consider 

both past and future contexts when predicting a specific 

location. By combining outputs from both directions, our 

approach enables richer contextual understanding, 



 

 

effectively capturing complex relationships in sequences. 

The structure of Bi-Transformer is shown in Figure 5. 

Applying the SA to the transformation of input feature 

maps. The input feature map is projected into the query 

Q  , key K   and value V   for each header by linear 

mapping. The description is as follows: 

 

h h

Q Q

h h

K K

h h

V V

m W m

m W m

m W m

 = 


= 


= 

 (6) 

where m  is the input feature map, 
h

Qm , h

Km , and h

Vm  

are the Q , K , and V  matrices on the thh  head. 
h

QW , 

h

KW  , and h

VW   are the projection matrices on the thh  

head. The self-attention mechanism on each head is then 

utilized to obtain the attention weights. The description is 

as follows: 

 

( )

( )

, ,

softmax

h h h h

Q K V

T
h h

Q K h

V

k

A Attention m m m

m m
m

d

= =

 
 
 
 

 (7) 

where kd  is the size of the h

Km  of the thh  head. The 

multi-head attention(MHA) mechanism obtains the final 

output by concatenating the results of all heads and 

applying another linear projection. The description is as 

follows: 

 ( ) ( )1 2, , Concat , H

OMHA m m m A A A W=   (8) 

where ( ), ,MHA m m m   denotes the MHA’s output and 

OW  is the output projection matrix of the final multi-head 

attention output. 

The key operation of the Bi-Transformer is the 

introduction of bi-directional attention. To accomplish 

this, we reverse the input feature map to account for past 

and future information. The description is as follows: 

    , , 1rm i j x i d j= − −  (9) 

In general, the transformer encoder consists of L identical 

layers. Each of these layers has two sub-layers: the MHA 

and the fully connected feed-forward network. Thus, the 

above operation needs to be performed L times. Each layer 

in such a stack processes the input data m in turn, i.e., the 

operations from Eq. (6) to Eq. (10), thus capturing a more 

detailed representation of the context. In this way the 

dependencies in the input data are learned hierarchically. 

The output of each layer in the Bi-Transformer serves as 

an input to the subsequent layers, thus gradually extracting 

complex patterns. The final output of the Bi-Transformer 

is obtained by stepwise extraction of the input feature map. 

The description is as follows:  

 
( )

( )( )( )( )1 1L L

Bi Transformer m

Layer Layer Layer m−

− =
 (10) 

 

Figure 5.Structure of Bi-Transformer 

3.2. Multi-scale bi-directional self-attentive diagnosis 

method framework 

The framework of the multiscale bi-directional self-

attentive diagnosis method (MBSADM) proposed in this 

paper is shown in Figure 6. The diagnostic steps are as 

follows: 

Step1: Collect rolling bearing timing signals under 

different working conditions; 

Step2: Crop the timing signal using a horizontal sliding 

window to construct the dataset; 

Step3: Divide the dataset into training set, validation set 

and test set; 

Step4: Train MBSADM using training set and test set to 

learn sample features; 

Step5: Validate the model diagnosis results using the 

validation set. 

In particular, the backbone of MBSADM consists of the 

MSFE module and the Bi-Transformer. First, DSW is used 

and one spatial downsample is performed using maxpool. 

Then, the MSFE module is stacked twice for multi-scale 

feature extraction. Subsequently, the data is reversed to 

capture the contextual relationships in the data using Bi-



 

 

Transformer. After using one convolution, the results are 

finally output through a fully connected layer. 

4. Experimentation and analysis 

In order to validate the fault diagnosis performance of 

MBSADM, we conduct experiments using three rolling 

bearing datasets so as to verify the noise immunity, hybrid 

fault diagnosis capability, and generalization of 

MBSADM. The device configuration used for all 

experiments was AMD Ryzen7 5800H CPU@3.2GHz, 

NVIDIA RTX3060 (12G) and 16G RAM, and the 

framework used for the experiments was pytorch1.12. 

