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Event-Triggered Ultimately Bounded Filtering for 
Two-Dimensional Discrete-Time Systems under Hybrid 
Cyber Attacks 

Pan Zhang, Chaoqun Zhu, Bin Yang, Zhiwen Wang *, Menglu Hao 
College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou 730050, China   
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A B S T R A C T   

This paper investigates the design problem of event-triggered ultimately bounded filter for two- 
dimensional discrete systems with time-varying delays subject to hybrid cyber-attacks. A bi- 
directional time-sequence event-triggered transmission scheme is developed under hybrid 
cyber-attacks to lighten the load of network bandwidth while preserving a satisfactory filtering 
performance. The impact of hybrid cyber-attacks, which occur in random patterns, on the filtering 
performance is also taken into account. In such a framework, an augmented system model ac
counting for the simultaneous presence of hybrid cyber-attacks and event-triggered transmission 
mechanism is established with respect to two-dimensional shift-varying discrete systems with 
time-varying delays. On the basis of the augmented model, sufficient conditions ensuring dy
namic filtering error systems exponentially ultimately bounded in the mean-square sense are 
obtained in virtue of Lyapunov stability theory and the linear matrix inequality technique. Then, 
the asymptotic upper bound of the dynamic filtering error can be specifically quantified in terms 
of noise variance and cyber-attacks intensity. Furthermore, criteria for simultaneously designing 
the weighting matrix of event-triggered scheme and the filter gain matrix are derived by mini
mizing the asymptotic upper bound of filtering error. Finally, the validity of proposed ultimately 
bounded filtering algorithm is demonstrated by utilizing an example of the industrial heating 
exchange process.   

1. Introduction 

In recent decades, two-dimensional (2-D) systems have attracted increasing attention due to their ability to accurately characterize 
many practical systems, which are extensively used in various fields, such as multi-variable network implementation, seismic detection 
data processing, power transmission lines, X-ray image enhancement, and so on [1–4]. Accordingly, the 2-D systems theory becomes 
one of the most promising branches in the control science field. Generally speaking, three kinds of state space models have evolved 
from 2-D systems, including the Roesser model [5], the Fornasini and Marchesini (FM) model [6,7], and the Kurek model [8]. On the 
other hand, due to the integration of network communication technology and control theory, the investigation of control theory has 
gradually changed from the traditional point-to-point control to distributed and networked control, and the control science of 
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networked systems has emerged [9–13]. In this context, the research results related to networked Roesser and FM-based models are 
frequently reported due to their profound implications in practical engineering [14–19]. For example, the stability analysis issues in 
network-based 2-D Roesser and FM model are discussed in [14–16], and the design of control and filtering algorithms is proposed for 
2-D Roesser and FM systems in [17–19]. 

The filtering problem is another research hotspot in control and signal processing communities. With the rapid development of 
filtering technology, several well-known filtering methods have been developed according to different performance requirements, 
including but not limited to the recursive filtering [20,21], the H∞ filtering [22,23], the set-membership filtering [24,25], and the 
ultimately bounded filtering [26,27]. In general, the typical recursive schemes are commonly used to solve the state estimation 
problem, namely, classical Kalman filtering [28], extended Kalman filtering [29], unscented Kalman filtering [30], cubature Kalman 
filtering [31] and Tobit Kalman filtering [32]. The recursive filtering method is always recognized as the most reliable approach for 
systems with Gaussian noises. The H∞ filtering approach usually guarantees a given disturbance attenuation level for the filtering error 
subject to bounded noise. The set-membership filtering method has been developed by limiting all the error vectors and 
unknown-but-bounded noises that fall into a given set of ellipsoids. The ultimately bounded filtering is capable of effectively dealing 
with the stochastic abrupt changes, which can well quantify the effect of the norm-bounded noise on the steady-state filtering per
formance. In engineering practice, a substantial body of dynamic systems often exposed to stochastic abrupt changes, (e.g., stochastic 
occurrence of failure and recovery, subsystem changes and changes in the interconnection of subsystems, abrupt changes in the 
external environment, malicious attacks, etc.). In light of this, the ultimate boundedness of the networked systems has aroused intense 
research interest by the academic community [33,34]. Despite much literature on the ultimate boundedness filtering problem for 
one-dimensional (1-D) systems, very few results are concerning the ultimate boundedness filtering of 2-D systems subject to impulsive 
abrupt changes, where the main challenges may be (1) to develop complex Lyapunov functions based on bidirectional evolutionary 
features, and on this basis to analyze the exponentially ultimately boundedness in mean-square sense for the filtering error systems, the 
upper bound of filtering error intimately associated with impulsive abrupt changes, as well as the decay rate of filtering error systems; 
(2) Constructing matrices in the framework of 2-D systems to perform congruent transformation and obtain the required linear matrix 
inequalities without decreasing conservatism. Therefore, how to derive sufficient conditions guaranteeing the ultimate boundedness of 
filtering error for 2-D systems with stochastic impulsive abrupt changes is the main motivation for us to undertake this investigation. 

Along with the accelerated development of communication technology and control science, the issue of information security has 
gained unprecedented attention. In the network-based scenario, there are generally three kinds of cyber-attacks that are under 
extensive investigation, namely, Denial of Service (DoS), False Data Injection (FDI), and Replay attacks. Up to date, scholars have 
produced fruitful results on this research frontier hotspot [35–37]. Furthermore, it should be highlighted that adversaries prefer to 
maximize the attack effect through the pattern of multi-source collaborative cyber-attacks, and the security issues of hybrid 
cyber-attacks pattern have recently attracted a great deal of research attention [28-30,38-40]. On the other hand, for networked 
systems in the age of the information and data explosion, reducing the transmission and computational burden of communication 
networks under the premise of guaranteeing system control performance is another frontier of research. Event-triggered transmission 
mechanism has been appreciated by scholars as a tool to effectively schedule network resources. In contrast to the time-triggered 
mechanism that transmits data at each sampling instant, the event-triggered mechanism determines whether the data is authorized 
to be transmitted or not by preset triggering conditions. Generally speaking, the event-triggered mechanism mainly including static 
event-triggered mechanism [41], dynamic event-triggered mechanism [42], adaptive event-triggered mechanism [43], furthermore, 
the problem of event-triggered security control and filtering based on information security and network resource scheduling has 
attracted strong attention in recent years [44–47]. It is worth noting that, compared to 1-D systems that evolve in only one dimension, 
the dynamic behavior of 2-D systems has both vertical and horizontal evolutionary directions, which also confirms that 2-D systems are 
more susceptible to network traffic jams due to data redundancy. Consequently, it is of more practical significance to investigate 
event-triggered security filtering for 2-D systems. Nevertheless, most of the results of event-triggered security filtering are generated 
around 1-D systems, and establishing a reasonable bi-directional independent sequence of triggering instants and cyber-attacks pa
rameters are the main difficulty for 2-D systems. Compared with 1-D systems with event-triggered security filtering, the research on the 
event-triggered security filtering based on 2-D systems is as yet in the initial stage, and the related research results are still very 
scattered. It is essential that most of the design methods for event-triggered security filter based on 1-D systems are no longer be 
directly available for 2-D systems. 

In response to the aforementioned discussion, we are dedicated to the investigation of event-triggered ultimately bounded filtering 
for a class of 2-D systems described by Roesser model under hybrid cyber-attacks. The innovations of this paper are summarized as 
follows: 1) For the first time, a descriptive model of shift-varying 2-D systems subject to the event-triggered transmissions and hybrid 
cyber-attacks is provided, and both scheduling mechanism and hybrid cyber-attacks models are developed in bidirectional indexes. 2) 
Based on the results of 1), the decay rate and the asymptotic upper bound of the dynamic filtering error system are derived, and the 
upper bound can be specifically quantified in terms of noise variance and hybrid cyber-attacks intensity. 3) The explicit filter gain 
matrices can be easily obtained by solving the problem of minimizing the asymptotic upper bound on the filtering error, which are 
subject to a set of linear matrix inequalities. 

The rest of this paper is organized as follows. In Section 2, the problem description and preliminaries are presented. In Section 3, an 
ultimately bounded filtering algorithm is proposed for 2-D systems with the impacts of the hybrid cyber-attacks and the event- 
triggered scheduling. Section 4 uses a practical example to illustrate the effectiveness and superiority of the proposed filter. 
Finally, the paper is concluded, and future research directions are discussed in Section 5. 

Notation: The notation used throughout the paper is fairly standard. denotes the n-dimensional Euclidean space and P > 0(P ≥ 0)
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means that it is real symmetric and positive definite (semi-definite). GTand G− 1 represent the transpose and the inverse of the matrix G, 
respectively. diag{ρ1,⋯, ρn} stands for a diagonal matrix with the indicated elements on the diagonal and zeros are located elsewhere. 
‖ A ‖ refers to the norm of a matrix A defined by ‖ A ‖=

̅̅̅̅̅̅̅̅̅
ATA

√
. N denotes the set of natural numbers. the n-dimensional identity matrix 

is denoted by In. 

2. Problem Description and Preliminaries 

Considering the following 2-D discrete nonlinear systems with time-varying delays described by Roesser model [13]: 
⎧
⎪⎪⎨

⎪⎪⎩

X (i, j) = A1(i, j)x(i, j) + A2(i, j)xτ(i, j) + B(i, j)g(x(i, j)) + E(i, j)ω(i, j)

Y (i, j) = C(i, j)x(i, j) + D(i, j)ω(i, j)

Z (i, j) = H(i, j)x(i, j)

, (i, j ∈ N) (1)  

where 

X (i, j) =
[

xh(i + 1, j)
xv(i, j + 1)

]

, x(i, j) =
[

xh(i, j)
xv(i, j)

]

, xτ(i, j) =
[

xh(i − τh(i, j), j)
xv(i, j − τv(i, j))

]

, g(x(i, j)) =
[

gh(xh(i, j))
gv(xv(i, j))

]

,

xh(i, j) ∈ Rnh and xv(i, j) ∈ Rnv represent the horizontal and vertical components of the state vector, respectively. Y (i, j) ∈ Rny and 
Z (i, j) ∈ Rnz are the output signal directly measured and the controlled output, respectively. ω(i, j) ∈ Rnω is a Gaussian white noise 
process with zero mean and variance of W = W W T ≥ 0, which denotes the process noise with bounded energy. g(x(i, j)) ∈ Rnh+nv is 
known smooth nonlinear functions and to be defined later. A1(i,j), A2(i,j), B(i,j), E(i,j), C(i,j), D(i, j) and H(i, j) are time-varying constant 
matrices with appropriate dimensions. 

In addition, τh(i, j) and τv(i, j) are the positive integers that characterize time-varying delays occurring in the horizontal and vertical 
dimensions, and satisfying the following bounded conditions: 

1 ≤ τ ≤ τh(i, j) ≤ τ, 1 ≤ τ ≤ τv(i, j) ≤ τ,

where τ and τ are given positive integers. Assume that the initial states are irrelevant to other variables and the following relationships 
are satisfied: 

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

xh(i, j) = ψ(i, j), ∀0 ≤ j ≤ k1, i ∈ [ − τ 0 ]

xv(i, j) = Γ(i, j), ∀0 ≤ i ≤ k2, j ∈ [ − τ 0 ]

xh(i, j) = 0, ∀j > k1, i ∈ [ − τ 0 ]

xv(i, j) = 0, ∀i > k2, j ∈ [ − τ 0 ]

, (2)  

where ψ(i, j) and Γ(i, j) are given vectors, k1 and k2 are two sufficiently large positive integers. 

Assumption 1. It is assumed that ζ1, ς1, ζ2 and ς2 are arbitrary vectors with appropriate dimensions, and the nonlinear functions gh(·)

and gv(·) are defined as follows: 
[
gh(ζ1) − gh(ς1) − Gh

1(ζ1 − ς1)
]T[gh(ζ1) − gh(ς1) − Gh

2(ζ1 − ς1)
]
≤ 0, gh(0) = 0, gh(0) = 0, (3)  

[
gv(ζ2) − gv(ς2) − Gv

1(ζ2 − ς2)
]T[gv(ζ2) − gv(ς2) − Gv

2(ζ2 − ς2)
]
≤ 0, gv(0) = 0, (4)  

where Gh
1, Gh

2, Gv
1 and Gv

2 are known constant matrices with appropriate dimensions and satisfy conditions Gh
2 ≥ Gh

1 and Gv
2 ≥ Gv

1. 

To facilitate subsequent development, we reconstruct the following nonlinear functions gh(ζ1) and gv(ζ2) subject to Assumption 1: 

gh(ζ1)
Δ
=

g⌢
h
(ζ1) + Gh

1ζ1, gv(ζ1)
Δ
=

g⌢
v
(ζ1) + Gv

1ζ1,

where g⌢
h
(ζ1) and g⌢

h
(ζ1) belong to sets Ω1 and Ω2, respectively. We define 

Ω1
Δ
=

{
g⌢

h
(ζ1)

⃒
⃒
⃒
(

g⌢
h
(ζ1)

)T (
g⌢

h
(ζ1) − Ghζ1

)
≤ 0
}
, (5)  

Ω2
Δ
=

{
g⌢

v
(ζ2)

⃒
⃒
⃒(g⌢

v
(ζ2))

T
(g⌢

v
(ζ2) − Gvζ2) ≤ 0

}
, (6)  

and GhΔ
=
Gh

2 − Gh
1, GvΔ

=
Gv

2 − Gv
1. 

Remark 1. As shown in Fig. 2, the evolution of the 2-D systems depends on the changes in horizontal and vertical components, and 
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the update priorities of the horizontal or vertical components represent the evolutionary feature of the 2-D systems. More specifically, 
the state information of 1-D systems contains all the information about the past instant (global information), while the state infor
mation of 2-D systems only contains local information, which is the main difference between these two types of dynamic systems. It is 
worth noting that a prevalent general principle is that 2-D systems are more sophisticated to be analyzed and synthesized than 1-D 
systems owing to their complicated characteristics of bi-directional evolution. 

A. Event-triggered mechanism 

As shown in Fig. 1, in order to conserve limited network resources and relieve communication pressure, it is necessary to take 
specific measures to reasonably schedule the data transmission process of shared communication networks. The event-triggered 
mechanism has attracted widespread attention as an effective means of distributing communication resources, which motivates us 
to propose an event-based transmission mechanism with bi-directional indicators in the framework of 2-D shift-varying systems. For 
subsequent development, an order associated with horizontal and vertical directions is first defined: 

(i, j)〈(̃i, j̃)⇔ {(i, j)|i= ĩ, j< j̃} ∪ {(i, j)|i< ĩ, j= j̃}, (i1, j1) = (i2, j2)⇔ i = i2 and j = j2.

In addition, we introduce a monotonically increasing sequence of event triggering that (i0, j0) and (ik, jk) represent the initial 
triggering instant and the k-th triggering instant respectively, and satisfy the condition as follows: 

(0, 0) = (i0, j0) < (i1, j1) < ⋅ ⋅ ⋅ < (ik, jk) < ⋅ ⋅ ⋅, k ∈ [1∞)

The following event-based decision rules are implemented to update the triggering time, so that some unnecessary data trans
mission can be eliminated as a way to alleviate the communication pressure. As a result, the measured output can only be transmitted 
to the remote filter through the shared communication network after the following conditions are satisfied: 

(ik+1, jk+1) = inf{(i, j)|(i, j)> (ik, jk), l(i, j)> 0}, (7)  

where l(i, j) = rT(i, j)Φ(i,j)r(i, j) − σY T(i, j)Φ(i,j)Y (i, j),r(i, j) = Y (ik, jk) − Y (i, j),σ ∈ [01) represents the threshold parameter, Φ(i,j) is a 
positive definite symmetric matrix and represents the weight matrix of the event triggering sequence at shift instant (i, j), Y (ik, jk)
denotes the measured output that is released at the k-th triggering instant. 

Then, the latest measured output signal scheduled by the event-triggered mechanism (7) can be described as: 

Y (ik, jk) =
[
Y

T
1 (ik, jk) Y

T
2 (ik, jk) ⋯ Y

T
ny
(ik, jk)

]T
,

where Y T
m(ik, jk) (1 ≤ m ≤ ny) denotes the latest measurement output of the m-th sensor node before the network transmission. 

Fig. 1. Ultimately bounded filtering problem for 2-D Roesser model.  
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Remark 2. According to equation (7), event triggering relies on the measurement output error r(i, j) and the trigger threshold. If 
equation (7) is true, it indicates that the current observation Y (i, j) contains key information that should be updated for utilization in 
the filter to guarantee excellent filtering performance while preserving network resources. Obviously, the smaller the threshold, the 
more frequently the data transmission is triggered, and in particular, when the threshold σ = 0, the event-triggered mechanism de
grades to the traditional time-triggered mechanism. In addition, more frequent event-triggered transmission means that the filter 
receives more information, resulting in better filtering performance, while the high frequency of information transmission also in
creases the burden on the network. 

B. Hybrid cyber-attacks model 

In this section, the stochastic model of hybrid cyber-attacks is introduced. As previously mentioned, in order to maximize attacks 
damage, the adversaries often implement the hybrid cyber-attacks strategy that includes both DoS attacks and FDI attacks. It is 
assumed that the attackers have adequate resources and knowledge to enforce a successful attack, and the characteristics of hybrid 
cyber-attacks will be provided in detail thereafter. 

Firstly, FDI attacks are considered, which usually degrade the filtering performance by utilizing malicious data information to 
tamper with normal data information. We take the binary-valued stochastic variable ϑ(i, j) ∈ {0,1} as the indicator of FDI attacks. ϑ(i,
j) = 1 indicates that the FDI attacks utilize false data information to distort normal data information successfully, while ϑ(i, j) = 0 
denotes that the FDI attacks fail to tamper with data information. It is assumed that the binary-valued stochastic variableϑ(i, j) is 
governed by an independent and identically distributed Bernoulli process, and the occurrence probability of stochastic variable ϑ(i, j) is 
given as follows: 

Pr{ϑ(i, j) = 1} = ϑ,Pr{ϑ(i, j) = 0} = 1 − ϑ.