4.1. Comparison methods 

In order to validate the performance of the proposed 

model, we chose advanced deep learning methods as 

comparison methods, including MobileNetV2, 

Transformer1D, CLFormer[30], Liconvformer[31] and 

Convformer_NSE[32]. Among them, MobileNetV2 is a 

mature deep learning model. transformer1D combines 

CNN and Transformer and is used as a model for fault 

diagnosis. CLFormer is a lightweight Transformer based 

on convolutional embedding and linear self-attention 

(LSA). Liconvformer is a fault diagnosis model based on 

separable multiscale modules with broadcast self-

attention modules. Convformer_NSE uses sparse-

corrected multi-self attention and constructs a novel senet 

(NSE) for channel adaptive learning. 

To ensure the fairness of the experiments, the training 

epochs were all set to 50, and the initial learning rates were 

all set to 0.0003. To verify the stability of the method, each 

experiment was repeated 20 times. 

 

 

Figure 6. Fault diagnosis model framework 

4.2. Case 1 

4.2.1. description of the dataset 

Experimental data were obtained from Case Western 

Reserve University (CWRU)[33]. As shown in Figure 7, 

bearing type SKF 6205 is used. Artificial failures were 

categorized into three types: ball faults (BF), inner-ring 

faults (IF), and outer-ring faults (OF), each of which in 

turn contained points of failure with diameters of 0.007 

inches, 0.014 inches, and 0.021 inches. A total of 10 fault 

labels (including 1 health label and 9 fault labels) were 

obtained by combining the fault type and size 

permutations. Additionally, we use bearing data collected 

under three different loads (1 hp, 2 hp, and 3 hp, 

corresponding to forces of 416.7 N, 833.4 N, and 1250.1 

N, respectively) to evaluate the model's generalization 

capability under complex operating conditions. The 



 

 

sampling frequency of the CWRU dataset is 12,000 Hz, 

and the bearing rotates at 1,797 r/min, generating 

approximately 400 samples per revolution. To ensure the 

reliability of the samples, we apply a moving window of 

length 1,024 to extract samples, ensuring that each sample 

contains sufficient information. Furthermore, we split the 

dataset into training, validation, and test sets in a 7:2:1 

ratio. The detailed data distribution is presented in Tables 

1 and 2. 

 

Figure7. Rolling bearing test bench 

Table 1.Fault label details 

Class label Fault location Fault size(in) Load(hp) Dataset 

00 Normal / 1,2,3 A, B, C, 

01 BF 0.007 1,2,3 A, B, C, 

02 IF 0.007 1,2,3 A, B, C, 

03 OF 0.007 1,2,3 A, B, C, 

04 BF 0.014 1,2,3 A, B, C, 

05 IF 0.014 1,2,3 A, B, C, 

06 OF 0.014 1,2,3 A, B, C, 

07 BF 0.021 1,2,3 A, B, C, 

08 IF 0.021 1,2,3 A, B, C, 

09 OF 0.021 1,2,3 A, B, C, 

Table 2. Details of dataset division 

Sample Dataset A Dataset B Dataset C Dataset D 

Training 1631 1631 1631 1631 

Validation 466 466 466 466 

Test 233 233 233 233 

 

4.2.2. Evaluation of MBSADM performance with original 

signals 

In order to make a preliminary assessment of the feature 

extraction capability of MBSADM, we conducted 

diagnostic experiments on dataset A, B and C using 

MBSADM with the comparison method, and the results 

of the experiments are shown in Table 3. In the three 

datasets, MBSADM achieved an average accuracy of over 

99%, with an average accuracy of 99.81%. This means 

that MBSADM categorizes almost every sample correctly. 

In dataset A, the advantages of MBSADM are most 

obvious. In dataset C, Liconvformer had the best 

diagnostic performance at 99.49%, but still differed from 

MBSADM by 0.48%. The above experimental results 

show that MBSADM has excellent feature extraction 

capability and can extract better features in the original 

signal. 