Then, in light of (7), for (ik, jk) ≤ (i, j) < (ik+1, jk+1), the measurement output impacted by FDI attacks can be described as follows: 

Ỹ (i, j) = Y (ik, jk) + ϑ(i, j)G (i, j), (8)  

where G (i.j) =
[
G

T
1(i, j) G

T
2(i, j) ⋯ G

T
ny
(i, j)

]T 
represents the false data signals injected into the communication network by the 

adversaries, and can be generated a form as follows: 

G (i.j) = − Y (ik, jk) + υ(i, j),

where υ(i, j) denotes the arbitrary bounded energy single, which satisfies the norm-bounded condition‖ υ(i, j) ‖≤ υ. 
Subsequently, we consider DoS attacks in the communication network, which block the normal transmission of measurement 

channels, and assume that the occurrence probability of DoS attacks is managed by another Bernoulli stochastic process. We take 
another binary-valued stochastic variable ξ(i, j) ∈ {0,1} as the indicator of DoS attacks. Similarly, ξ(i, j) = 0 represents that the DoS 
attacks occur during the signal transmission, while ξ(i, j) = 1 expresses that the DoS attacks failed to block the network channels. The 
following probability distribution is defined to describe whether DoS attacks occur successfully: 

Fig. 2. The structure diagram of 2-D Roesser model.  
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Pr{ξ(i, j) = 1} = ξ,Pr{ξ(i, j) = 0} = 1 − ξ.

Consequently, the latest measurement output after collaborative FDI and DoS attacks can be expressed as 

Y
̅→

(i, j) = ξ(i, j)Y (ik, jk) + ξ(i, j)ϑ(i, j)G (i, j). (9) 

Remark 3. In practical engineering, it is very difficult for the attacker and the defender to obtain the real-time attack situation 
due to equipment and communication capacity limitations. In this sense, the cyber-attacks occurring in a stochastic manner obeying a 
sequence of probability distributions with certain statistical properties have become one of the most popular modeling approaches. 
Based on the established measurement outputs subject to collaborative DoS and FDI attacks (9), it can be found that when the sto
chastic variables ξ(i, j) and ϑ(i, j) take different values representing different kinds of attacks on the measurement output. When ξ(i,j) =

0andϑ(i, j) = 0, the measurement output is affected only by DoS attacks; When ξ(i, j) = 0andϑ(i, j) = 1, the measurement output is 
affected by both DoS and FDI attacks; When ξ(i,j) = 1andϑ(i,j) = 0, the measurement output is not affected by cyber attacks; Whenξ(i,
j) = 1andϑ(i,j) = 1, the measurement output is only affected by FDI attacks. Considering that the random variables ξ(i, j) and ϑ(i, j) are 
independent of each other, the probability of simultaneous attacks is ξ(1 − ϑ). In addition, the stochastic model of DoS attacks mainly 
reflects the data transmission jamming problem, and another queuing DoS model, which mainly transformsin to time-delays, is also 
worth paying attention. The investigation of queuing DoS attacks based on 2-D systems is one of the future research directions. 

C. Problem formulation 

The ultimately bounded filtering problem will be addressed for 2-D discrete systems (1) subject to the event-triggered mechanism 
and hybrid cyber-attacks. For (ik, jk) ≤ (i, j) < (ik+1, jk+1), the following form of filter is developed: 

{
X̂ (i, j) = A1(i, j)x̂(i, j) + A2(i, j)x̂τ(i, j) + B(i, j)g(x̂(i, j)) + L(i, j)

(
Y
̅→

(i, j) − C(i, j)x̂(i, j)
)

Ẑ (i, j) = H(i, j)x̂(i, j)
, (10)  

where X̂ (i, j) ∈ Rnh+nv , x̂(i, j) ∈ Rnh+nv and x̂τ(i, j) ∈ Rnh+nv are the estimation of state vector X (i, j),x(i, j) and xτ(i, j).Ẑ (i, j) is the 
estimation of the controlled output Z (i,j). L(i, j) ∈ R(nh+nv)×ny is the filtering gain to be determined later. The initial state of filter is set 
as x̂h

(i, j) Δ
=

0 for i ≤ 0, j ∈ N and x̂v
(i, j) Δ

=
0 for i ∈ N, j ≤ 0. 

Moreover, according to (7)-(9), for(ik, jk) ≤ (i, j) < (ik+1, jk+1), the latest measurement output Y
̅→

(i, j) with the event-triggered 
mechanism and hybrid cyber-attacks can be derived as: 

Y
̅→

(i, j) = ξ(i, j)((1 − ϑ(i, j))(r(i, j) + Y (i, j)) + ϑ(i, j)υ(i, j))
= ξ(i, j)(1 − ϑ(i, j))(r(i, j) + C(i, j)x(i, j) + D(i, j)ω(i, j)) + ξ(i, j)ϑ(i, j)υ(i, j).

(11) 

Define the filtering error and controlled output error as e(i, j) = x(i, j) − x̂(i, j) and Z̃ (i, j) = Z (i, j) − Ẑ (i, j), respectively, then we 
construct the following augmented variables: 

ι(i, j) =
[

ιh(i + 1, j)
ιv(i, j + 1)

]

, ι(i, j) =
[

ιh(i, j)
ιv(i, j)

]

, ιτ(i, j) =
[

ιh( i − τh(i, j), j
)

ιv(i, j − τv(i, j))

]

, ιh(i, j) =
[

xh(i, j)
eh(i, j)

]

,

ιv(i, j) =
[ xv(i, j)

ev(i, j)

]

,Z
⌢
(i, j) =

[
Z (i, j)

Z̃ (i, j)

]

, ιh(i + 1, j) =
[

xh(i + 1, j)
eh(i + 1, j)

]

, ιv(i, j + 1) =
[ xv(i, j + 1)

ev(i, j + 1)

]

,

ιh(i − τh(i, j), j) =
[

xh(i − τh(i, j), j)
eh(i − τh(i, j), j)

]

, ιv(i, j − τv(i, j)) =
[ xv(i, j − τv(i, j))

ev(i, j − τv(i, j))

]

, g(ι(i, j)) =
[

gh( ιh(i, j)
)

gv(ιv(i, j))

]

,

gh( ιh(i, j)
)
=

[
g⌢

h(
xh(i, j)

)

g̃h( eh(i, j)
)

]

, gv(ιv(i, j)) =
[

g⌢
v
(xv(i, j))

g̃v
(ev(i, j))

]

, g̃h( eh(i, j)
)
= g⌢

h(
xh(i, j)

)
− g⌢

h(
x̂h
(i, j)

)
,

g̃v
(ev(i, j)) = g⌢

v
(xv(i, j)) − g⌢

v
(x̂v

(i, j)), gh(ζ1) = g⌢
h
(ζ1) + Gh

1ζ1, gv(ζ1) = g⌢
v
(ζ1) + Gv

1ζ1,

hence, by considering (1), (10) and (11), the dynamic filtering error systems can be constructed as follows: 
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ι(i, j) = (Ã1(i, j) + B̃(i, j)M̃)η(i, j) + Ã2(i, j)ιτ(i, j) + B̃(i, j)g(ι(i, j))

+Ẽ(i, j)ω(i, j) + Õ(i, j)υ(i, j) + R̃(i, j)r(i, j)

Y (i, j) = C̃(i, j)ι(i, j) + Dω(i, j)

Z̃ (i, j) = H̃(i, j)ι(i, j)

, (12)  
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where Ã1(i,j) = ΩTA1(i,j)Ω, Ã2(i,j) = ΩTA2(i,j)Ω, ̃B(i,j) = ΩTB(i,j)Ω, M̃ = ΩTMΩ, ̃E(i,j) = ΩTE(i,j), Õ(i,j) = ΩTO(i,j), R̃(i,j) = ΩTR(i,j), 
H̃(i, j) = H(i, j)Ω, C̃(i, j) = C(i, j)Ω, 

A1(i, j) =

[
A1(i, j) 0

L(i, j)(1 − ξ(i, j)(1 − ϑ(i, j))C(i, j) A1(i, j) − L(i, j)C(i, j)

]

,A2(i, j) =

[
A2(i, j) 0

0 A2(i, j)

]

, 

Ω =

⎡

⎢
⎢
⎣

Inh 0 0 0
0 0 Inv 0
0 Inh 0 0
0 0 0 Inv

⎤

⎥
⎥
⎦,M = diag{Gh

1,Gv
1,Gh

1,Gv
1},B(i, j) =

[
B(i, j) 0

0 B(i, j)

]

, 

E(i, j) =

[
E(i, j)

E(i, j) − L(i, j)ξ(i, j)(1 − ϑ(i, j))D(i, j)

]

,O(i, j) =

[
0

− L(i, j)ξ(i, j)ϑ(i, j)

]

, 

R(i, j) =

[
0

− L(i, j)ξ(i, j)(1 − ϑ(i, j))

]

,H(i, j) = [ 0 H(i, j) ],C(i, j) = [C(i, j) 0 ]. 

Furthermore, taking into account the relationship between stochastic variables ϑ(i, j), ξ(i, j) and probabilities ϑ, ξ, the dynamic 
filtering error systems (12) can be rewritten as follows: 

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ι(i, j) =
(
A
⌢

1(i, j) + ϖ1(i, j)A
⌣

1(i, j) + B̃(i, j)M̃
)

ι(i, j) + Ã2(i, j)ιτ(i, j) + B̃(i, j)g(ι(i, j))

+
(
E
⌢
(i, j) + ϖ1(i, j)E

⌣
(i, j)

)
ω(i, j) +

(
O
⌢
(i, j) + ϖ2(i, j)O

⌣
(i, j)

)
υ(i, j) +

(
R
⌢
(i, j) + ϖ1(i, j)R

⌣
(i, j)

)
r(i, j)

Y (i, j) = C̃(i, j)ι(i, j) + Dω(i, j)

Z̃ (i, j) = H̃(i, j)ι(i, j)

, (13)  

where A
⌢

1(i,j) = ΩTA
⌢

1(i,j)Ω, A
⌣

1(i,j) = ΩTA
⌣

1(i,j)Ω, E
⌢
(i,j) = ΩT E

⌢
(i, j), E

⌣
(i, j) = ΩT E

⌣
(i, j)O

⌢
(i,j) = ΩTO

⌢
(i,j), O

⌣
(i, j) = ΩTO

⌣
(i,j), R

⌢
(i,j) =

ΩTR
⌢
(i, j), R

⌣
(i, j) = ΩTR

⌣
(i, j), A

⌢
1(i, j) =

[
A1(i, j) 0

L(i, j)(1 − ξ(1 − ϑ))C(i, j) A1(i, j) − L(i, j)C(i, j)

]

, A
⌣

1(i, j) =

[
0 0

− L(i, j)C(i, j) 0

]

, E
⌢
(i, j) =

[
E(i, j)

E(i, j) − L(i, j)(1 − ξ(1 − ϑ))D(i, j)

]

, E
⌣
(i, j) =

[
0 0

− L(i, j)D(i, j) 0

]

, O
⌢
(i, j) =

[
0

− L(i, j)ξϑ

]

, R
⌢
(i, j) =

[
0

− L(i, j)ξ(1 − ϑ)

]

,R
⌣
(i, j) = O

⌣
(i, j) =

[
0

− L(i, j)

]

, ϖ1(i, j) = ξ(i, j)(1 − ϑ(i, j)) − ξ(1 − ϑ), ϖ2(i, j) = ξ(i, j)ϑ(i, j) − ξ(1 − ϑ). 

Additionally, in order to accelerate the presentation of subsequent results, the several statistical properties regarding the stochastic 
sequences of DoS and FDI attacks are given as follows: 

E
{

ϖ2
1(i, j)

}
= ς2

1,E
{

ϖ2
2(i, j)

}
= ς2

2,E{ϖ1(i, j)ϖ2(i, j)} = ς2
12.

Definition 1. [17] The dynamic filtering error systems (13) is said to be exponentially ultimately bounded in mean-square sense 
for given nonnegative integers a and b(a ≥ b), if there exist positive constants β ∈ [01), α > 0, and π > 0, such that 

E

{
∑

i+j=a
‖ ι(i, j) ‖2

}

≤ αβa− b
∑

i+j=b
‖ ι(i, j) ‖2

M + π, (a> b)

where 

∑

i+j=b
‖ ι(i, j) ‖2

M

Δ
=

sup
− τ≤θ≤0,
− τ≤s≤0

∑

i+j=b

{
‖ ιh(i + θ, j) ‖2 +‖ ιv(i, j + s) ‖2

}
,

then, β and π are referred to as the decay rate of dynamic filtering error systems (13), and the asymptotic upper bound of 

E

{
∑

i+j=a
‖ ι(i, j) ‖2

}

, respectively. 

3. Main Results 

Theorem 1. For the dynamic filtering error systems (13) under the event-triggered mechanism (7) and hybrid cyber-attacks (9), and 
given scalars τ, τ, ρ as well as filtering gains L(i, j) ∈ R(nh+nv)×ny , if there exist positive definite symmetric matrices P(i, j) = diag{Ph(i, j),
Pv(i, j)} ∈ R(2nh+2nv)×(2nh+2nv), S1(i, j) = diag{Sh

1(i, j),Sv
1(i, j)} ∈ R(2nh+2nv)×(2nh+2nv), S2(i, j) = diag{Sh

2(i, j), Sv
2(i, j)} ∈ R(2nh+2nv)×(2nh+2nv) and 

S3 = diag{Sh
3(i, j),Sv

3(i, j)} ∈ R(2nh+2nv)×(2nh+2nv), positive scalars γ1(i, j) and γ2(i, j), such that the following inequalities hold: 

Π =

[
Π11 Π12

∗ Π22

]

≤ 0, (14)  
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Sh
2(i, j) ≥ Sh

3(i, j), Sv
2(i, j) ≥ Sv

3(i, j), (15)  

(1+ τ)S1(i, j) + τS2(i, j) − τS3(i, j) ≤ ρ(S2(i, j) − S3(i, j)), (16)  

where 

Π11 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

S(i, j) −
(

1 −
1
ρ

)

P(i, j) + σγ1(i, j)C̃
T
(i, j)Φ(i,j)C̃(i, j) 0 F̃

T
0 0

∗ − S1(i, j) 0 0 0

∗ ∗ − 2I2nx+2nv 0 0

∗ ∗ ∗ − γ1(i, j)Φ(i,j) 0

∗ ∗ ∗ ∗ − γ2(i, j)Iny

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

Π12 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(
A
⌢

1(i, j) + B̃(i, j)M̃
)T

ς1A
⌣ T

1 (i, j) ς12A
⌣ T

1 (i, j) 0 0

Ã
T
2 (i, j) 0 0 0 0

B̃
T
(i, j) 0 0 0 0

R
⌢
(i, j) ς1R

⌣ T
(i, j) 0 ς12R

⌣ T
(i, j) 0

O
⌢ T

(i, j) 0 0 0
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(ς2
2 + 2ς2

12

)√

O
⌣ T

(i, j)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

Π22 = I5 ⊗ − P− 1(i, j), S =
(

1+ τ − τ
)

S1(i, j) +
(

τS2(i, j) − τS3(i, j)
)
, F̃ = ΩT M̂Ω, M̂ = diag

{
Gh,Gv,Gh,Gv},

δ = tr
{
W

T
(
E
⌢ T

(i, j)P(i, j)E
⌢
(i, j) + ς2

1E
⌣ T

(i, j)P(i, j)E
⌣
(i, j) + σγ1(i, j)DT(i, j)Φ(i,j)D(i, j)

)
W

}
+ γ2(i, j)υ2,

ς1 = λmin(P(i, j)), ϱ = 1 −
1
ρ,

then, the dynamic filtering error systems (13) satisfying E

{
∑

i+j=K
‖ ι(i, j) ‖2

}

≤
ς2
ς1

ϱK− S ∑

i+j=S
‖ ι(i, j) ‖2

M + 1− ϱK− S

ς1(1− ϱ) δ(i, j) (K > max{k1,k2}> S), 

and is said to be exponentially ultimately bounded in mean-square sense with asymptotic upper bound δ(i,j)
ς1(1− ϱ), and the decay rate is less 

than ϱ. 

Proof. The proof is provided in Appendix A. 

Remark 4. It is noticed that the dynamic filtering error systems (13) involves both process noise and false data injection, and the 
stability and dynamic behavior of the filtering error systems are affected by both of them. Therefore, in this paper, we mainly con
cerned with the boundedness problem of the filtering error system, which is more reflective of the evolutionary characteristics of the 
system compared to the stability alone (From inequality (47), it can be seen that in the absence of noise and FDI attacks, the conclusion 
that the exponentially ultimately bounded in mean-square sense of the filtering error systems will degrade to exponentially stable in 
mean-square sense). Furthermore, in order to avoid that the asymptotic upper bound are too large and out of practical significance, we 
attempt to obtain the minimum upper bound of the dynamic filter error systems. 

Remark 5. In Theorem 1, we have derived sufficient conditions to ensure that the ultimately bounded of the dynamic filtering error 
systems (13). From inequality (16), we can obtain that parameter ρ is larger than τm, and it is easy to obtain the lower bound of the 
decay rate is 1 − 1

τm
. In addition, as an important index to evaluate the convergence of the system, the decay rate should be considered in 

the practical engineering. In what follows, we will endeavor to derive sufficient conditions that the filtering gain matrix to minimize 
the upper bound of the control output error ‖ z̃(i, j)‖2 for a given decay rate. 

Until now, sufficient conditions guaranteeing the dynamic filtering error systems (13) to be exponentially ultimately bounded in 
mean-square sense are provided. In what follows, we are going to derive the filtering gain by minimizing the controlled output error 
and present the filtering gain in explicit form. 

Theorem 2. For the dynamic filtering error systems (13) under the event-triggered mechanism (7) and hybrid cyber-attacks (9), and 

given positive scalars τ, τ, ρ as well as the filter gainsL(i, j) ∈ R(nh+nv)×ny , if there exist positive definite symmetric matrices P(i, j) =

diag{Ph
(i, j), Pv

(i, j)} ∈ R(2nh+2nv)×(2nh+2nv),S1(i, j) = diag{Sh
1(i, j), Sv

1(i, j)} ∈ R(2nh+2nv)×(2nh+2nv), S2(i, j) = diag{Sh
2(i, j), Sv

2(i,
j)} ∈ R(2nh+2nv)×(2nh+2nv),S3(i,j) = diag{Sh

3(i,j),Sv
3(i,j)} ∈ R(2nh+2nv)×(2nh+2nv), Q(i,j) ∈ R(2nh+2nv)×(2nh+2nv), and positive scalars γ1(i, j) as well 

P. Zhang et al.                                                                                                                                                                                                          



Journal of the Franklin Institute 361 (2024) 683–711

691

as γ2(i, j), such that the following inequalities hold: 

Θ =

[
Θ11 Θ12

∗ Θ22

]

≤ 0, (17)  

Sh
2(i, j) ≥ Sh

3(i, j), Sv
2(i, j) ≥ Sv

3(i, j), (18)  

(1+ τ)S1(i, j) + τS2(i, j) − τS3(i, j) ≤ ρ(S2(i, j) − S3(i, j)), (19)  

[
− Q(i, j) ΩT

∗ − P(i, j)

]

≤ 0, (20)  

2I2nh+2nv − ΩT P(i, j)Ω ≥ H̃
T
(i, j)H̃(i, j), (21)  

where 

Θ11 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Θ1
11 0 M̂

T
Ω 0 0

∗ − S1(i, j) 0 0 0
∗ ∗ − 2I2nx+2nv 0 0
∗ ∗ ∗ − γ1(i, j)Φ(i,j) 0
∗ ∗ ∗ ∗ − γ2(i, j)Iny

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, M̂ = diag
{

Gh,Gv,Gh,Gv},

Θ1
11 =

(
1+ τ − τ

)
S1(i, j) +

(
τS2(i, j) − τS3(i, j)

)
+ σγ1(i, j)ΩC̃

T
(i, j)Φ(i,j)C̃(i, j)ΩT +

(

1 −
1
ρ

)

P(i, j) − 2
(

1 −
1
ρ

)

I2nh+2nv ,

Θ12 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A
⌢T

1 (i, j) + MT BT
(i, j) ς1A

⌣T

1 (i, j) ς12A
⌣T

1 (i, j) 0 0

AT
2 (i, j) 0 0 0 0

ΩT BT
(i, j) 0 0 0 0

R
⌢ T

(i, j)ΩT ς1R
⌣ T

(i, j)ΩT 0 ς12R
⌣ T

(i, j)ΩT 0

O
⌢ T

(i, j)ΩT 0 0 0
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(ς2
2 + 2ς2

12

)√

O
⌣ T

(i, j)ΩT

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

Θ22 = I5 ⊗ − P(i, j), S1 =

[
Inh Sh

1(i, j)Inh + Inv Sv
1(i, j)Inv Inh Sh

1(i, j)̃Inh + Inv S
v
1(i, j)̃Inv

∗ Ĩnh Sh
1(i, j)̃Inh + Ĩnv S

v
1(i, j)̃Inv

]

,

S2 =

[
Inh Sh

2(i, j)Inh + Inv Sv
2(i, j)Inv Inh Sh

2(i, j)̃Inh + Inv Sv
2(i, j)̃Inv

∗ Ĩnh Sh
2(i, j)̃Inh + Ĩnv Sv

2(i, j)̃Inv

]

, Inv =

[
0 0
Inv 0

]

, Ĩnv =

[
0 0
0 Inv

]

,

S3 =

[
Inh Sh

3(i, j)Inh + Inv Sv
3(i, j)Inv Inh Sh

3(i, j)̃Inh + Inv Sv
3(i, j)̃Inv

∗ Ĩnh Sh
3(i, j)̃Inh + Ĩnv Sv

3(i, j)̃Inv

]

, Inh =

[
Inh 0
0 0

]

, Ĩnh =

[
0 Inh

0 0

]

,

and other parameters are defined in Theorem 1. Then, the dynamic filtering error systems (13) is exponentially ultimately bounded in 
mean-square sense. Moreover, the minimum upper bound of controlled output error ‖ z̃(i, j)‖2 is obtained by solving the following 
optimization problem: 

minδ̂(i, j) =
{

tr
{

W
T
(
E
⌢ T

(i, j)Q(i, j)E
⌢
(i, j)+ ς2

1E
⌣ T

(i, j)Q(i, j)E
⌣
(i, j)+ σγ1(i, j)D̃

T
(i, j)Φ(i,j)D̃(i, j)

)
W

}
+ γ2(i, j)υ2

}

s.t. (17)-(21). 

Proof. The proof is provided in Appendix B. 

Remark 6. Theorem 2 presents a filter design method that guarantees the exponentially ultimately bounded in mean-square sense of 
filtering error systems, and the upper bound of the controlled output error is minimized by solving an optimization problem. The 
previous research on 2-D systems filtering methods (including set-membership filtering and H∞ filtering) mainly focuses on the sta
bility of the filtering error systems, and neglects the quantitative analysis of the impact of noise and abrupt changes on the filtering 
performance. The filtering algorithms proposed in this paper can more intuitively demonstrate the dynamic behavior of the filtering 
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error systems, including the decay rate and the upper bound of the filtering error, and the upper bound is only related to the noise and 
the abrupt changes, which is more instructive in the practical engineering compared with the simple stability analysis. In addition, it 
should be further noted that the solutions of the filtering gain matrices are performed online, and thus alleviating the computational 
burden to a greater extent (by utilizing dynamic event-triggered strategy or self-triggered mechanism) while ensuring the filtering 
performance is one of the future research directions. 

Remark 7. The main results established in Theorem 1 and Theorem 2 simultaneously consider bidirectional evolutionary charac
terizations of 2-D systems, nonlinear function constraints, upper and lower bound on the time-varying delays, event-triggered 
mechanism, cyber-attacks parameters and boundary on noise. The novelties are summarized in the following aspects: 1) For the 
first time, a schematic model of 2-D systems with event-triggered transmissions and hybrid cyber-attacks is available, in which the 
scheduling mechanism and hybrid cyber-attacks are modeled in a bidirectional indexed scheme. 2) The decay rate and the asymptotic 
upper bound of the dynamic filtering error are inferred, and the upper bound can be specifically quantified in terms of noise variance 
and hybrid cyber-attacks intensity. 3) The explicit filter gain matrices can be easily obtained by solving the problem of minimizing the 
asymptotic upper bound on the filtering error, which is subject to a set of linear matrix inequalities. 

Now, we will generalize above obtained results to more universal 2-D Roesser model, which mainly include nonlinear Roesser 2-D 
model without time-delays and linear Roesser 2-D model with time-delays. 

Case 1: The following 2-D discrete systems with time-varying delays characterized by the Roesser model is considered: 
⎧
⎪⎪⎨

⎪⎪⎩

X (i, j) = A1(i, j)x(i, j) + A2(i, j)xτ(i, j) + E(i, j)ω(i, j)

Y (i, j) = C(i, j)x(i, j) + D(i, j)ω(i, j)

Z (i, j) = H(i, j)x(i, j)

. (22)   

Then, we adopt the following filter structure: 
{

X̂ (i, j) = A1(i, j)x̂(i, j) + A2(i, j)x̂τ(i, j) + L(i, j)
(

Y
̅→

(i, j) − C(i, j)x̂(i, j)
)

Ẑ (i, j) = H(i, j)x̂(i, j)
.

Similarly, from (22) the dynamic filtering error systems can be reconstructed into the following form: 

ι(i, j) =
(
A
⌢

1(i, j) + ϖ1(i, j)A
⌣

1(i, j)
)

ι(i, j) + Ã2(i, j)ιτ(i, j) +
(
E
⌢
(i, j) + ϖ1(i, j)E

⌣
(i, j)

)
ω(i, j)

+
(
O
⌢
(i, j) + ϖ2(i, j)O

⌣
(i, j)

)
υ(i, j) +

(
R
⌢
(i, j) + ϖ1(i, j)R

⌣
(i, j)

)
r(i, j).

(23) 

In what follows, it is easy to obtain corollary 1 based on the results of Theorem 1 and Theorem 2. 

Corollary 1. For dynamic filtering error systems (23) under the event-triggered mechanism (7) and hybrid cyber-attacks (9), and 

given positive scalars τ, τ, as well as the filtering gains L(i, j) ∈ R(nh+nv)×ny , if there exist positive definite symmetric matrices P(i, j) =

diag{Ph
(i, j), Pv

(i, j)} ∈ R(2nh+2nv)×(2nh+2nv), S1(i, j) = diag{Sh
1(i, j), Sv

1(i, j)} ∈ R(2nh+2nv)×(2nh+2nv), S2(i, j) = diag{Sh
2(i, j), Sv

2(i,
j)} ∈ R(2nh+2nv)×(2nh+2nv), S3(i,j) = diag{Sh

3(i,j),Sv
3(i,j)} ∈ R(2nh+2nv)×(2nh+2nv), Q(i,j) ∈ R(2nh+2nv)×(2nh+2nv), positive scalars ρ, γ1(i, j) and γ2(i,

j), such that the following inequalities hold: 

Θ =

[
Θ11 Θ12

∗ Θ22

]

≤ 0, (24)  

Sh
2(i, j) ≥ Sh

3(i, j), Sv
2(i, j) ≥ Sv

3(i, j), (25)  

(1+ τ)S1(i, j) + τS2(i, j) − τS3(i, j) ≤ ρ(S2(i, j) − S3(i, j)), (26)  

[
− Q(i, j) ΩT

∗ − P(i, j)

]

≤ 0, (27)  

2I2nh+2nv − ΩT P(i, j)Ω ≥ H̃
T
(i, j)H̃(i, j), (28)  

where 
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Θ11 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Θ1
11 0 0 0
∗ − S1(i, j) 0 0
∗ ∗ − γ1(i, j)Φ(i,j) 0
∗ ∗ ∗ − γ2(i, j)Iny

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

Θ12 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A
⌢T

1 (i, j) + MT BT
(i, j) ς1A

⌣T

1 (i, j) ς12A
⌣T

1 (i, j) 0 0

AT
2 (i, j) 0 0 0 0

R
⌢
(i, j)ΩT ς1R

⌣ T
(i, j)ΩT 0 ς12R

⌣ T
(i, j)ΩT 0

O
⌢ T

(i, j)ΩT 0 0 0
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(ς2
2 + 2ς2

12

)√

O
⌣ T

(i, j)ΩT

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

Θ22 = I5 ⊗ − P(i, j),

Θ1
11 =

(
1 + τ − τ

)
S1(i, j) +

(
τS2(i, j) − τS3(i, j)

)
+ σγ1(i, j)ΩC̃

T
(i, j)Φ(i,j)C̃(i, j)ΩT +

(

1 −
1
ρ

)

P(i, j) − 2
(

1 −
1
ρ

)

I2nh+2nv

,

S1 =

⎡

⎣
Inh Sh

1(i, j)Inh + Inv Sv
1(i, j)Inv Inh Sh

1(i, j)̃Inh + Inv Sv
1(i, j)̃Inv

∗ Ĩnh Sh
1(i, j)̃Inh + Ĩnv Sv

1(i, j)̃Inv

⎤

⎦, Inv =

[ 0 0
Inv 0

]

, Ĩnv =

[ 0 0
0 Inv

]

,

S2 =

⎡

⎣
Inh Sh

2(i, j)Inh + Inv Sv
2(i, j)Inv Inh Sh

2(i, j)̃Inh + Inv Sv
2(i, j)̃Inv

∗ Ĩnh Sh
2(i, j)̃Inh + Ĩnv Sv

2(i, j)̃Inv

⎤

⎦, Inh =

[
Inh 0
0 0

]

, Ĩnh =

[ 0 Inh

0 0

]

,

S3 =

[
Inh Sh

3(i, j)Inh + Inv Sv
3(i, j)Inv Inh Sh

3(i, j)̃Inh + Inv Sv
3(i, j)̃Inv

∗ Ĩnh Sh
3(i, j)̃Inh + Ĩnv Sv

3(i, j)̃Inv

]

,

and other parameters are defined in Theorem 1. Then, the dynamic filtering error systems (23) is exponentially ultimately bounded in 
mean-square sense. Moreover, the minimum upper bound of controlled output error ‖ Z̃ (i, j)‖2 is obtained by solving the following 
optimization problem: 

minδ̂(i, j) =
{

tr
{

W
T
(
E
⌢ T

(i, j)Q(i, j)E
⌢
(i, j)+ ς2

1E
⌣ T

(i, j)Q(i, j)E
⌣
(i, j)+ σγ1(i, j)D̃

T
(i, j)Φ(i,j)D̃(i, j)

)
W

}
+ γ2(i, j)υ2

}

s.t. (24)-(28). 

Case 2: The following 2-D discrete nonlinear systems characterized by the Roesser model is considered: 
⎧
⎪⎪⎨

⎪⎪⎩

X (i, j) = A1(i, j)x(i, j) + B(i, j)g(x(i, j)) + E(i, j)ω(i, j)

Y (i, j) = C(i, j)x(i, j) + D(i, j)ω(i, j)

Z (i, j) = H(i, j)x(i, j)

. (29)   

Furthermore, the following filter form is employed: 
{

X̂ (i, j) = A1(i, j)x̂(i, j) + B(i, j)g(x̂(i, j)) + L(i, j)
(

Y
̅→

(i, j) − C(i, j)x̂(i, j)
)

Ẑ (i, j) = H(i, j)x̂(i, j)
.

Similarly, the dynamic filtering error systems based on (29) can be reconstructed into the following form: 

ι(i, j) =
(
A
⌢

1(i, j) + ϖ1(i, j)A
⌣

1(i, j) + B̃(i, j)M̃
)

ι(i, j) + B̃(i, j)g(ι(i, j)) +
(
E
⌢
(i, j) + ϖ1(i, j)E

⌣
(i, j)

)
ω(i, j)

+ϖ2(i, j)O
⌣
(i, j))υ(i, j) +

(
R
⌢
(i, j) + ϖ1(i, j)R

⌣
(i, j)

)
r(i, j),

(30)  

then, it is straightforward to obtain corollary 2 based on the results of Theorem 1 and Theorem 2. 

Corollary 2. For dynamic filtering error systems (30) under the event-triggered mechanism (7) and hybrid cyber-attacks (9), and the 

filtering gains L(i,j) ∈ R(nh+nv)×ny , if there exist positive definite symmetric matrix P(i,j) = diag{Ph
(i,j),Pv

(i,j)} ∈ R(2nh+2nv)×(2nh+2nv), Q(i,
j) ∈ R(2nh+2nv)×(2nh+2nv), positive scalars ρ, γ1(i, j) as well as γ2(i, j), such that the following inequalities hold: 
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Θ =

[
Θ11 Θ12

∗ Θ22

]

≤ 0, (31)  

[
− Q(i, j) ΩT

∗ − P(i, j)

]

≤ 0, (32)  

2I2nh+2nv − ΩT P(i, j)Ω ≥ H̃
T
(i, j)H̃(i, j), (33)  

where 

Θ11 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Θ1
11 M̃

T
Ω 0 0

∗ − 2I2nh+2nv 0 0
∗ ∗ − γ1(i, j)Φ(i,j) 0
∗ ∗ ∗ − γ2(i, j)Iny

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

Θ12 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A
⌢T

1 (i, j) + MT BT
(i, j) ς1A

⌣T

1 (i, j) ς12A
⌣T

1 (i, j) 0 0

ΩT BT
(i, j) 0 0 0 0

R
⌢
(i, j)ΩT ς1R

⌣ T
(i, j)ΩT 0 ς12R

⌣ T
(i, j)ΩT 0

O
⌢ T

(i, j)ΩT 0 0 0
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(ς2
2 + 2ς2

12

)√

O
⌣ T

(i, j)ΩT

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

Θ22 = I5 ⊗ − P(i, j),Θ1
11 = σγ1(i, j)ΩC̃

T
(i, j)Φ(i,j)C̃(i, j)ΩT +

(

1 −
1
ρ

)

P(i, j) − 2
(

1 −
1
ρ

)

I2nh+2nv ,

and other parameters are defined in Theorem 1. Then, the dynamic filtering error systems (30) is exponentially ultimately bounded in 
mean-square sense. Moreover, the minimum upper bound of controlled output error ‖ Z̃ (i, j)‖2 is obtained by solving the following 
optimization problem: 

minδ̂(i, j) =
{

tr
{
W

T
(
E
⌢ T

(i, j)Q(i, j)E
⌢
(i, j) + ς2

1E
⌣ T

(i, j)Q(i, j)E
⌣
(i, j) + σγ1(i, j)D̃

T
(i, j)Φ(i,j)D̃(i, j)

)
W

}
+ γ2(i, j)υ2

}

s.t.(31) − (33).

4. Numerical Simulations 

We consider an industrial heating exchange process satisfying the following partial differential equation with time-delays, which 
structure diagram is shown in Fig. 3. 

∂ђ(x, t)
∂x

+
∂ђ(x, t)

∂t
= − a0ђ(x, t) − a1ђ(x, t − τ(t)), (34)  

where ђ(x, t) is the temperature function associated with both the space dimension x ∈ [ 0 X ] and the time dimension t ∈ [ 0 T ], and 
τ(t) > 0 denotes time-varying delays. In addition, from a practical engineering perspective, the structural model of the heating ex
change process often appears time-varying properties due to the limitations of the chemical reactor components. Thus, the parameters 
a0 and a1 with time-varying characteristics are used to represent the exchange coefficients in the heating exchange process. 

Define ђ(i, j) = ђ(iΔx, jΔt),r(i, j) = r(iΔx, jΔt), then one has 

Fig. 3. The heating exchange process.  
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∂ђ(x, t)
∂x

≈
ђ(iΔx, jΔt) − ђ((i − 1)Δx, jΔt)

Δx
,
∂ђ(x, t)

∂t
≈

ђ(iΔx, jΔt) − ђ(iΔx, (j − 1)Δt)
Δt

ђ(x, t) ≈ ђ(i, j).

Furthermore, equation (34) can be approximately rewritten in the following form: 

ђ(i, j+ 1) =
(

1 −
Δt
Δx

− a0Δt
)

ђ(i, j) +
Δt
Δx

ђ(i − 1, j) − a1Δtђ(i, j − τ(j)). (35) 

We denote xh(i,j) = ђ(i − 1,j),xv(i,j) = ђ(i,j), then, the equivalent Roesser model can be derived from the original partial differential 
equation (35) as follows: 

[
xh(i + 1, j)
xv(i, j + 1)

]

=

⎡

⎣
0 1

Δt
Δx

1 −
Δt
Δx

− a0Δt

⎤

⎦

[
xh(i, j)
xv(i, j)

]

+

[
0 0
0 − a1Δt

][
xh((i − τ(i), j))
xv((i, j − τ(j)))

]

.