Table 3.Accuracy of the six methods under the original 

signal(%) 

methods 
Dataset 

A 

Dataset 

B 

Dataset 

C 
Average Time 

MobileNetV2 96.52 97.31 98.79 97.54 15.47s 

Transformer1D 95.98 97.82 98.51 97.44 14.91s 

CLFormer 97.36 98.97 99.21 98.51 12.74s 

Liconvformer 98.45 99.31 99.49 99.08 9.53s 

Convformer_NSE 97.84 98.98 99.05 98.62 13.32s 

MBSADM 99.56 99.91 99.97 99.81 27.51s 

 

4.2.3. Performance evaluation in noisy environments 

In the actual working environment of rolling bearings, the 

interference of strong noise is often accompanied, which 

challenges the performance of the fault diagnosis method. 

In this experiment, we utilize the original signals for 

experiments and add Gaussian white noise with different 

signal-to-noise ratios to the data in the test set to simulate 

the ambient noise, so as to verify the noise immunity of 

the model. In this experiment, we utilize the original 

signals for training and add Gaussian white noise with 

different signal-to-noise ratios(SNR)[34] to the data in the 

test set to simulate the ambient noise, so as to verify the 

method's noise immunity. SNR is defined as follows: 

 dBSNR 10log( )
signal

noise

P

P
=  (11) 

where signalP   and noiseP   denote the power of the 

original and noise signals, respectively. From the above 

equation, it can be seen that when SNR<0, the noise power 

is greater than the original signal power, and when SNR>0, 

the noise signal power is less than the original signal 

power. In this experiment, we use the data in dataset A to 

do the training and add -6db, -3db, -2db, 3db and 6db 

Gaussian white noise signals of 5 SNRs to the test set to 

test the noise immunity performance of the proposed 

method. The experimental results are shown in Table 4. 



 

 

Table 4.Accuracy of 6 methods in noisy environment(%) 

methods -6dB -3dB -2dB 3dB 6dB 

MobileNetV2 70.80 75.34 77.67 94.32 96.88 

Transformer1D 62.57 70.29 72.13 81.92 86.16 

CLFormer 79.61 81.41 83.54 87.68 89.12 

Liconvformer 77.32 82.91 85.92 89.46 93.52 

Convformer_NSE 82.57 86.78 89.82 93.03 97.76 

MBSADM 85.48 89.69 93.74 97.64 99.17 

 

As can be seen from Table 4, the accuracy of MBSADM 

in the five noise environments is significantly higher than 

the other compared methods. In particular, MBSADM can 

still obtain more than 85% accuracy at SNR=-6dB, which 

is 3.89% higher than that of Convformer_NSE, which 

indicates that MBSADM still possesses obvious 

advantages in strong noise environments, and such noise-

resistant performance makes MBSADM have a strong 

application value in practical application environments. It 

is worth noting that the Liconvformer, which performed 

sub-optimally in the original signal performance test, did 

not exhibit excellent noise immunity when encountering 

strong noise (SNR = -6dB, SNR = -3dB). This is because 

Liconvformer was designed with lightweight in mind and 

neglected to dig deeper into the abstract features of the 

input data. In contrast, MBSADM can understand the 

input signal more comprehensively as it is designed for 

multi-scale convolution while also utilizing the multi-

scale attention mechanism to extract features from the 

input signal, and finally using Bi-Transformer to capture 

the bi-directional time dependence and extract features 

layer by layer. In addition, experiments with 

Transformer1D have shown that using only a simple 

combination of CNNs + Transformer does not provide 

noise immunity for the method. MobileNetV2 cannot 

achieve satisfactory diagnostic results when SNR<0, but 

it can achieve better diagnostic results when SNR>0. This 

indicates that MobileNetV2 cannot resist the interference 

of strong noise, but it can achieve better results under 

weak noise. In summary, it can be seen that MBSADM 

with both multi-scale convolution, multi-scale attention 

mechanism and Bi-Transformer can extract richer and 

more comprehensive features from complex vibration 

signals, which makes MBSADM have good noise 

immunity. 

4.2.4. Performance Evaluation in Different Loading 

Conditions 

Rolling bearings and rotating machinery often operate 

under varying load fluctuations. The rolling bearing data 

under different loads do not have the same feature 

distribution in the feature space. This requires that the 

fault diagnosis methods needs to overcome the difficulty 

of inconsistency not only in the feature space and class 

space, but also in the feature distribution. In this 

experiment, we choose three loaded data as training set 

respectively, while the other two datasets are used as test 

sets, so as to verify the load domain adaptation of the 

method. That is, when we choose dataset A as th9e 

training set, B,C are done as the test set respectively. The 

experimental results are shown in Figure 8. It can be 

observed that in the different loading experiments 

MBSADM also achieved the smallest average standard 

deviation while obtaining the highest average accuracy. 

MobileNetV2 had the most pronounced fluctuations, with 

an accuracy of 99.55% in the AB group of experiments 

and only 76.78% in the CA group of experiments. 

MobileNetV2 had the most pronounced fluctuation in 

performance, with 99.55% accuracy in the AB group of 

experiments and only 76.78% accuracy in the CA group 

of experiments. Meanwhile CLFormer achieved the worst 

results in the CA group of experiments, while MBSADM 

achieved an average accuracy of 96.26% in this group of 

experiments, which suggests that MBSADM can 

overcome the difficulty of inconsistent feature 

distributions to some extent. Furthermore, Liconformer 

achieved the second highest accuracy in this experiment, 

which demonstrates that the design of multi-scale modules 

allows the method to overcome feature inconsistencies. 

From this experiment, we can get the following two 

conclusions: (a) when the load gap between the two 

datasets is larger, the feature similarity of the data is 

smaller, and the diagnosis is more difficult; (b) when the 

load gap between the two datasets is smaller, the feature 

similarity is smaller, and better diagnosis can be achieved. 



 

 

 

Figure 8. Accuracy of 6 methods in different loading 

environment 

4.2.5. Performance Evaluation Under Limited Training 

Samples 

Since rolling bearings operate in a healthy state for most 

of their lifespan, fault data is difficult to obtain. The 

limited number of fault samples fails to comprehensively 

represent the fault characteristics, and directly using such 

data for training hinders the generalization capability of 

fault diagnosis models to the validation set, leading to 

suboptimal diagnostic performance. Therefore, a key 

challenge in rolling bearing fault diagnosis is how to 

extract effective features from limited training data and 

achieve accurate classification. To evaluate the 

performance of MBSADM under limited training samples, 

we randomly reduced the CWRU dataset to one-fifth of 

its original size before partitioning it into training, 

validation, and test sets for experiments. The experimental 

results under limited samples are presented in Table 5. 

Table5. Accuracy of the six methods under the Limited 

Training Samples 

methods Dataset A Dataset B Dataset C Average 

MobileNetV2 92.16 91.98 93.1 92.41 

Transformer1D 86.21 84.87 85.64 85.57 

CLFormer 91.55 92.03 91.44 91.67 

Liconvformer 91.97 92.31 92.08 92.12 

Convformer_NSE 92.25 93.59 93.15 92.99 

MBSADM 98.34 97.92 98.46 98.24 

A comparison between Table 3 and Table 5 reveals that all 

six methods experience a certain degree of performance 

degradation when faced with limited training data. This is 

because the insufficient training samples hinder the fault 

diagnosis models from effectively generalizing the 

learned features to the validation set. Among all methods, 

MBSADM exhibits the least performance decline, 

achieving an average accuracy of 98.24%, with only a 

1.57% decrease. In contrast, the accuracy of MobileNetV2, 

Transformer1D, CLFormer, Liconvformer, and 

Convformer_NSE decreases by 5.13%, 11.87%, 6.84%, 

6.96%, and 5.63%, respectively. These results 

demonstrate that MBSADM can still capture deep features 

from input data and generalize effectively to the validation 

set even when the training set is limited in size. 