Subsequently, according to the literature [19], we adopt the following parameters: 

Δt = 0.1, Δx = 0.4, a0 = sin(i+ j) − 4, a1 = 3cos(i+ j),

then, the mathematical model of the industrial heating exchange process can be described by 2-D systems with the following pa
rameters: 

A1(i, j) =
[

0 1
0.25 0.35 − 0.1sin(i + j)

]

,A2(i, j) =
[

0 0
0 − 0.3cos(i + j)

]

,B(i, j) =
[

0.2 − 0.05
− 0.2 + 0.1tanh(i + j) 0.16

]

,

E(i, j) =

[
− 0.4 + 0.1sin(0.2i + j)

0.15

]

,C(i, j) =

[
0.35 + 0.1cos(j) 0.2

0.2 0.35

]

,D(i, j) =

[
0.3

0.2 − 0.1tanh(i + j)

]

,

H(i, j) = [ 0.65 − 0.12 ].

Additionally, we take the initial state of systems as x(i, j) = 2.2sin(i)cos(j + 1) for i ≤ 0 andj ∈ [0 50 ], as well as x(i, j) = 2.3sin(i 
+1)cos(j) for i ∈ [ 0 50 ] and j ≤ 0. The decay rate ρ, threshold parameter σ and weight matrix Φ(i,j) are set as 50, 0.3 and 1.2I. The 
external disturbance ω(i, j) is assumed to be the Gaussian white noise process with the variance W = 0.5I. Then, suppose that the 
hybrid cyber-attacks are implemented in the interval i, j ∈ [ 20 40 ], and the corresponding probabilities are ϑ = 0.3 and ξ = 0.65, 
respectively. Moreover, the false data function is chosen as: 

υ(i, j) =
{
[ 0.3sin(0.45(i + j)) 0.25cos(0.3(i + j)) ]T i, j ∈ [ 20 40 ]

0otherwise
.

In this example, the nonlinear function is taken as 

g(x(i, j)) =
[

0.4sin
(
− xh(i, j)

)
+ 0.2xh(i, j)

− 0.4sin(xv(i, j)) + 0.2xv(i, j)

]

.

Considering that the sin(·) function is an odd function and the value domain belongs to[ − 1 1 ], it is straightforward to confirm that 
the parameters Gh

1 = Gv
1 = − 0.3 and Gh

1 = Gh
2 = 0.2, which satisfy Assumption 1. 

Then, by applying Theorem 2 and in virtue of the LMI toolbox of MATLAB, the part of feasible solutions and filtering gain matrices 
can be obtained and listed as Tables 1 and 2: 

The simulation results are shown in Fig. 4–Fig. 9. Fig. 4 and Fig. 5 depict the event-triggered instants and the hybrid cyber-attacks 
case, respectively. Fig. 4 indicates that the employed event-triggered strategy arranges the measurement output to be released at 
certain instants, effectively relieving the communication pressure of the network. Fig. 4 shows hybrid cyber-attacks occurring on 
interval i, j ∈ [20 40 ], where the blue dots indicate DoS attacks instant and the red asterisks indicate FDI attacks instant. Fig. 6 and 
Fig. 7 are concerning the trajectories of the state x(i, j) and its estimate x̂(i, j). Fig. 8 and Fig. 9 show the trajectories of the dynamic 
filtering error eh(i, j) and the dynamic filtering error ev(i, j), respectively. It can be seen from Fig. 8-11 that filtering error fluctuates in 
the finite horizon i, j ∈ [0 40 ] due to external disturbance and hybrid cyber-attacks. In order to more intuitively illustrate the superior 

Table 1 
Part of the feasible solution P(i, j).  

P(1,1) =

⎡

⎢
⎢
⎣

1.3193 0.0005 0 0
0.0005 1.7234 0 0

0 0 1.4273 0.1837
0 0 0.1837 1.6637

⎤

⎥
⎥
⎦ P(1,2) =

⎡

⎢
⎢
⎣

1.2418 0.0010 0 0
0.0010 1.8171 0 0

0 0 1.7706 0.1213
0 0 0.1213 1.4912

⎤

⎥
⎥
⎦

… 

… … … 

P(50,1) =

⎡

⎢
⎢
⎣

1.5174 0.0209 0 0
0.0209 1.4313 0 0

0 0 1.5663 0.0965
0 0 0.0965 1.0648

⎤

⎥
⎥
⎦ P(50,2) =

⎡

⎢
⎢
⎣

1.3795 0.1148 0 0
0.1148 1.7200 0 0

0 0 1.3218 0.1513
0 0 0.1513 1.5962

⎤

⎥
⎥
⎦

…  

P. Zhang et al.                                                                                                                                                                                                          



Journal of the Franklin Institute 361 (2024) 683–711

696

performance of proposed filter, we limit the vertical component j and horizontal component i to evolve independently from 8 to 9. The 
comparison of the system state with the estimated state are shown in Fig. 10–Fig. 11. Fig. 6-Fig. 11 exhibit that the estimation of 
proposed filtering algorithm can effectively follow the actual state of systems, and the proposed filtering algorithm has excellent 
estimated performance. 

In addition, in order to facilitate the comparison of the filtering algorithm proposed in this paper with the existing H∞ filtering al
gorithms of [18], we introduce the mean square error of the state estimation in the horizontal and vertical directions as MSEh(i, j) and 
MSEv(i,j), respectively, where MSEh(i, j) = 1

T2
1

∑T1
j=1
∑T1

i=1(xh(i, j) − x̂h
(i, j))2 (T1 = 50) and MSEv(i,j) = 1

T2
1

∑T1
j=1
∑T1

i=1(xv(i, j) − x̂v
(i, j))2 (T1 =

50). Under the same initial conditions described above, we performed simulation verification and the results are shown in Fig. 12–Fig. 15. 
The estimation error trajectory eh(i, j) in the horizontal direction and the estimation error ev(i, j) in the vertical direction under both al
gorithms are presented in Fig. 11 and Fig. 12, respectively. The trajectories of MSEh(i, j) and MSEv(i, j) under the above two filtering design 
strategies are shown in Fig. 13 and Fig. 14. Fig. 12- Fig. 15 demonstrate that the proposed ultimately bounded filtering algorithm has 
smaller mean square error and better tracking performance compared with the robust filtering algorithm of [18]. 

Table 2 
Part of the filter gainsL(i, j).  

L(1,1) =

[
0.8331 0.0122
− 0.0177 0.9302

]

L(1,2) =

[
0.7885 0.1019
− 0.0169 0.7860

]
… 

… … … 

L(2,1) =

[
0.9101 0.0112
− 0.0164 0.7851

]

L(2,2) =

[
0.8435 0.0139
− 0.0174 0.7682

]
… 

L(50,1) =

[
0.8220 0.0122
− 0.0175 0.8192

]

L(50,2) =

[
0.8012 0.0122
− 0.0164 0.7986

]
…  

Fig. 4. The event-triggered instants.  

Fig. 5. The hybrid cyber-attacks case.  
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Finally, we will discuss the effect of decay rate ϱ, the external disturbance variance W and the event-triggered threshold σ on the 
average value of controlled output error 1

T2

∑T
i=0
∑T

j=0‖ Z̃ (i, j)‖2 and the average value of upper bound 1
T2

∑T
i=0
∑T

j=0 δ̂(i, j) in the in

terval i, j ∈ [0 30 ], respectively. 1
T2

∑T
i=0
∑T

j=0‖ Z̃ (i, j)‖2 
(T = 30,W = 0.5I, σ = 0.3, ϱ = 0.90) and 1

T2

∑T
i=0
∑T

j=0 δ̂(i, j)(T = 30,
W= 0.5I, σ = 0.3, ϱ= 0.90) are shown in Fig. 16 and Fig. 17, respectively. It can be seen from Fig. 16. that the average value of the 

Fig. 6. The trajectory of the state xh(i, j) and x̂h
(i, j).  

Fig. 7. The trajectory of the statexv(i, j)andx̂v
(i, j).  

Fig. 8. The trajectory of the dynamic filtering error eh(i, j).  
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dynamic output estimation error eventually converges to a certain determined value, which is mainly due to the presence of external 
disturbance and hybrid attacks in the interval i, j ∈ [ 0 30 ]. In other words, if there are not external disturbance and hybrid cyber- 

Fig. 9. The trajectory of the dynamic filtering error ev(i, j).  

Fig. 10. The state xh(i, j) and its estimate x̂h
(i, j) on j = 8,9.  

Fig. 11. The state xv(i, j) and its estimate x̂v
(i, j) on i = 8, 9.  
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attacks, the result obtained in this paper would have converged from being exponentially ultimately bounded to being exponentially 
stable in mean-square sense. It also can be seen from Fig. 17 that the average value of upper bound eventually evolves to the deter
mined value. In addition, we provide the average value of controlled output error and the average value of upper bound with different 
valve of W, ϱ and σ, as detailed in Table 3 and 4. It is can be seen from Table 3 that 1

T2

∑T
i=0
∑T

j=0‖ Z̃ (i, j)‖2 and 

Fig. 12. The trajectories ofeh(i, j)under the proposed filtering and H∞ robust filtering algorithm.  

Fig. 13. The trajectories of ev(i, j)under the proposed filtering and H∞ robust filtering algorithm.  

Fig. 14. TheMSEh(i, j)under the proposed filtering and H∞ robust filtering algorithm.  
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1
T2

∑T
i=0
∑T

j=0 δ̂(i, j)(T = 30) also increase with the increasing of the external disturbance variance W or the decay rate ϱ, which 

consistent with theoretical results obtained in Theorems 1 and 2 that if the decay rate ϱ increases, the controlled output error ‖ z̃(i, j)‖2 

will converge quicker and the upper bound δ̂(i, j) will also increase. Furthermore, Table 4 illustrates the influence of the thresholdσon 
the filtering performance, and it can be seen that 1

T2

∑T
i=0
∑T

j=0‖ Z̃ (i, j)‖2 and 1
T2

∑T
i=0
∑T

j=0 δ̂(i, j)(T = 30) will increase as the σ in
creases (the more harsh triggering condition). The above simulation results demonstrate that the developed filtering algorithm is 
effective under the event-triggered mechanism and hybrid cyber-attacks. 

Fig. 15. TheMSEv(i, j)under the proposed filtering and H∞ robust filtering algorithm.  

Fig. 16. The average value of controlled output error 1
T2

∑T
i=0
∑T

j=0‖ Z̃ (i, j)‖2.  

Fig. 17. The average value of upper bound 1
T2

∑T
i=0
∑T

j=0 δ̂(i, j).  
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5. Conclusions 

This paper has investigated the design problem of ultimately bounded filter for 2-D discrete nonlinear systems with time-varying 
delays limited by the event-triggered mechanism and the hybrid cyber-attacks. On account of the limited bandwidth of the commu
nication network, a bi-directional time-sequence event-triggered transmission protocol is introduced, which is based on the principle 
of utilizing predefined triggering conditions to determine whether the current data is transmitted. Besides, the impact of hybrid cyber- 
attacks, which occur in stochastic patterns, on the filtering performance is also discussed. In such a framework, an augmented model of 
2-D systems described by Roesser model is developed under the concerted influence of event-triggered mechanism and hybrid cyber- 
attacks. Then, sufficient conditions are derived to guarantee that the dynamic filtering error systems satisfy exponentially ultimately 
bounded in mean-square sense. Furthermore, the filtering gains ensuring the desired decay rate of the dynamic filtering error systems 
can be obtained by minimizing the asymptotic upper bound of the controlled output error. Finally, the effectiveness of the proposed 
ultimately bounded filtering algorithm is verified by a simulation example. It is worth noting that this investigation is a preliminary 
attempt to combine the event-triggered mechanism and the ultimately bounded filtering technique for 2-D systems, and the proposed 
method has certain application potential for long-distance transmission systems described by 2-D systems. In addition, considering that 
the calculation of filter gains in this paper is carried out online, it is one of the future development directions that utilizing other event 
triggering mechanisms (e.g., dynamic event-triggered, self-triggered, periodic-triggered) to alleviate the pressure of network 
communication to a greater extent as well as reducing the computational complexity for the filtering problem of 2-D systems. 
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Table 3 
The average value of the controlled output error and upper bound with different W and ϱ (T = 30,σ = 0.3).   

W = 0.5I W = 0.7I W = 0.9I W = 1.1I 

1
T2

∑T
i=0

∑T
j=0

‖ Z̃ (i, j)‖2
(ϱ = 0.96) 0.2180 0.2405 0.3193 0.3897 

1
T2

∑T
i=0

∑T
j=0

δ̂(i, j)(ϱ = 0.96) 5.1217 6.0502 7.1963 8.3142 

1
T2

∑T
i=0

∑T
j=0

‖ Z̃ (i, j)‖2
(ϱ = 0.94) 0.1959 0.2363 0.2819 0.3620 

1
T2

∑T
i=0

∑T
j=0

δ̂(i, j)(ϱ = 0.94) 4.1217 5.3184 6.2821 7.5421 

1
T2

∑T
i=0

∑T
j=0

‖ Z̃ (i, j)‖2
(ϱ = 0.92) 0.1735 0.2128 0.2781 0.3324 

1
T2

∑T
i=0

∑T
j=0

δ̂(i, j)(ϱ = 0.92) 3.3821 4.3153 5.5416 6.4752 

1
T2

∑T
i=0

∑T
j=0

‖ Z̃ (i, j)‖2
(ϱ = 0.90) 0.1674 0.2113 0.2645 0.3198 

1
T2

∑T
i=0

∑T
j=0

δ̂(i, j)(ϱ = 0.90) 3.0422 3.5761 4.6001 5.6985  

Table 4 
The average value of the controlled output error and upper bound with different σ and ϱ (T = 30, W = 0.5I).   

σ = 0.3 σ = 0.4 σ = 0.5 σ = 0.6 

1
T2

∑T
i=0

∑T
j=0

‖ Z̃ (i, j)‖2
(ϱ = 0.96) 0.2180 0.3245 0.4086 0.4951 

1
T2

∑T
i=0

∑T
j=0

δ̂(i, j)(ϱ = 0.96) 5.1217 6.3174 7.3014 8.8814 

1
T2

∑T
i=0

∑T
j=0

‖ Z̃ (i, j)‖2
(ϱ = 0.94) 0.1959 0.2883 0.3406 0.4199 

1
T2

∑T
i=0

∑T
j=0

δ̂(i, j)(ϱ = 0.94) 4.1217 5.9451 6.8821 7.8234 

1
T2

∑T
i=0

∑T
j=0

‖ Z̃ (i, j)‖2
(ϱ = 0.92) 0.1735 0.2528 0.3142 0.3736 

1
T2

∑T
i=0

∑T
j=0

δ̂(i, j)(ϱ = 0.92) 3.3821 4.7236 6.1147 7.0425 

1
T2

∑T
i=0

∑T
j=0

‖ Z̃ (i, j)‖2
(ϱ = 0.90) 0.1674 0.2113 0.2645 0.3198 

1
T2

∑T
i=0

∑T
j=0

δ̂(i, j)(ϱ = 0.90) 3.0422 3.5844 5.5424 6.2776  
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Appendix A. The Proof of Theorem 1 

Proof. First of all, we consider the exponentially bounded performance of dynamic filtering error systems (13) under bounded initial 
conditions. Choose the following Lyapunov energy-like function: 

V(i, j) = Vh(i, j) + Vv(i, j) =
∑4

q=1
Vq(i, j), (36a)  

Vq(i, j) = Vh
q (i, j) + Vv

q(i, j), (36b)  

V+(i, j) = Vh(i+ 1, j) + Vv(i, j+ 1) =
∑4

q=1
Vh

q (i+ 1, j) +
∑4

q=1
Vv

q(i, j+ 1), (36c)  

with Vh
1(i,j) = (ιh(i, j))TPh(i,j)ιh(i,j), Vh

2(i,j) =
∑− 1

θ=− τh(i,j)(ιh(i + θ, j))TSh
1(i, j)(ι(i + θ,j)),Vh

3(i, j) =
∑− τ

θ=1− τ
∑− 1

s=θ(ιh(i + s, j))TSh
1(i, j)(ιh(i + s,

j)),Vh
4(i, j) =

∑− 1
θ=− τ

∑− 1
s=θ(ιh(i + s, j))TSh

2(i, j)(ιh(i + s, j)) −
∑− 1

θ=− τ
∑− 1

s=θ(ιh(i + s, j))TSh
3(i, j)

(
ιh(i + s, j)

)
,Vv

1(i, j) = (ιv(i, j))TPv(i, j)ιv(i, j), 

Vv
2(i, j) =

∑− 1
θ=− τv(i,j)(ιv(i, j + θ))TSv

1(i, j)(ιv(i, j + θ)),Vv
3(i, j) =

∑− τ
θ=1− τ

∑− 1
s=θ(ιv(i, j + s))TSv

1(i, j)(ιv(i, j + s)), 

Vv
4(i, j) =

∑− 1

θ=− τ

∑− 1

s=θ
(ιv(i, j + s))T Sv

2(i, j)
(
ιv(i, j+ s)

)
−
∑− 1

θ=− τ

∑− 1

s=θ
(ιv(i, j + s))T Sv

3(i, j)
(
ιv(i, j+ s)

)
,

where Ph(i, j) ∈ R2nh×2nh , Sh
1(i, j) ∈ R2nh×2nh , Sh

2(i, j) ∈ R2nh×2nh , Sh
3(i, j) ∈ R2nh×2nh , Pv(i, j) ∈ R2nv×2nv , Sv

1(i, j) ∈ R2nv×2nv , Sv
2(i, j) ∈ R2nv×2nv , 

Sv
3(i, j) ∈ R2nv×2nv , P(i, j) =

[
Ph(i, j) 0

0 Pv(i, j)

]

∈ R(2nh+2nv)×(2nh+2nv), S1(i, j) =

[
Sh

1(i, j) 0
0 Sv

1(i, j)

]

∈ R(2nh+2nv)×(2nh+2nv), S2(i, j) =

[
Sh

2(i, j) 0
0 Sv

2(i, j)

]

∈ R(2nh+2nv)×(2nh+2nv), S3(i, j) =

[
Sh

3(i, j) 0
0 Sv

3(i, j)

]

∈ R(2nh+2nv)×(2nh+2nv). 