4.3. Case 3 

4.3.1. Data set description 

The homemade dataset was experimented and collected 

on an MFS test bed manufactured by Spectrum Quest 

Incorporated (SQI). The experimental equipment is 

shown in Figure 9. The test data uses data from the bearing 

drive end. Four fault types were simulated under normal 

conditions by laser etching: ball fault (BF), inner-ring 

fault (IF) and outer-ring fault (OF), and Composite fault 

(CF). The signals were collected in groups for four 

rotational speeds of 1130r/min, 1251r/min, 1378r/min and 

1449r/min with a sampling frequency of 15.6Khz. The 

experimental equipment was loaded by applying a radial 

load of 50N through a 5.1kg rotor disk mounted between 

two bearings. The vibration signals were collected by 

connecting the signal collector and acceleration sensor 

using a 1-channel data cable and transferring the signals 

to a computer via the USB interface. We set the data into 

four sets A,B,C,D according to the four rotational speeds. 

The training set, validation set and test set are made as in 

Case 1. The detailed data are shown in Table 6 and Table7. 



 

 

 

Figure 9. homemade dataset experimental equipment and fault types 

Table6. Fault label details for homemade dataset 

Class label Fault location Speed(r/min) Dataset 

00 BF 1130,1251,1378,1449 A, B, C, D 

01 CF 1130,1251,1378,1449 A, B, C, D 

02 IF 1130,1251,1378,1449 A, B, C, D 

03 OF 1130,1251,1378,1449 A, B, C, D 

Table7. Details of the division of the homemade dataset 

Sample Dataset A Dataset B Dataset C Dataset D 

Training 714 714 714 714 

Validation 204 204 204 204 

Test 102 102 102 102 

4.3.2. Performance evaluation under original signal 

To preliminarily evaluate the performance of MBSADM 

under this dataset, we use the confusion matrix to obtain 

the classification results at four rotational speeds, as 

shown in Figure 10(a)-(d). The vertical coordinate of the 

graph represents the real fault labels and the horizontal 

coordinate represents the predicted fault labels. The 

sample size of the test set for each fault is 102. The 

accuracy of each fault type can be observed from the main 

diagonal. From Figure 10, it can be seen that MBSADM 

achieves high accuracy for fault identification at four 

different rotational speeds. It can be seen that in the 

experiment with a rotational speed of 1378 r/min, the fault 

classification accuracy is 100% except for the 4 good label 

misclassification. In the other RPM experiments, all fault 

labels were not misclassified and the diagnostic accuracy 

was 100%. The above results demonstrate the good fault 

classification performance of MBSADM in homegrown 

datasets. 

 (a)  (b) 

 (c)  (d) 

Figure10. Confusion matrix results for fault classification at (a) 

1130r/min, (b) 1251r/min, (c) 1378r/min, (d) 1449r/min. 

4.3.3. Evaluation of performance in a noisy environment 

Same as Case 1, we use the training set of dataset A for 

training, and at the same time add the Gaussian white 

noise signals with five SNRs of -6db, -3db, -2db, 3db and 

6db to the test set to test the noise immunity of the 

proposed method, respectively. The experimental results 

are shown in Figure 11.  

 

Figure 11. Accuracy of comparison methods in noisy 



 

 

environment 

As can be seen in Figure 11, even though the homemade 

dataset has only four fault labels, experiments in noisy 

environments still pose a challenge to the comparison 

methodology. When SNR < 0, the accuracy of the 

comparison methods are all less than 80%, which 

indicates that the comparison methods are less noise-

resistant on the homemade dataset. Also the accuracy of 

MBSADM was significantly higher than the comparison 

methods. In particular, the accuracy achieved by 

MBSADM is 100% when SNR>0 and the diagnostic 

accuracy is also above 80% when facing strong noise with 

SNR<0. Combined with Case 1, we demonstrate that our 

design idea can effectively improve the noise immunity of 

the network and has strong robustness and generalization. 

 

4.3.4. Performance evaluation under composite operating 

conditions 

Rolling bearings operate not only in noisy environments, 

but also at different speeds. In order to realize the fault 

diagnosis of rolling bearings under compliant operating 

conditions, we select the dataset with different rotational 

speeds as the training set under two different strong noise 

environments (SNR=-6,-3), and use the remaining three 

datasets as the test set, that is, we use the data A as the 

training set, and the other three datasets as the test set, so 

as to validate the fault diagnosis performance of the 

MBSADM for the composite operating conditions of 

different rotational speeds under different noises. fault 

diagnosis performance under different noises. The 

experimental results are shown in Figure 12. From Figure 

12(a), it can be seen that Transformer1D, CLFormer, and 

MobileNetV2 have poor domain adaptation when SNR = 

-3, with average accuracies of 75.09%, 80.73%, and 91.04% 

for the 12 cases. In contrast, the average accuracy of 

MBSADM was 97.48%, which is a significant advantage 

over the comparison methods. It is worth noting that most 

of the methods achieve good accuracy when the difference 

in rotational speed between the training set and the test set 

is small (e.g., when a dataset A with a rotational speed of 

1130r/min is used as the training set and a dataset with a 

rotational speed of 1251r/min is used as the test set). 

However, the accuracy of all these methods decreases 

when the RPMs of the training and test sets differ 

significantly. This suggests that the gap between the data 

features in the two RPM domains that differ by a large 

amount is also large, and this gap poses a challenge to the 

adaptive nature of the fault diagnosis methodology. And 

MBSADM shows a very stable performance in the 

experiments and achieves an average accuracy of 88.54% 

even in the cross-domain experiments of A-D. This 

verifies that MBSADM possesses strong adaptivity. In 

Figure 12(b), it can be seen that despite the further 

enhancement of noise that causes a certain degree of 

decrease in the accuracy of the various methods, 

MBSADM still achieves the highest average fault 

accuracy of 97.48%, which verifies that MBSADM 

possesses better stability than the other methods. In 

summary, MBSADM can achieve the highest accuracy in 

cross-domain fault diagnosis in both strong noise 

scenarios, indicating that MBSADM has obvious 

advantages in fault diagnosis performance. 

(a) 

(b) 

Figure 12. Accuracy of different speed experiment under (a) 

SNR=-3, (b) SNR=-6 

4.4. Ablation experiments 

In order to validate the network module structure 

proposed in this paper in MBSADM, we perform ablation 

experiments on MBSADM using the homemade dataset 



 

 

in Case 2. The details of the contrasting network structures 

are shown in Table 8. where SADM uses ordinary 

convolution instead of MSFE module and traditional self-

attention mechanism instead of Bi-Transformer.BSADM 

does not contain MSFE module but contains Bi-

Transformer module.MSADM contains MSFE module 

but uses traditional self-attention mechanism instead of 

Bi-Transformer. 

Table 8. ablation experimental model branching details 

model MSFE Bi-Transformer 

SADM No No 

BSADM No Yes 

MSADM Yes No 

MBSADM Yes Yes 

4.4.1. original signal set performance evaluation 

We used a dataset with a rotational speed of 1251 r/min 

for the experimental data, and experiments were 

conducted using four variants of the method, and all four 

methods were able to achieve an average accuracy of 

100%. In this case, in order to visualize and more 

intuitively show the features learned by the network, we 

use the t-SNE visualization technique to show the 

distribution of features as the data passes through the last 

layer of the network. This technique is commonly used to 

validate the effectiveness of fault diagnosis methods. The 

t-SNE visualization results are shown in figure 13. In 

figure 13, the coordinates of each point represent the 

location of the point in the 2D space, and different labels 

represent different fault types. It can be seen that although 

SADM, BSADM and MSADM can all separate fault 

points, the three methods are unable to cluster some fault 

points well together, and there is a clear intra-class 

separation. And through figure 13(d) it can be seen that 

MBSADM separates the four fault types completely and 

clusters them best. This illustrates the enhancement of 

modeling capability by MSFE and Bi-Transformer. 