In what follows, we consider the following index: 

J(i, j)
Δ
=

E{V+(i, j) − V(i, j)|∂(i, j)} = E

{
∑4

q=1
ΔVh

q (i, j)+
∑4

q=1
ΔVv

q(i, j)|∂(i, j)

}

, (37)  

where ∂(i,j) Δ
=
{η(i,j),η(i,j − 1),...,η(i,j − τ),η(i − 1,j),η(i − 2,j),...,η(i − τ,j)}, ΔVh

q(i,j) =Vh
q(i +1,j) − Vh

q(i,j),ΔVv
q(i,j) =Vv

q(i,j +1) − Vv
q(i,j). 

Then, the mathematical expectation of the difference will be derived along the dynamic filtering error systems (13). Considering 
(34), which yields 

E
{

ΔVh
1 (i, j)

}
= E

{(
ιh(i + 1, j)

)T Ph(i, j)ιh(i+ 1, j) −
(
ιh(i, j)

)T Ph(i, j)ιh(i, j)|∂(i, j)
}
, (38)  

E
{

ΔVh
2 (i, j)

}

= E

⎧
⎨

⎩

∑− 1

θ=− τh(i+1,j)

(
ιh(i + θ + 1, j)

)T Sh
1(i, j)ιh(i + θ + 1, j) −

∑− 1

θ=− τh(i,j)

(
ιh(i + θ, j)

)T Sh
1(i, j)ιh(i + θ, j)|∂(i, j)

⎫
⎬

⎭

=
(
ιh(i, j)

)T Sh
1(i, j)ιh(i, j) −

(
ιh( i − τh(i, j), j

))T Sh
1(i, j)ιh( i − τh(i, j), j

)

+
∑− 1

θ=1− τh(i+1,j)

(
ιh(i + θ, j)

)T Sh
1(i, j)ιh(i + θ, j) −

∑− 1

θ=1− τh(i,j)

(
ιh(i + θ, j)

)T Sh
1(i, j)ιh(i + θ, j),

≤
(
ιh(i, j)

)T Sh
1(i, j)ι(i, j) −

(
ιh( i − τh(i, j), j

))T Sh
1(i, j)ιh( i − τh(i, j), j

)
+
∑− τ

θ=1− τ

(
ιh(i + θ, j)

)T Sh
1(i, j)ιh(i + θ, j),

(39)  
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E
{

ΔVh
3 (i, j)

}

= E

{
∑− τ

θ=1− τ

∑− 1

s=θ

(
ιh(i + s + 1, j)

)T Sh
1(i, j)ιh(i + s + 1, j) −

∑− τ

θ=1− τ

∑− 1

s=θ

(
ιh(i + s, j)

)T Sh
1(i, j)ιh(i + s, j

)

|∂(i, j)}

=
∑− τ

θ=1− τ

(
ιh(i, j)

)T Sh
1(i, j)ιh(i, j) −

(
ιh(i + θ, j)

)T Sh
1(i, j)ιh(i + θ, j)

=
(

τ − τ
)(

ιh(i, j)
)T Sh

1(i, j)ι(i, j) −
∑− τ

θ=1− τ

(
ιh(i + θ, j)

)T Sh
1(i, j)ιh(i + θ, j),

(40)  

E
{

ΔVh
4 (i, j)

}

= E

⎧
⎨

⎩

∑− 1

θ=− τ

∑− 1

s=θ

(
ιh(i + s + 1, j)

)T Sh
2(i, j)

(
ιh(i + s + 1, j)

)
−
∑− 1

θ=− τ

∑− 1

s=θ

(
ιh(i + s + 1, j)

)T Sh
3(i, j)

(
ιh(i + s + 1, j)

)

⎞

⎠

−

⎛

⎝
∑− 1

θ=− τ

∑− 1

s=θ

(
ιh(i + s, j)

)T Sh
2(i, j)

(
ιh(i + s, j)

)
−
∑− 1

θ=− τ

∑− 1

s=θ

(
ιh(i + s, j)

)T Sh
3(i, j)

(
ιh(i + s, j)

)

⎞

⎠|∂(i, j)

⎫
⎬

⎭

=
(
ιh(i, j)

)T
(

τSh
2(i, j) − τSh

3(i, j)
)

ιh(i, j) −
∑− 1

θ=− τ

(
ιh(i + θ, j)

)T Sh
2(i, j)ιh(i + θ, j) +

∑− 1

θ=− τ

(
ιh(i + θ, j)

)T Sh
3(i, j)ιh(i + θ, j)

≤
(
ιh(i, j)

)T
(

τSh
2(i, j) − τSh

3(i, j)
)

ιh(i, j) −
∑− 1

θ=− τ

(
ιh(i + θ, j)

)T ( Sh
2(i, j) − Sh

3(i, j)
)
ιh(i + θ, j),

(41)  

E
{

ΔVv
1(i, j)

}
= E

{
(ιv(i, j + 1))T Pv(i, j)ιh(i, j+ 1) − (ιv(i, j))T Pv(i, j)ιv(i, j)|∂(i, j)

}
, (42)  

E
{

ΔVv
2(i, j)

}

= E

{
∑− 1

θ=− τv(i,j+1)

(ιv(i, j + θ + 1))T Sv
1(i, j)ιv(i, j + θ + 1) −

∑− 1

θ=− τv(i,j)

(ιv(i, j + θ))T Sv
1(i, j)ιv(i, j + θ)|∂(i, j)

}

= (ιv(i, j))T Sv
1(i, j)ιv(i, j) − (ιv(i, j − τv(i, j)))T Sv

1(i, j)ι(i, j − τv(i, j))

+
∑− 1

θ=1− τv(i,j+1)

(ιv(i, j + θ))T Sv
1(i, j)ιv(i, j + θ) −

∑− 1

θ=1− τv(i,j)

ιT(i, j + θ)Sv
1(i, j)ι(i, j + θ)

≤ (ιv(i, j))T Sv
1(i, j)ιv(i, j) −

(

ιv(i, j − τv(i, j))T Sv
1(i, j)ιv(i, j − τv(i, j)) +

∑− τ

θ=1− τ
(ιv(i, j + θ))T Sv

1(i, j)ιv(i, j + θ),

(43)  

E
{

ΔVv
3(i, j)

}

= E

{
∑− τ

θ=1− τ

∑− 1

s=θ
(ιv(i, j + s + 1))T Sv

1(i, j)ιv(i, j + s + 1) −
∑− τ

θ=1− τ

∑− 1

s=θ
(ιv(i, j + s))T Sv

1(i, j)ιv(i, j + s)

⃒
⃒
⃒
⃒
⃒
∂(i, j)

}

=
∑− τ

θ=1− τ

(
(ιv(i, j))T Sv

1(i, j)ιv(i, j) − (ιv(i, j + θ))T Sv
1(i, j)ιv(i, j + θ)

)

=
(

τ − τ
)
(ιv(i, j))T Sv

1(i, j)ιv(i, j) −
∑− τ

θ=1− τ
(ιv(i, j + θ))T Sv

1(i, j)ιv(i, j + θ),

(44)  
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E
{

ΔVv
4(i, j)

}

=

⎧
⎨

⎩

∑− 1

θ=− τ

∑− 1

s=θ
(ιv(i, j + s + 1))T Sv

2(i, j)(ιv(i, j + s + 1)) −
∑− 1

θ=− τ

∑− 1

s=θ
(ιv(i, j + s + 1))T Sv

3(i, j)(ιv(i, j + s + 1))

−

⎛

⎝
∑− 1

θ=− τ

∑− 1

s=θ
(ιv(i, j + s))T Sv

2(i, j)(ιv(i, j + s)) −
∑− 1

θ=− τ

∑− 1

s=θ
(ιv(i, j + s))T Sv

3(i, j)(ιv(i, j + s))

⎞

⎠|∂(i, j)

⎫
⎬

⎭

= (ιv(i, j))T
(

τSv
2(i, j) − τSv

3(i, j)
)

ιv(i, j) −
∑− 1

θ=− τ
(ιv(i + θ, j))T Sv

2(i, j)ιv(i + θ, j) +
∑− 1

θ=− τ
(ιv(i + θ, j))T Sv

3(i, j)ιv(i + θ, j)

≤ (ιv(i, j))T
(

τSv
2(i, j) − τSv

3(i, j)
)

ιv(i, j) −
∑− 1

θ=− τ
(ιv(i + θ, j))T ( Sv

2(i, j) − Sv
3(i, j)

)
ιv(i + θ, j).

(45) 

Substituting (38)-(45) into (36), it is easy to obtain that 

J(i, j) = E{V+(i, j) − V(i, j)|∂(i, j)}

≤ E
{(

ιh(i + 1, j)
)T Ph(i, j)ιh(i + 1, j) −

(
ιh(i, j)

)T Ph(i, j)ιh(i, j)|∂(i, j)
}

+E
{
(ιv(i, j + 1))T Pv(i, j)ιh(i, j + 1) − (ιv(i, j))T Pv(i, j)ιv(i, j)|∂(i, j)

}

+
(
ιh(i, j)

)T
((

1 + τ − τ
)

Sh
1(i, j) +

(
τSh

2(i, j) − τSh
3(i, j)

))
ιh(i, j)

−
(
ιh( i − τh(i, j), j

))T Sh
1(i, j)ιh( i − τh(i, j), j

)
−
(
ιv(i, j − τv(i, j))T Sv

1(i, j)ιv(i, j − τv(i, j))

+(ιv(i, j))T
((

1 + τ − τ
)

Sv
1(i, j) +

(
τSv

2(i, j) − τSv
3(i, j)

))
ιv(i, j)

−
∑− 1

θ=− τ
(ιv(i, j + θ))T ( Sv

2(i, j) − Sv
3(i, j)

)
ιv(i, j + θ) −

∑− 1

θ=− τ

(
ιh(i + θ, j)

)T ( Sh
2(i, j) − Sh

3(i, j)
)
ιh(i + θ, j)

= (ι(i, j))T P(i, j)ι(i, j) + ιT(i, j)(S(i, j) − P(i, j))ι(i, j)

− ιT
τ (i, j)S1(i, j)ιτ(i, j) −

∑− 1

θ=− τ
(ιθ(i, j))T

(S2(i, j) − S3(i, j))ιθ(i, j),

(46)  

where S(i, j) =
(

1 + τ − τ
)

S1(i, j)+
(

τS2(i, j) − τS3(i, j)
)

, ιθ(i, j) =

[
ιh(i + θ, j)
ιv(i, j + θ)

]

. 

Next, we will further consider the impact of event-triggered scheduling mechanism, hybird cyber-attacks and nonlinear functions 
on the filtering performance. 

For (ik, jk) ≤ (i, j) < (ik+1, jk+1), recalling the event-triggered transmission rule (7), one has 

σY
T
(i, j)Φ(i,j)Y (i, j) − rT(i, j)Φ(i,j)r(i, j) ≥ 0. (47) 

Reconstruct the nonlinear function constraints (5) and (6), which could be further written as: 

(g(ι(i, j)))T
(g(ι(i, j)) − F̃ ι(i, j)) ≤ 0, (48)  

where F̃ = ΩT M̂Ω, M̂ = diag{Gh,Gv,Gh,Gv}. 
Subsequently, according to the norm-bounded condition ‖ υ(i, j) ‖≤ υ of FDI attacks, one has 

υT(i, j)υ(i, j) − υ2I ≤ 0, (49) 

Substituting (13), (47), (48) and (49) into (46), we can further infer the following relationship holds if there exist positive scalars 
γ1(i, j) and γ2(i, j): 
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J(i, j) ≤ E
{
(ι(i, j))T P(i, j)ι(i, j) + ιT(i, j)(S(i, j) − P(i, j))ι(i, j) − ιT

τ (i, j)S1(i, j)ιτ(i, j)

−
∑− 1

θ=− τ
(ιθ(i, j))T

(S2(i, j) − S3(i, j))ιθ(i, j)} − γ1(i, j)rT(i, j)Φ(i,j)r(i, j) − 2
(
(g(ι(i, j)))T

(g(ι(i, j)) − F̃ ι(i, j))
)

+γ2(i, j)
(
υ2I − υT(i, j)υ(i, j)

)
+ σγ1(C̃(i, j)ι(i, j) + D(i, j)ω(i, j))T Φ(i,j)(C̃(i, j)ι(i, j) + D(i, j)ω(i, j))

≤ ιT(i, j)(
(
A
⌢

1(i, j) + B̃(i, j)M̃
)T

P(i, j)
(
A
⌢

1(i, j) + B̃(i, j)M̃
)
+ σγ1(i, j)C̃

T
(i, j)Φ(i,j)C̃(i, j)

+ς2
1A

⌣ T

1 (i, j)P(i, j)A
⌣

1(i, j))ι(i, j) + ιT(i, j)(S(i, j) − P(i, j))ι(i, j)

+ιT(i, j)
(
A
⌢

1(i, j) + B̃(i, j)M̃
)T

P(i, j)Ã2(i, j)ιτ(i, j)

+ιT(i, j)
((

A
⌢

1(i, j) + B̃(i, j)M̃
)T

P(i, j)B̃(i, j) + F̃
T)

g(ι(i, j))

+ιT(i, j)
((

A
⌢

1(i, j) + B̃(i, j)M̃
)T

P(i, j)O
⌢
(i, j) + ς2

12A
⌣ T

1 (i, j)P(i, j)O
⌣
(i, j)

)
υ(i, j)

+ιT(i, j)
((

A
⌢

1(i, j) + B̃(i, j)M̃
)T

P(i, j)R
⌢
(i, j) + ς2

1A
⌣ T

1 (i, j)P(i, j)R
⌣
(i, j)

)
r(i, j)

+ιT
τ (i, j)

(
Ã

T
2 (i, j)P(i, j)Ã2(i, j) − S1(i, j)

)
ιτ(i, j) + ιT

τ (i, j)Ã
T
2 (i, j)P(i, j)B̃(i, j)g(ι(i, j))

+ιT
τ (i, j)Ã

T
2 (i, j)P(i, j)O

⌢
(i, j)υ(i, j) + ιT

τ (i, j)Ã
T
2 (i, j)P(i, j)R

⌢
(i, j)r(i, j)

+gT(ι(i, j))
(
B̃

T
(i, j)P(i, j)B̃(i, j) − 2I

)
g(ι(i, j)) + gT(ι(i, j))B̃

T
(i, j)P(i, j)R

⌢
(i, j)r(i, j)

+gT(ι(i, j))B̃T
(i, j)P(i, j)O

⌢
(i, j)υ(i, j) + rT(i, j)(R

⌢ T
(i, j)P(i, j)R

⌢
(i, j)

+ς2
1R

⌣ T
(i, j)P(i, j)R

⌣
(i, j) − Φ(i,j))r(i, j)+rT(i, j)

(
R
⌢ T

(i, j)P(i, j)O
⌢
(i, j) + ς2

12R
⌣ T

(i, j)P(i, j)O
⌣
(i, j)

)
υ(i, j)

+υT(i, j)
(
O
⌢ T

(i, j)P(i, j)O
⌢
(i, j) + ς2

2O
⌣ T

(i, j)P(i, j)O
⌣
(i, j)

)
υ(i, j) − γ2(i, j)υT(i, j)υ(i, j)

+tr
{
W

T
(
E
⌢ T

(i, j)P(i, j)E
⌢
(i, j) + ς2

1E
⌣ T

(i, j)P(i, j)E
⌣
(i, j) + σγ1(i, j)D

T(i, j)Φ(i,j)D(i, j)
)
W

}
+ γ2(i, j)υ2

+
[
ιT(i, j)

(
A
⌢

1(i, j) + B̃(i, j)M̃
)T

P(i, j)Ã2(i, j)ιτ(i, j)

+ιT(i, j)
((

A
⌢

1(i, j) + B̃(i, j)M̃
)T

P(i, j)B̃(i, j) + F̃
T)

g(ι(i, j))

+ιT(i, j)
((

A
⌢

1(i, j) + B̃(i, j)M̃
)T

P(i, j)O
⌢
(i, j) + ς2

12A
⌣ T

1 (i, j)P(i, j)O
⌣
(i, j)

)
υ(i, j)

+ιT(i, j)
((

A
⌢

1(i, j) + B̃(i, j)M̃
)T

P(i, j)R
⌢
(i, j) + ς2

1A
⌣ T

1 (i, j)P(i, j)R
⌣
(i, j)

)
r(i, j)

+ιT
τ (i, j)Ã

T
2 (i, j)P(i, j)B̃(i, j)g(ι(i, j)) + ιT

τ (i, j)Ã
T
2 (i, j)P(i, j)F

⌢
(i, j)υ(i, j)

+ιT
τ (i, j)Ã

T
2 (i, j)P(i, j)R

⌢
(i, j)r(i, j) + gT(ι(i, j))B̃

T
(i, j)P(i, j)R

⌢
(i, j)r(i, j)

+gT(ι(i, j))B̃T
(i, j)P(i, j)O

⌢
(i, j)υ(i, j) + rT(i, j)(R

⌢ T
(i, j)P(i, j)O

⌢
(i, j)

+ς2
12R

⌣ T
(i, j)P(i, j)O

⌣
(i, j))υ(i, j)]T −

∑− 1

θ=− τ
(ιθ(i, j))T

(S2(i, j) − S3(i, j))ιθ(i, j).

. (50) 

Then, in virtue of the elementary inequality aTb+ bTa ≤ aTa+ bTb, it is obtained that 

ς2
12ιT(i, j)A

⌣ T

1 (i, j)P(i, j)O
⌣
(i, j)υ(i, j) + ς2

12υT(i, j)O
⌣ T

(i, j)P(i, j)A
⌣

1(i, j)ι(i, j)

≤ ς2
12ιT(i, j)A

⌣ T

1 (i, j)P(i, j)A
⌣

1(i, j)ι(i, j) + ς2
12υT(i, j)O

⌣ T
(i, j)P(i, j)O

⌣
(i, j)υ(i, j)

, (51.a)  

ς2
12rT(i, j)R

⌣ T
(i, j)P(i, j)O

⌣
(i, j)υ(i, j) + ς2

12υT(i, j)O
⌣ T

(i, j)P(i, j)R
⌣
(i, j)r(i, j)

≤ ς2
12rT(i, j)R

⌣ T
(i, j)P(i, j)R

⌣
(i, j)r(i, j) + ς2

12υT(i, j)O
⌣ T

(i, j)P(i, j)O
⌣
(i, j)υ(i, j)

. (51.b) 

From (50) and (51), it is easy to derive the following inequality: 
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J(i, j) ≤ χT(i, j)Ξχ(i, j) −
∑− 1

θ=− τ
(ιθ(i, j))T

(S2(i, j) − S3(i, j))ιθ(i, j)

+tr
{

W
T
(
E
⌢ T

(i, j)P(i, j)E
⌢
(i, j) + ς2

1E
⌣ T

(i, j)P(i, j)E
⌣
(i, j) + σγ1(i, j)DT(i, j)Φ(i,j)D(i, j)

))
W } + γ2(i, j)υ2

, (52) 

where 

χ(i, j) =
[

ιT(i, j) ιT
τ (i, j) gT(ι(i, j)) rT(i, j) υT(i, j)

]T
,Ξ =

⎡

⎢
⎢
⎢
⎢
⎣

Ξ11 Ξ12 Ξ13 Ξ14 Ξ15
∗ Ξ22 Ξ23 Ξ24 Ξ25
∗ ∗ Ξ33 Ξ34 Ξ35
∗ ∗ ∗ Ξ44 Ξ45
∗ ∗ ∗ ∗ Ξ55

⎤

⎥
⎥
⎥
⎥
⎦
,

Ξ11 =
(
A
⌢

1(i, j) + B̃(i, j)M̃
)T

P(i, j)
(
A
⌢

1(i, j) + B̃(i, j)M̃
)
+ σγ1(i, j)C̃

T
(i, j)Φ(i,j)C̃(i, j)

+S(i, j) − P(i, j) +
(
ς2

1 + ς2
12

)
A
⌣ T

1 (i, j)P(i, j)A
⌣

1(i, j),

Ξ22 = Ã
T
2 (i, j)P(i, j)Ã2(i, j) − S1(i, j),Ξ33 = B̃

T
(i, j)P(i, j)B̃(i, j) − 2I2nx+2nv ,

Ξ44 = R
⌢ T

(i, j)P(i, j)R
⌢
(i, j) +

(
ς2

1 + ς2
12

)
R
⌣ T

(i, j)P(i, j)R
⌣
(i, j) − γ1(i, j)Φ(i,j),

Ξ55 = O
⌢ T

(i, j)P(i, j)O
⌢
(i, j) +

(
ς2

2 + 2ς2
12

)
O
⌣ T

(i, j)P(i, j)O
⌣
(i, j) − γ2(i, j)Iny ,

Ξ12 =
(
A
⌢

1(i, j) + B̃(i, j)M̃
)T

P(i, j)Ã2(i, j),Ξ13 =
(
A
⌢

1(i, j) + B̃(i, j)M̃
)T

P(i, j)B̃(i, j) + F̃
T
,

Ξ14 =
(
A
⌢

1(i, j) + B̃(i, j)M̃
)T

P(i, j)R
⌢
(i, j) + ς2

1A
⌣ T

1 (i, j)P(i, j)R
⌣
(i, j),Ξ15 =

(
A
⌢

1(i, j) + B̃(i, j)M̃
)T

P(i, j)O
⌢
(i, j),

Ξ23 = Ã
T
2 (i, j)P(i, j)B̃(i, j),Ξ24 = Ã

T
2 (i, j)P(i, j)R

⌢
(i, j),Ξ25 = Ã

T
2 (i, j)P(i, j)O

⌢
(i, j),Ξ34 = B̃

T
(i, j)P(i, j)R

⌢
(i, j),

Ξ35 = B̃
T
(i, j)P(i, j)O

⌢
(i, j),Ξ45 = R

⌢ T
(i, j)P(i, j)O

⌢
(i, j).

.

Then, we perform an equivalent transformation for (52). If there exist a scalar ρ > 0, from (52) it is straightforward to verify that 
the following inequality holds: 

J(i, j) ≤ χT(i, j)Ξχ(i, j) +
1
ρV1(i, j) −

1
ρV1(i, j) −

∑− 1

θ=− τ
(ιθ(i, j))T

(S2(i, j) − S3(i, j))ιθ(i, j) + δ(i, j)

= χT(i, j)Ξ
⌢

χ(i, j) −
1
ρV1(i, j) −

∑− 1

θ=− τ
(ιθ(i, j))T

(S2(i, j) − S3(i, j))ιθ(i, j) + δ(i, j),

(53)  

where 

Ξ
⌢
=

⎡

⎢
⎢
⎢
⎢
⎣

Ξ
⌢

11 Ξ
⌢

12 Ξ
⌢

13 Ξ
⌢

14 Ξ
⌢

15

∗ Ξ
⌢

22 Ξ
⌢

23 Ξ
⌢

24 Ξ
⌢

25

∗ ∗ Ξ
⌢

33 Ξ
⌢

34 Ξ
⌢

35

∗ ∗ ∗ Ξ
⌢

44 Ξ
⌢

45

∗ ∗ ∗ ∗ Ξ
⌢

55

⎤

⎥
⎥
⎥
⎥
⎦
,

Ξ
⌢

11 =
(
A
⌢

1(i, j) + B̃(i, j)M̃
)T

P(i, j)
(
A
⌢

1(i, j) + B̃(i, j)M̃
)
+ S(i, j) −

(

1 −
1
ρ

)

P(i, j)

+σγ1(i, j)C̃
T
(i, j)Φ(i,j)C̃(i, j) +

(
ς2

1 + ς2
12

)
A
⌣ T

1 (i, j)P(i, j)A
⌣

1(i, j)

Ξ
⌢

12 =
(
A
⌢

1(i, j) + B̃(i, j)M̃
)T

P(i, j)Ã2(i, j),Ξ
⌢

13 =
(
A
⌢

1(i, j) + B̃(i, j)M̃
)T

P(i, j)B̃(i, j) + F̃
T
,

Ξ
⌢

14 =
(
A
⌢

1(i, j) + B̃(i, j)M̃
)T

P(i, j)R
⌢
(i, j) + ς2

1A
⌣ T

1 (i, j)P(i, j)R
⌣
(i, j),Ξ

⌢
15 =

(
A
⌢

1(i, j) + B̃(i, j)M̃
)T

P(i, j)O
⌢
(i, j),

P. Zhang et al.                                                                                                                                                                                                          



Journal of the Franklin Institute 361 (2024) 683–711

707

Ξ
⌢

22 = Ã
T
2 (i, j)P(i, j)Ã2(i, j) − S1(i, j),Ξ

⌢
23 = Ã

T
2 (i, j)P(i, j)B̃(i, j),Ξ

⌢
24 = Ã

T
2 (i, j)P(i, j)R

⌢
(i, j),

Ξ
⌢

25 = Ã
T
2 (i, j)P(i, j)O

⌢
(i, j),Ξ

⌢
33 = B̃

T
(i, j)P(i, j)B̃(i, j) − I2nh+2nv ,Ξ

⌢
34 = B̃

T
(i, j)P(i, j)R

⌢
(i, j),

Ξ
⌢

35 = B̃
T
(i, j)P(i, j)O

⌢
(i, j),Ξ

⌢
44 = R

⌢ T
(i, j)P(i, j)R

⌢
(i, j) +

(
ς2

1 + ς2
12

)
R
⌣ T

(i, j)P(i, j)R
⌣
(i, j) − γ1(i, j)Φ(i,j),

Ξ
⌢

45 = R
⌢ T

(i, j)P(i, j)O
⌢
(i, j),Ξ

⌢
55 = O

⌢ T
(i, j)P(i, j)O

⌢
(i, j) +

(
ς2

2 + 2ς2
12

)
O
⌣ T

(i, j)P(i, j)O
⌣
(i, j) − γ2(i, j)Iny ,

δ(i, j) = tr
{
W

T
(
E
⌢ T

(i, j)P(i, j)E
⌢
(i, j)+ ς2

1E
⌣ T

(i, j)P(i, j)E
⌣
(i, j)+ σγ1(i, j)DT(i, j)Φ(i,j)D(i, j)

))
W }+γ2(i, j)υ2.

Additionally, if Ξ
⌢
< 0, we apply the Schur complement lemma for (53), which yields 

J(i, j) ≤ χT(i, j)Ξ̃χ(i, j) − 1
ρV1(i, j) −

∑− 1

θ=− τ
(ιθ(i, j))T

(S2(i, j) − S3(i, j))ιθ(i, j) + δ(i, j), (54)  

where 

Ξ̃ =

[
Ξ̃11 Ξ̃12

∗ Ξ̃22

]

, Ξ̃11 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

S→(i, j) 0 F̃
T

0 0

∗ − S1(i, j) 0 0 0

∗ ∗ − 2I2nx+2nv 0 0

∗ ∗ ∗ − γ1(i, j)Φ(i,j) 0

∗ ∗ ∗ ∗ − γ2(i, j)Iny

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

S→(i, j) = S (i, j) −
(

1 −
1
ρ

)

P(i, j) + σγ1(i, j)C̃
T
(i, j)Φ(i,j)C̃(i, j)

Ξ̃12 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(
A
⌢

1(i, j) + B̃(i, j)M̃
)T

ς1A
⌣ T

1 (i, j) ς12A
⌣ T

1 (i, j) 0 0

Ã
T
2 (i, j) 0 0 0 0

B̃
T
(i, j) 0 0 0 0

R
⌢
(i, j) ς1R

⌣ T
(i, j) 0 ς12R

⌣ T
(i, j) 0

O
⌢ T

(i, j) 0 0 0
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(ς2
2 + 2ς2

12

)√

O
⌣ T

(i, j)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Ξ̃22 = I5 ⊗ − P− 1(i, j).

Furthermore, it follows from (36) that 

Vh
2 (i, j) =

∑− 1

θ=− τh(i,j)

(
ιh(i + θ, j)

)T Sh
1(i, j)(ι(i+ θ, j)

)

≤
∑− 1

θ=− τ

(
ιh(i + θ, j)

)T Sh
1(i, j)(ι(i+ θ, j)

)

, (55)  

Vh
3 (i, j) =

∑− τ

θ=1− τ

∑− 1

s=θ

(
ιh(i + s, j)

)T Sh
1(i, j)(ιh(i + s, j)) ≤

∑− 1

θ=− τ

∑− 1

s=θ

(
ιh(i + s, j)

)T Sh
1(i, j)ιh(i + s, j)

≤ τ
∑− 1

s=− τ

(
ιh(i + s, j)

)T Sh
1(i, j)ιh(i + s, j),

(56)  

Vh
4 (i, j) =

∑− 1

θ=− τ

∑− 1

s=θ

(
ιh(i + s, j)

)T Sh
2(i, j)

(
ιh(i + s, j)

)
−
∑− 1

θ=− τ

∑− 1

s=θ

(
ιh(i + s, j)

)T Sh
3(i, j)

(
ιh(i + s, j)

)

=
∑− 1

θ=− τ

∑− 1

s=θ

(
ιh(i + s, j)

)T ( Sh
2(i, j) − Sh

3(i, j)
)
ιh(i + s, j) +

∑− τ− 1

θ=− τ

∑− 1

s=θ

(
ιh(i + s, j)

)T Sh
3(i, j)ι(i + s, j)

≤ τ
∑− 1

s=− τ

(
ιh(i + s, j)

)T ( Sh
2(i, j) − Sh

3(i, j)
)
ιh(i + s, j) +

(
τ − τ

)∑− 1

s=− τ

(
ιh(i + s, j)

)T Sh
3(i, j)ιh(i + s, j)

=
∑− 1

s=− τ

(
ιh(i + s, j)

)T
(

τSh
2(i, j) − τSh

3(i, j)
)

ιh(i + s, j),

(57)  

Vv
2(i, j) =

∑− 1

θ=− τv(i,j)

(ιv(i, j + θ))T Sv
1(i, j)(ιv(i, j+ θ)

)

≤
∑− 1

θ=− τ
(ιv(i, j + θ))T Sv

1(i, j)(ιv(i, j+ θ)

)

, (58) 
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Vv
3(i, j) =

∑− τ

θ=1− τ

∑− 1

s=θ
(ιv(i, j + s))T Sv

1(i, j)ιv(i, j + s) ≤
∑− 1

θ=− τ

∑− 1

s=θ
(ιv(i, j + s))T Sv

1(i, j)ιv(i, j + s)

≤ τ
∑− 1

s=− τ
(ιv(i, j + s))T Sv

1(i, j)ιv(i, j + s),

(59)  

Vv
4(i, j) =

∑− 1

θ=− τ

∑− 1

s=θ
(ιv(i, j + s))T Sv

2(i, j)ιv(i, j+ s) −
∑− 1

θ=− τ

∑− 1

s=θ
(ιv(i, j + s))T Sv

3(i, j)ιv(i, j+ s)

Vv
4(i, j) =

∑− 1

θ=− τ

∑− 1

s=θ
(ιv(i, j + s))T Sv

2(i, j)ιv(i, j + s) −
∑− 1

θ=− τ

∑− 1

s=θ
(ιv(i, j + s))T Sv

3(i, j)ιv(i, j + s)

=
∑− 1

θ=− τ

∑− 1

s=θ
(ιv(i, j + s))T ( Sv

2(i, j) − Sv
3(i, j)

)
ιv(i, j + s) +

∑− τ− 1

θ=− τ

∑− 1

s=θ
(ιv(i, j + s))T Sv

3(i, j)ιv(i, j + s)

≤ τ
∑− 1

s=− τ
(ιv(i, j + s))T ( Sv

2(i, j) − Sv
3(i, j)

)
ιv(i, j + s) +

(
τ − τ

)∑− 1

s=− τ
(ιv(i, j + s))T Sv

3(i, j)ιv(i, j + s)

=
∑− 1

s=− τ
(ιv(i, j + s))T

(
τSv

2(i, j) − τSv
3(i, j)

)
ιv(i, j + s).

(60) 

Therefore, by considering (36.a) and (55)-(60) comprehensively, it can be further deduced that 

1
ρ V(i, j) ≤

1
ρ

{(
ιh(i, j)

)T Ph(i, j)ιh(i, j) + (ιv(i, j))T Pv(i, j)ιv(i, j)

+
∑− 1

s=− τ

(
ιh(i + s, j)

)T
(
(1 + τ)Sh

1(i, j) + τSh
2(i, j) − τSh

3(i, j)
)

ιh(i + s, j)

+
∑− 1

s=− τ
(ιv(i, j + s))T

(
(1 + τ)Sv

1(i, j) + τSv
2(i, j) − τSv

3(i, j)
)

ιv(i, j + s)

}

=
1
ρ

{

ιT(i, j)P(i, j)ι(i, j) +
∑− 1

θ=− τ
(ιθ(i, j))T S̃(i, j)ιθ(i, j)

}

,

(61)  

where S̃(i, j) = (1 + τ)S1(i, j)+ τS2(i, j) − τS3(i, j). Then, we combine (16), (54) with (61), which implies 

ΔV(i, j) ≤ χT(i, j)Ξ̃χ(i, j) −
1
ρV1(i, j) −

∑− 1

θ=− τ
(ιθ(i, j))T

(S2(i, j) − S3(i, j))ιθ(i, j) + δ(i, j)

≤ χT(i, j)Ξ̃χ(i, j) − 1
ρV1(i, j) −

1
ρ
∑− 1

θ=− τ
(ιθ(i, j))T S̃ιθ(i, j) + δ(i, j)

≤ χT(i, j)Ξ̃χ(i, j) − 1
ρ V(i, j) + δ(i, j) ≤ −

1
ρ V(i, j) + δ(i, j).

(62) 

Subsequently, for arbitrary positive scalar b > 1, it is obtained from (62) that 

E
{

bk+1V+(i, j)|∂(i, j)
}
− E

{
bk(V(i, j)|∂(i, j)

}
= E

{
bk+1(V+(i, j) − V(i, j))|∂(i, j)

}
+ bk(b − 1)E{V(i, j)|∂(i, j)}

= bk+1E{ΔV(i, j)|∂(i, j)} + bk(b − 1)E{V(i, j)|∂(i, j)}

≤ −
1
ρbk+1V(i, j) + bk+1δ(i, j) + bk(b − 1)E{V(i, j)|∂(i, j)}

= bk
(

b −
1
ρ b − 1

)

E{V(i, j)|∂(i, j)} + bk+1δ(i, j).

(63) 

Define 0 < ϱ = 1 − 1
ρ = 1

b < 1, then it follows from (63) that 

E{V+(i, j)|∂(i, j)} ≤
1
b

E{(V(i, j)|∂(i, j)} + δ(i, j). (64) 

From (34c) and (62), one has 

E
{

Vh(i+ 1, j)+Vv(i, j+ 1)
⃒
⃒∂(i, j)

}
≤ δ(i, j) +

1
b

E
{

Vh(i, j)+Vv(i, j)
⃒
⃒∂(i, j)

}
. (65) 
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According to initial boundary constraints (2), it implies Vh(0,K) = 0 and Vv(K,0) = 0 (Kis a positive integer that is larger enough, 
and K > max{t1, t2}). Summing up both sides of (65) with respect to both i and j from 0 toK, we can obtain 

E

{
∑

i+j=K
V(i, j)

}

= E
{

Vh(0,K) + Vh(1,K − 1) + Vh(2,K − 2) + ...+ Vh(K − 1, 1) + Vh(K, 0)

+Vv(0,K) + Vv(1,K − 1) + Vv(2,K − 2) + ...+ Vv(K − 1, 1) + Vv(K, 0)}

≤
1
b

E
{

Vh(0,K − 1) + Vh(1,K − 2) + Vh(2,K − 3) + ...+ Vh(K − 2, 1) + Vh(K − 1, 0)

+Vv(0,K − 1) + Vv(1,K − 2) + Vv(2,K − 3) + ...+ Vv(K − 2, 1) + Vv(K − 1, 0))} + δ(i, j)

=
1
b
∑

i+j=K− 1
V(i, j) + δ(i, j) = ϱK− S

∑

i+j=S
V(i, j) +

1 − ϱK− S

1 − ϱ
δ(i, j).

(66) 

From (36a), it is straightforward to obtain the following inequality: 

ς1E
{
‖ ι(i, j) ‖2} ≤ E{V(i, j)} ≤ ς2‖ ι(i, j) ‖2

M , (67)  

where 

ς1 = λmin(P(i, j)),

ς2 = λmax(P(i, j)) + τλmax(S1(i, j)) +
1
2

(
τ − τ

)(
τ + τ + 1

)
λmax(S1(i, j)) +

1
2
τ(τ + 1)λmax(S2(i, j)) −

1
2

τ
(

τ + 1
)

λmax(S3(i, j)).