(a) (b) 

(c) (d) 

Figure 13. t-SNE visualization of the 4 methods on raw data 

4.4.2 Evaluation of performance in a noisy environment 

As in Case 2, we use the training set of dataset B for 

training, while adding -6db, -3db, -2db, 3db, and 6db of 

Gaussian white noise signals with five SNRs to the test set 

to test the method's noise immunity performance, 

respectively. The experimental results are shown in Table 

9. Combined with Case 2, it can be seen that the accuracy 

of SADM is very similar to that of Transformer1D, due to 

the fact that the network structure of SADM is very 

similar to that of Transformer1D after using ordinary 

convolution in place of MSFE as well as using the 

conventional Transformer module in place of Bi-

Transformer, and therefore similar diagnostic results. 

BSADM and MSADM, on the other hand, are not as good 

in terms of noise immunity due to the lack of MSFE and 

Bi-Transformer modules, respectively. This is because the 

lack of MSFE prevents BSADM from analyzing the input 

data at multiple scales, while the lack of Bi-Transformer 

in MSADM prevents a better understanding of the context. 

Table 9.4 Accuracy of the methods in a noisy environment(%) 

Methods -6dB -3dB -2dB 3dB 6dB 

SADM 57.42 62.79 64.95 83.24 91.96 

BSADM 70.59 73.76 75.89 88.91 93.45 

MSADM 72.43 74.39 76.34 87.36 94.92 

MBSADM 82.09 85.35 87.61 99.46 100 

 

We similarly induced the t-SNE technique to visualize the 

classification results, with the experimental context of a 

test set noise of -2 dB, as shown in Fig. 14. It can be seen 

that SADM, BSADM and MSADM all show significant 

class overlap, with SADM having the worst clustering 

effect. In figure 14(b)-(c) it can be seen that BSADM and 

MSADM only cluster the faults better for two categories, 

and the other two categories have a very severe overlap of 

fault points. This shows that SADM, BSADM and 

MSADM are not able to fulfill the fault diagnosis task 

well in the strong noise environment. At the same time, it 



 

 

can be seen that MBSADM has the best clustering effect, 

although there will be individual point overlapping 

phenomenon, but the number is not large. It shows that 

with the help of MSFE and Bi-Transformer module, 

MBSADM has better noise immunity and robustness. 

(a)  (b) 

(c)  (d) 

Fig. 14. t-SNE visualization of the 4 methods in a noisy 

environment 

5. Conclusion 

This paper proposes a novel fault diagnosis method, 

MBSADM, which demonstrates exceptional robustness 

under noisy environments and varying rotational speeds. 

The method directly takes raw one-dimensional data as 

input and achieves efficient feature learning through 

Multi-Scale Feature Extraction (MSFE) and a 

Bidirectional Transformer (Bi-Transformer). Specifically, 

MSFE employs Multi-Scale Subspace Encoding (MSSE) 

to capture features at different scales and integrates an 

attention mechanism to enhance the extraction of critical 

information. Meanwhile, Bi-Transformer incorporates a 

reversal mechanism to strengthen the modeling of 

temporal dependencies. Experimental results on the 

CWRU bearing fault dataset and a self-developed 

complex working condition dataset show that MBSADM 

maintains high accuracy even under strong noise and 

varying loads. Moreover, it exhibits robust fault 

recognition capabilities in extreme noise conditions. 

Ablation studies further validate the key roles of MSFE 

and Bi-Transformer in feature extraction and temporal 

modeling. Overall, MBSADM demonstrates superior 

fault diagnosis performance, noise resistance, and 

generalization ability across different working conditions, 

making it a reliable solution for intelligent maintenance 

and equipment health monitoring systems. 
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