Inequality (67) implies that E

{
∑

i+j=K
‖ ι(i, j) ‖2

}

≤ 1
ς1

E

{
∑

i+j=K
V(i, j)

}

and ς2
∑

i+j=S
‖ ι(i, j) ‖2

M ≥ E

{
∑

i+j=S
V(i, j)

}

, then, together with (66) 

and (67), we know that 

E

{
∑

i+j=K
‖ ι(i, j) ‖2

}

≤
1
ς1

E

{
∑

i+j=K
V(i, j)

}

≤
ς2

ς1
ϱK− S

∑

i+j=S
‖ ι(i, j) ‖2

M +
1 − ϱK− S

ς1(1 − ϱ)
δ(i, j).

According to Definition 1, it is clear that the dynamic filtering error systems (13) is exponentially ultimately bounded in mean- 
square sense with asymptotic upper bound δ(i,j)

ς1(1− ϱ). The proof is thus completed. 

Appendix B. The Proof of Theorem 2 

Proof. It is worth noting that (14) contains nonlinear term P− 1(i, j), so it is necessary to process some variables and convert (14) into 
the linear matrix inequalities. For a positive definite symmetric matrix P(i, j), consider the following permanent relationship: 

P− 1(i, j)+ P(i, j) − 2I2nh+2nv = (I2nh+2nv − P(i, j))P− 1(i, j)(I2nh+2nv − P(i, j))T ≥ 0. 
Then, based on P− 1(i, j) − 2I2nh+2nv ≥ − P(i, j) and ΩTΩ = ΩΩT = I2nh+2nv (Ω is an orthogonal matrix), we utilize the matrix diag{I2 ⊗

Ω, I2nx+2nv , Iny , Iny , I5 ⊗ Ω} to perform the congruent transformation on (14), and define P− 1(i,j) = ΩTP(i,j)Ω, S1(i,j) = ΩS1(i,j)ΩT , S2(i,j)
= ΩS2(i, j)ΩT, S3(i, j) = ΩS3(i, j)ΩT , which yields 

Θ =

[
Θ11 Θ12

∗ Θ22

]

≤ 0, (68)  

where Θ11 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Θ1
11 0 M̂

T
Ω 0 0

∗ − S1(i, j) 0 0 0
∗ ∗ − 2I2nx+2nv 0 0
∗ ∗ ∗ − γ1(i, j)Φ(i,j) 0
∗ ∗ ∗ ∗ − γ2(i, j)Iny

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, 

Θ1
11 =

(
1 + τ − τ

)
S1(i, j) +

(
τS2(i, j) − τS3(i, j)

)
+ σγ1(i, j)ΩC̃

T
(i, j)Φ(i,j)C̃(i, j)ΩT

+

(

1 −
1
ρ

)

P(i, j) − 2
(

1 −
1
ρ

)

I2nh+2nv ,
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Θ12 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A
⌢T

1 (i, j) + MT BT
(i, j) ς1A

⌣T

1 (i, j) ς12A
⌣T

1 (i, j) 0 0

AT
2 (i, j) 0 0 0 0

ΩT BT
(i, j) 0 0 0 0

R
⌢
(i, j)ΩT ς1R

⌣ T
(i, j)ΩT 0 ς12R

⌣ T
(i, j)ΩT 0

O
⌢ T

(i, j)ΩT 0 0 0
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(ς2
2 + 2ς2

12

)√

O
⌣ T

(i, j)ΩT

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

Θ22 = I5 ⊗ − P(i, j).

Subsequently, we correspond to reconstruct the matrix Ω of (12) in the following form: 

Ω =

[
Inh Inv

Ĩnh Ĩnv

]

,

where Inh =

[
Inh 0
0 0

]

, ̃Inh =

[
0 Inh

0 0

]

, Inv =

[
0 0
Inv 0

]

, ̃Inv =

[
0 0
0 Inv

]

. Then, it is easy to obtain that 

S1(i, j) =

[
Inh Sh

1(i, j)Inh + Inv Sv
1(i, j)Inv Inh Sh

1(i, j)̃Inh + Inv S
v
1(i, j)̃Inv

∗ Ĩnh Sh
1(i, j)̃Inh + Ĩnv S

v
1(i, j)̃Inv

]

, (69a)  

S2(i, j) =

[
Inh Sh

2(i, j)Inh + Inv Sv
2(i, j)Inv Inh Sh

2(i, j)̃Inh + Inv S
v
2(i, j)̃Inv

∗ Ĩnh Sh
2(i, j)̃Inh + Ĩnv S

v
2(i, j)̃Inv

]

, (69b)  

S3(i, j) =

[
Inh Sh

3(i, j)Inh + Inv Sv
3(i, j)Inv Inh Sh

3(i, j)̃Inh + Inv S
v
3(i, j)̃Inv

∗ Ĩnh Sh
3(i, j)̃Inh + Ĩnv S

v
3(i, j)̃Inv

]

. (69c) 

Moreover, taking (20) into consideration, one has 

δ(i, j) = tr
{

W
T
(
E
⌢ T

(i, j)P(i, j)E
⌢
(i, j) + ς2

1E
⌣ T

(i, j)P(i, j)E
⌣
(i, j) + σγ1(i, j)DT(i, j)Φ(i,j)D(i, j)

)
W

}
+ γ2(i, j)υ2

= tr
{

W
T
(
E
⌢ T

(i, j)ΩT P− 1
(i, j)ΩE

⌢
(i, j) + ς2

1E
⌣ T

(i, j)ΩT P− 1
(i, j)ΩE

⌣
(i, j) + σγ1(i, j)D̃

T
(i, j)Φ(i,j)D̃(i, j)

)
W

}
+ γ2(i, j)υ2

≤ tr
{
W

T
(
E
⌢ T

(i, j)Q(i, j)E
⌢
(i, j) + ς2

1E
⌣ T

(i, j)Q(i, j)E
⌣
(i, j) + σγ1(i, j)D̃

T
(i, j)Φ(i,j)D̃(i, j)

)
W

}
+ γ2(i, j)υ2 = δ̂(i, j).

(70) 

Obviously, it can be derived from (66) and (21) that 
∑

i+j=K
‖Z̃ (i, j)‖2 =

∑

i+j=K
ιT(i, j)H̃

T
(i, j)H̃(i, j)ι(i, j) ≤

∑

i+j=K
ιT(i, j)

(
2I2nh+2nv − ΩT P(i, j)Ω

)
ι(i, j)

≤
∑

i+j=K
ιT(i, j)P(i, j)ι(i, j) =

∑

i+j=K
E{V1(i, j)} ≤ ϱK− S

∑

i+j=S
V(i, j) +

1 − ϱK− S

1 − ϱ
δ̂(i, j).

(71) 

Subsequently, by combining (68)-(71), it is easy to see that the nonlinear term of (14) is eliminated, and an upper bound δ̂(i,j)
1− ϱ of the 

controlled output error 
∑

i+j=K
‖ Z̃ (i, j)‖2 is derived. Consequently, the desired filtering gains can be obtained by minimizing δ̂(i, j). The 

proof is thus completed. 
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Abstract

The problem of recursive set-membership filter design for two-dimensional

(2-D) systems subject to FlexRay communication protocol and hybrid cyber

attacks (HCAs) is investigated in this article. The FlexRay protocol that inte-

grates time-triggered and event-triggered mechanisms and involves a series of

pre-defined communication cycles based on bidirectional metrics is developed

to alleviate the network bandwidth load. Furthermore, the envisioned system

is exposed to false data injection and denial-of-service attacks that occur in a

randomized manner. Subsequently, the dynamic filtering error system (FES)

subject to bidirectional evolutionary HCAs and FlexRay scheduling protocol is

constructed. Then, sufficient conditions are obtained such that the dynamic

FES consistently resides within an ellipsoidal set by utilizing double mathe-

matical induction and recursive linear matrix inequalities (RLMIs). Moreover,

the optimal filtering algorithm is given by minimizing the ellipsoidal con-

straints from the perspective of the traces of the matrix. The effectiveness of

the presented recursive set-membership filter design approach is validated by a

long-distance transmission line example.

KEYWORD S

FlexRay communication protocol, hybrid cyber attacks, set-membership filtering, two-
dimensional systems, unknown-but-bounded noises

1 | INTRODUCTION

Recently, two-dimensional (2-D) systems have been
found in many real-world systems, such as seismographic
data processing, thermal processes, gas absorption, and
water stream heating [1–4]. The Roesser model [5], the
Fornasini and Marchesini (FM) model [6, 7], and
the Kurek model [8] are widely employed 2-D state space
models. With the integration of network technology and
control science, networked systems have arisen. It is an
uncontroversial fact that the introduction of shared

networks enables traditional control systems to be more
energetic, but the dynamic evolutionary behavior of these
systems becomes increasingly sophisticated. Under this
background, the networked 2-D systems have been inves-
tigated owing to their great theoretical value and real-
world significance [9–14].

It is worth noting that an implicit assumption in
many underlying investigations of the stability analysis
and control synthesis for 2-D systems is that the shared
communication network has adequate communication
resources, that is, all sensors can simultaneously transmit
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measurement information to the filter through the com-
munication network during each sampling shift instant.
Nevertheless, it is quite unrealistic to implement such a
communication scheme, as simultaneous multiple access
to a limited-bandwidth network will inevitably result in
data collisions. The bidirectional evolutionary behavior
of 2-D systems is more susceptible to network congestion
due to data redundancy than that of one-dimensional
(1-D) systems. In such a circumstance, as one of the most
effective means to deal with data conflict problems, com-
munication scheduling protocols are widely employed in
various types of industry control practices due to their
ability to orchestrate the order of data transmission. Sev-
eral prevailing communication protocols have been con-
tinuously advanced and optimized up to now, that is, the
Try-Once-Discard protocol (TODP) [15, 16], the Round-
Robin protocol (RRP) [17, 18], the stochastic communica-
tion protocol (SCP) [19, 20], and the FlexRay protocol
(FRP) [21, 22]. Among these protocols, the SCP and RRP
belong to the category of time-triggered scheduling
schemes; the TODP is categorized as an event-triggered
scheme; and the FRP is a hybrid communication protocol
that simultaneously involves time-triggered and event-
triggered rules. Due to the predetermined fixed time-
triggered and event-triggered periods for scheduling
high-real-time and high-priority data, the FRP provides
greater flexibility and reliability in the communication
network than the previous three protocols. Currently,
considering the actual control practice in which the sig-
nal transmission of networked systems can be implemen-
ted via multiple communication networks with different
communication protocols (hybrid communication proto-
cols) [23] and the prospect of remarkable industrial appli-
cations (notably providing fault-tolerant communications
capabilities for safety-critical mechanical and electrical
systems) of FRP [24], academics have conducted prelimi-
nary discussions on the analysis and synthesis of net-
worked systems equipped with FRP [25–27]. It is worth
noting that the results obtained in the aforementioned lit-
erature are all based on the 1-D systems as a baseline.
The design of high-performance scheduling protocols is
increasingly necessary for 2-D systems with greater com-
putational and transmission burdens. Very few research
related to 2-D systems under the impact of FRP have
been reported. A potential challenge may lie in defining
static and dynamic time sequences based on bidirectional
indices and designing transmission rules for the rational
scheduling of measurement output. However, the current
FRP strategies proposed are no longer applicable to 2-D
systems, and the development of FRP for 2-D systems is
the primary motivation for our current investigation.

Due to the openness of communication networks,
several types of common cyber attacks have been

emphasized by scholars, including but not limited to
denial-of-service (DoS) attacks [28], false data injection
(FDI) attacks [29, 30], and replay attacks [31]. The
authors of [28] are concerned with the output consensus
problem for a class of nonlinear multiagent systems
where DoS attacks occur in the communication channel.
The security issue against FDI attacks in the identifica-
tion of finite impulse response systems with binary-
valued observations is investigated in [29]. The FDI
attacks detection problem for a class of continuous-time
switched systems is discussed in [30], assuming a mali-
cious attacker tampers with the binary 01 code transmit-
ted through the network to compromise the systems. The
literature [31] discusses the resilient distributed control
scheme against replay attacks for multi-agent networked
systems subject to input and state constraints. All of the
above literature considers communication networks sub-
ject to only one type of attack. More importantly, the
hybrid cyber attacks (HCAs) model is more threatening
than the single attacks to be favored by the adversaries,
and the security issues of systems in this context have
been continuously researched [32–34]. Unfortunately,
there are very few results regarding the security of 2-D
systems with the occurrence of HCAs. Considering the
mixed properties of data information actively discarded
by protocol scheduling as well as passively discarded data
information by HCAs render the evolutionary behavior
of 2-D systems more complicated, reducing the burden
on the systems while ensuring their security is another
motivation for our current research.

The filtering problem has hitherto been a trending
research topic. The Kalman filtering [35, 36], the H∞ fil-
tering [37, 38], and the set-membership filtering [39, 40]
have been extensively investigated depending on differ-
ent systems noise characteristics as well as performance
demands. The set-membership filtering approach has two
main advantages over other filtering techniques: (1) it
depends upon a strict bound limitation instead of the pre-
cise statistical property of the system noises; and (2) it
can produce a set of ellipsoidal sets that contain all possi-
ble error and state vectors with 100% confidence. In the
last few years, the set-membership filtering issue for 1-D
systems has been widely investigated; see, for example,
[41–43]. From a practical engineering perspective, due to
the external environment and the systems' inherent limi-
tations, it is common to only obtain information regard-
ing the bounds of noise. As set-membership filtering
techniques excel in 1-D systems, the extension of existing
set-membership filtering methods to 2-D systems has gar-
nered significant research attention, as documented in
references [44–46]. To name a few, the authors of [44]
are concerned with the set-membership filtering problem
for 2-D systems under RRP and sensor saturation. The
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set-membership filtering problem for 2-D systems under
the dynamic event-triggered mechanism has been investi-
gated, examining the impact of the triggered frequency
on the filter performance in the 2-D setting [45]. The
issue of non-fragile set-membership filtering for 2-D sys-
tems with TODP and uniform quantization is investi-
gated in [46]. Although the aforementioned literature has
discussed the problem of set-membership filtering for 2-D
systems with communication scheduling strategies, the
results obtained are still fragmented. In particular, most
of the literature is based on a single communication pro-
tocol scenario. Therefore, developing set-membership fil-
tering algorithms for 2-D systems based on hybrid
communication protocols is worthy of in-depth study.

Inspired by the aforementioned discussions, in sum-
mary, we are committed to addressing the recursive set-
membership filtering problem for 2-D systems under FRP
and HCAs, and the identified challenges are as follows:
(1) How to define FRP based on bidirectional evolution-
ary metrics that integrate time-triggered and event-
triggered mechanisms within a communication cycle.
(2) How to characterize the synergistic effects of FRP and
HCAs on measurement outputs and design an appropri-
ate filter structure. (3) How to develop set-membership
filtering algorithms that incorporate protocol constraints,
attack energies, unknown but bounded noises, and possi-
bly state vectors simultaneously into given ellipsoidal set
constraints. By addressing the above challenges, the inno-
vations of this paper can be summarized as follows:
(1) The FRP scheduling and HCAs that involve bidirec-
tional evolutionary indexes are established, respectively,
and a descriptive model of 2-D systems subject to FRP
and HCAs is developed. (2) Building on the results of (1),
a recursive set-membership filter structure is proposed
under the constraints of FRP and HCAs. Furthermore,
the filtering error system (FES) subject to scheduling
parameters and attack parameters is developed. (3) The
sufficient conditions for the existence of explicit filter
gains are transformed into an ellipsoidal set optimization
problem using the principle of double induction and the
technique of recursive linear matrix inequalities (RLMIs),
which is simple and suitable for online operation.

The rest of this paper is organized as follows: In
Section 2, the FRP and HCAs models based on
bidirectional evolutionary are proposed. In Section 3, a
set-membership filtering structure is proposed for 2-D
systems with the impacts of FRP and HCAs. Section 4
uses a practical example to illustrate the effectiveness of
the proposed filter algorithm. Finally, Section 5 con-
cludes with a discussion of future research directions.

Notation: The notation used throughout the paper is
fairly standard. Rn denotes the n-dimensional Euclidean
space and P>0 means that it is real symmetric and

positive definite. GT and G�1 represent the transpose and
the inverse of the matrix G, respectively. diag ρ1, � � �,ρnf g
stands for block diagonal matrix. Ak k refers to the norm
of a matrix A defined by Ak k¼

ffiffiffiffiffiffiffiffiffi
ATA

p
. ℕ denotes the set

of natural numbers. The n-dimensional identity matrix is
denoted by In.

2 | PROBLEM DESCRIPTION AND
PRELIMINARIES

As shown in Figure 1, consider the 2-D shift-varying sys-
tem [12] in a finite horizon Q≜ i, j� 0,κ½ �f g as follows:

x iþ1, jþ1ð Þ ¼A1 iþ1, jð Þx iþ1, jð ÞþA2 i, jþ1ð Þx i, jþ1ð ÞþB1 iþ1, jð Þω iþ1, jð Þ
þB2 i, jþ1ð Þω i, jþ1ð ÞþF1 iþ1, jð Þf x iþ1, jð Þð ÞþF2 i, jþ1ð Þf x i, jþ1ð Þð Þ

y i, jð Þ¼C i, jð Þx i, jð ÞþD i, jð Þυ i, jð Þ

8><>: ,

ð1Þ

where x i, jð Þ�Rnx represents the system state vector.
y i, jð Þ�Rny is the measurement output.ω i, jð Þ�Rnω and
υ i, jð Þ�Rnυ denote the unknown-but-bounded process
and measurement noises, respectively. A1 i, jð Þ, A2 i, jð Þ,
B1 i, jð Þ, B2 i, jð Þ, C i, jð Þ, D i, jð Þ,F1 i, jð Þ, and F2 i, jð Þ are known
time-varying matrices with appropriate dimensions. The
indicators i and j represent generalized time variables,
which can be time itself or variables with time-varying
characteristics. The initial conditions x i,0ð Þ and x 0, jð Þ
meet the following probability distribution and are inde-
pendent of the other variables

FIGURE 1 Set-membership filtering problem for two-

dimensional (2-D) systems.
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E x i,0ð Þf g¼ μ1 ið Þ,E x 0, jð Þf g¼ μ2 jð Þ,

where μ1 ið Þ and μ2 jð Þ are known vectors with
μ1 0ð Þ¼ μ2 0ð Þ. f x i, jð Þð Þ is a nonlinear function associated
with a state vector that satisfies sector-bounded condi-
tions as follows:

f 0ð Þ¼ 0, f ζ1 i, jð Þð Þ� f ζ2 i, jð Þð Þ
h

�G1 i, jð Þ ζ1 i, jð Þ� ζ2 i, jð Þð Þ
iT

f ζ1 i, jð Þð Þ� f ζ2 i, jð Þð Þ
h

�G2 i, jð Þ ζ1 i, jð Þ� ζ2 i, jð Þð Þ
i
≤ 0,

ð2Þ

where ζ1 i, jð Þ and ζ2 i, jð Þ are arbitrary vectors belonging
to Rnx , G1 i, jð Þ, and G2 i, jð Þ are known matrices with
proper dimensions.

Assumption 1. The unknown-but-bounded
noises are restricted to the following set
ranges of ellipsoids:

W i, jð Þ≜ ω i, jð Þ :ωT i, jð ÞS�1 i, jð Þω i, jð Þ≤ 1
� �

V i, jð Þ≜ υ i, jð Þ : υT i, jð ÞR�1 i, jð Þυ i, jð Þ≤ 1
� �(

,

where S i, jð Þ>0 and R i, jð Þ>0 are time-
varying matrices with appropriate
dimensions.

2.1 | FlexRay protocol

Next, the model of 2-D systems under the FRP and HCAs
will be introduced. The measured outputs of sensors are
first scheduled by the FRP network. Generally speaking,
the dynamic behavior of 2-D systems evolves in both ver-
tical and horizontal evolutionary directions, which sub-
stantiates that 2-D systems are more susceptible to
network traffic jams due to data redundancy. Therefore,

certain network protocols are required to be employed to
protect the data transmission between sensors and filter
from potential data conflicts. In what follows, we will
introduce the scheduling of FRP. FRP is a type of hybrid
communication protocol that integrates time-triggered
and event-triggered mechanisms and involves a series of
pre-defined communication cycles, which are structurally
characterized as shown in Figure 2. Each of the commu-
nication cycles consists of a static segment, a dynamic
segment, a symbol window, and a network ideal time, as
well as the corresponding time lengths are defined as T1,
T2, T3, and T4. In summary, static segments depend on
Time Division Multiple Access methods to arrange net-
work resources through static communication protocol
(e.g., RRP). Dynamic segments utilize a Flexible Time
Division Multiple Access technique that utilizes a
dynamic communication protocol (e.g., TODP) to select
sensor or controller nodes online to transmit information.
The symbol window refers to the time required for the
communication network to manage the transmitted data.
The network idle time is the time required for the clock
to be synchronized, and the communication network will
not transmit data during this period. It should be empha-
sized that the lengths of the symbol window and network
idle time are almost negligible compared to the static and
dynamic segments, that is, T3 ¼ 0, T4 ¼ 0. Considering
that the 2-D system has ny sensor nodes, for the purpose
of the subsequent description, we assume that the time
lengths of the static segment and dynamic segment in
each communication cycle are T1 ¼ l1 ≤ny�2, l1 �ℕð Þ,
and T2 ¼ l2 with l1þ l2 ≤ny l2 �ℕð Þ, respectively.

Without loss of generality, the time interval of a static
segment can be summarized in the following sequence:

Ψ≜ i, jð Þ jmod iκþ j, l1þ l2ð Þ< l1, i, j�Qf g,

then, the time interval of the dynamic segment can be
expressed as ℘≜QnΨ. Furthermore, we assign the ny
sensor nodes to sets ι1 ¼ 1,2,…, l1f g and
ι2 ¼ l1þ1, l1þ2,…,ny

� �
. It is assumed that the nodes in

set ι1 ¼ 1,2,…, l1f g belong to the RRP scheduling and

FIGURE 2 Structure diagram of

FlexRay protocol for two-

dimensional (2-D) systems.
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the nodes in set ι2 ¼ l1þ1, l1þ2,…,ny
� �

belong to
the TODP scheduling. In addition, let y i, jð Þ¼
yT1 i, jð Þ yT2 i, jð Þ � � � yTny i, jð Þ
h iT

indicates the measurement
output orchestrated by the FRP. Based on the above-
mentioned features of the FRP, assuming that sensor
nodes are authorized to obtain network access under the
RRP and TODP, they are defined as ο i, jð Þ and π i, jð Þ at
each shift instant i, jð Þ, respectively, and a bidirectional
sequence associated with the TODP-triggered mechanism
is defined as:

i, jð Þ< ei,ej� �
, i, jð Þ j i¼ei, j<ejn o

[ i, jð Þ j i<ei, j¼ejn o
, i1, j1ð Þ

¼ i2, j2ð Þ, i¼ i2 and j¼ j2,

then, the specific selection rules are as follows:

1. RRP:

ο i, jð Þ¼ mod iκþ j�1, l1ð Þþ1 i, jð Þ�Ψ
0 i, jð Þ�℘

�
,

where ο i, jð Þ� ι1 represents which sensor is selected to
communicate with the filter under the RRP at each shift
instant i, jð Þ. Then, the measurement output ym1

i, jð Þ of
the m1-th 1≤m1 ≤ l1ð Þ sensor scheduled by RRP, which
is received by the filter with a zero-order, can be
expressed as:

ym1
i, jð Þ¼

ym1
i, jð Þ m1 ¼ ο i, jð Þ, i, jð Þ�Ψ

ym1
i, j�1ð Þ m1 ≠ ο i, jð Þ, i, jð Þ�Ψ

0 i, jð Þ�℘

8><>: : ð3Þ

2. TODP:

where π i, jð Þ� ι2 indicates which sensor is selected to
communicate with the filter under the TODP at instant
i, jð Þ. y�m2

i, jð Þ l1þ1≤m2 ≤ny
� 	

represents the latest
transmitted measurement signal of node m2 at shift
instant i, jð Þ. Φm2 is the known positive definite matrix.
Similarly, the measurement output ym2

i, jð Þ of the m2-th
l1þ1≤m2 ≤ny
� 	

sensor scheduled by TODP and zero-
order hold strategy can be expressed as:

ym2
i, jð Þ¼

ym2
i, jð Þ m2 ¼ ξ i, jð Þ, i, jð Þ�℘

ym2
i, j�1ð Þ m2 ≠ ξ i, jð Þ, i, jð Þ�℘

0 i, jð Þ�Ψ

8><>: : ð4Þ

To facilitate the subsequent derivation, the first l1
measurement output scheduled through the RRP can be
characterized as:

y 1½ � i, jð Þ¼ yT1 i, jð Þ yT2 i, jð Þ … yTl1 i, jð Þ
 �T
, ð5Þ

then, the scheduling of the remaining ny� l1 measure-
ment output by means of the TODP can be represented
as:

y 2½ � i, jð Þ¼ yTl1þ1 i, jð Þ yTl1þ2 i, jð Þ … yTny i, jð Þ
h iT

: ð6Þ

Moreover, the following augmented and partitioned
matrices are defined:

C 1½ � i, jð Þ¼ CT
1 i, jð Þ CT

2 i, jð Þ … CT
l1 i, jð Þ
 �T

,C 2½ � i, jð Þ
¼ CT

l1þ1 i, jð Þ CT
l1þ2 i, jð Þ … CT

ny i, jð Þ
h iT

,

D 1½ � i, jð Þ¼ DT
1 i, jð Þ DT

2 i, jð Þ … DT
l1 i, jð Þ
 �T

,D 2½ � i, jð Þ
¼ DT

l1þ1 i, jð Þ DT
l1þ2 i, jð Þ … DT

ny i, jð Þ
h iT

,

y i, jð Þ¼ y 1½ � i, jð Þ� 	T
y 2½ � i, jð Þ� 	Th iT

,

then, according to (3)–(6), the y i, jð Þ can be further
presented as:

y i, jð Þ¼G1y
1½ � i, jð ÞþG2y

2½ � i, jð Þ
¼G1 Πο i,jð Þy 1½ � i, jð Þþ I�Πο i,jð Þ

� 	
y 2½ � i, j�1ð Þ

� �
þ G2 Ππ i,jð Þy 1½ � i, jð Þþ I�Ππ i,jð Þ

� 	
y 2½ � i, j�1ð Þ

� �
¼G1 Πο i,jð Þ C 1½ � i, jð Þx i, jð ÞþD 2½ � i, jð Þυ i, jð Þ

� �
þ I�Πο i,jð Þ
� 	

y 1½ � i, j�1ð Þ
� �

þ G2 Ππ i,jð Þ C 2½ � i, jð Þx i, jð ÞþD 2½ � i, jð Þυ i, jð Þ
� �

þ I�Ππ i,jð Þ
� 	

y 2½ � i, j�1ð Þ
� �

,

ð7Þ

π i, jð Þ¼ arg max
m2¼l2þ1,…,ny

ym2
i, jð Þ� y�m2

i, jð Þ
� �T

Φm2 ym2
i, jð Þ� y�m2

i, jð Þ
� �� �

i, jð Þ�℘

0 i, jð Þ�Ψ

8<: ,
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where Πο i,jð Þ ¼ diag1≤m1 ≤ l2 δ ο i, jð Þ�m1ð ÞIf g, Ππ i,jð Þ ¼
diagl2þ1≤m2 ≤ny δ π i, jð Þ�m2ð ÞIf g, and δ �ð Þ� 0,1f g is the
Kronecker delta function.

2.2 | Hybrid cyber-attacks model

First and foremost, FDI attacks are projected to degrade
filtering performance by replacing correct information
with damaging data. The random variable ϑ i, jð Þ� 0,1f g
is employed to denote FDI attacks indicators. ϑ i, jð Þ¼ 1
and ϑ i, jð Þ¼ 0 indicate the FDI attacks successfully distort
regular data by using false data, and the FDI attacks are
unable to tamper with data, respectively. Suppose that
the ϑ i, jð Þ is determined by the Bernoulli stochastic pro-
cess, and the following occurrence probability of ϑ i, jð Þ is
provided:

Pr ϑ i, jð Þ¼ 1f g¼ϑ,Pr ϑ i, jð Þ¼ 0f g¼ 1�ϑ:

Then, the y i, jð Þ affected by FDI attacks can be por-
trayed as:

ey i, jð Þ¼ y i, jð Þþϑ i, jð Þℳ i, jð Þ, ð8Þ

where ℳ i, jð Þ¼ ℳT
1 i, jð Þ ℳT

2 i, jð Þ � � � ℳT
ny i, jð Þ

h iT
defined as attacker-generated false data signals, which
can be produced as follows:

ℳ i, jð Þ¼�y i, jð Þþ v i, jð Þ, ð9Þ

where v i, jð Þ indicates the bounded energy single and
satisfies v i, jð Þk k≤ v.

In what follows, the DoS attacks that disrupt the
normal transmission are discussed, and suppose that the
indicators of DoS attacks are determined by another
random variable ξ i, jð Þ� 0,1f g. Analogously, ξ i, jð Þ¼ 0
and ξ i, jð Þ¼ 1 indicate that DoS attacks arise when mea-
surement output is being transmitted, and DoS attacks do
not occur, respectively. In addition, the following proba-
bility distribution is defined:

Pr ξ i, jð Þ¼ 1f g¼ ξ,Pr ξ i, jð Þ¼ 0f g¼ 1� ξ:

Consequently, considering (7)–(9), the latest
measurement output received by the filter can be
expressed as:

y
!

i, jð Þ¼ ξ i, jð Þy i, jð Þþξ i, jð Þϑ i, jð Þ �y i, jð Þþ v i, jð Þð Þ
¼ ξ i, jð Þy i, jð Þ� ξ i, jð Þϑ i, jð Þy i, jð Þþ ξ i, jð Þϑ i, jð Þv i, jð Þ
¼ ξ i, jð Þ 1�ϑ i, jð Þð Þy i, jð Þþξ i, jð Þϑ i, jð Þv i, jð Þ,

ð10Þ

where ϖ1 i, jð Þ¼ ξ i, jð Þ 1�ϑ i, jð Þð Þ, ϖ2 i, jð Þ¼ ξ i, jð Þϑ i, jð Þ.

2.3 | Problem formulation

In this paper, the recursive set-membership filtering
problem will be addressed for the 2-D system under FRP
and HCAs. Substituting (7) into (1) and defining the
following augmented matrix

η i, jð Þ¼ xT i, jð Þ y 1½ � i, j�1ð Þ� 	T
y 2½ � i, j�1ð Þ� 	Th i

,

then, the 2-D system with FRP and HCAs can be
reformulated as follows:

η iþ1, jþ1ð Þ¼A1 iþ1, jð Þη iþ1, jð Þ
þA2 i, jþ1ð Þη i, jþ1ð ÞþB1 iþ1, jð Þω iþ1, jð Þ
þB2 i, jþ1ð Þω i, jþ1ð ÞþF1 iþ1, jð Þf Pη iþ1, jð Þð Þ
þF2 i, jþ1ð Þf Pη i, jþ1ð Þð Þ

y
!

i, jð Þ¼C i, jð Þη i, jð ÞþD i, jð Þυ i, jð Þþϖ2 i, jð Þv i, jð Þ

8>>>>>><>>>>>>:
,

ð11Þ

where

A1 iþ1, jð Þ¼
A1 iþ1, jð Þ 0 0

Πο i,jð ÞC 1½ � i, jð Þ I�Πο i,jð Þ 0

Ππ i,jð ÞC 2½ � i, jð Þ 0 I�Ππ i,jð Þ

2664
3775,

A2 i, jþ1ð Þ¼
A2 i, jþ1ð Þ 0 0

0 0 0

0 0 0

2664
3775,B1 iþ1, jð Þ ¼

B1 iþ1, jð Þ
Πο i,jð ÞD 1½ � i, jð Þ
Ππ i,jð ÞD 2½ � i, jð Þ

2664
3775

B2 i, jþ1ð Þ¼
B2 i, jþ1ð Þ

0

0

2664
3775,F1 iþ1, jð Þ¼

F1 iþ1, jð Þ 0 0

0 0 0

0 0 0

2664
3775,

F2 i, jþ1ð Þ¼
F2 i, jþ1ð Þ 0 0

0 0 0

0 0 0

2664
3775, f Pη iþ1, jð Þð Þ¼

f Pη iþ1, jð Þð Þ
0

0

2664
3775,

f Pη i, jþ1ð Þð Þ¼
f Pη i, jþ1ð Þð Þ

0

0

2664
3775,

C i, jð Þ¼ ½ϖ1 i, jð ÞG1Πο i,jð ÞC 1½ � i, jð Þþϖ1 i, jð ÞG2Ππ i,jð ÞC 2½ � i, jð Þ
�ϖ1 i, jð ÞG1 I�Πο i,jð Þ

� 	
ϖ1 i, jð ÞG2 I�Ππ i,jð Þ

� 	�
D i, jð Þ¼ϖ1 i, jð ÞG1D

1½ � i, jð Þþϖ1 i, jð ÞG2D
2½ � i, jð Þ,P¼ Inx 0 0½ �:
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Based on the 2-D system (11), the following recursive
form of filter structure is proposed:

bη� iþ1, jþ1ð Þ¼A1 iþ1, jð Þbη iþ1, jð ÞþA2 i, jþ1ð Þbη i, jþ1ð Þ
þF1 iþ1, jð Þf Pbη iþ1, jð Þð Þ
þF2 i, jþ1ð Þf Pbη i, jþ1ð Þð Þ,

ð12Þ

bη iþ1, jþ1ð Þ¼bη� iþ1, jþ1ð ÞþK iþ1, jþ1ð Þ
y
!

iþ1, jþ1ð Þ�C iþ1, jþ1ð Þbη� iþ1, jþ1ð Þ
� �

,

ð13Þ

where bη iþ1, jþ1ð Þ�Rnxþny is the estimate of
η iþ1, jþ1ð Þ, K iþ1, jþ1ð Þ is the time-varying filter gain.
The initial conditions of bη i, jð Þ are given as bη i,0ð Þ¼ 0 andbη 0, jð Þ¼ 0 for i, j� 0,κ½ �.

Define the filtering error as e i, jð Þ¼ η i, jð Þ�bη i, jð Þ,
then, combining (11)–(13), the dynamic FES can be
derived as:

e iþ1, jþ1ð Þ¼ eA1 iþ1, jð Þe iþ1, jð Þþ eA2 i, jþ1ð Þe i, jþ1ð Þ
þeF1 iþ1, jð Þef Pe iþ1, jð Þð Þ
þeF2 i, jþ1ð Þef Pe i, jþ1ð Þð Þ
þeB1 iþ1, jð Þω iþ1, jð ÞþeB2 i, jþ1ð Þω i, jþ1ð Þ
�K iþ1, jþ1ð ÞD iþ1, jþ1ð Þυ iþ1, jþ1ð Þ
�K iþ1, jþ1ð Þϖ2 iþ1, jþ1ð Þv iþ1, jþ1ð Þ,

ð14Þ

where

eA1 iþ1, jð Þ¼A1 iþ1, jð Þ�L iþ1, jþ1ð ÞC iþ1, jþ1ð ÞA1 iþ1, jð Þ,eA2 i, jþ1ð Þ¼A2 i, jþ1ð Þ�L iþ1, jþ1ð ÞC iþ1, jþ1ð ÞA2 i, jþ1ð Þ,eF1 iþ1, jð Þ¼F1 iþ1, jð Þ�L iþ1, jþ1ð ÞC iþ1, jþ1ð ÞF1 iþ1, jð Þ,eF2 i, jþ1ð Þ¼F2 i, jþ1ð Þ�L iþ1, jþ1ð ÞC iþ1, jþ1ð ÞF2 i, jþ1ð Þ,eB1 iþ1, jð Þ¼B1 iþ1, jð Þ�L iþ1, jþ1ð ÞC iþ1, jþ1ð ÞB1 iþ1, jð Þ,eB2 i, jþ1ð Þ¼B2 i, jþ1ð Þ�L iþ1, jþ1ð ÞC iþ1, jþ1ð ÞB2 i, jþ1ð Þ,ef Pe iþ1, jð Þð Þ¼ f Pη iþ1, jð Þð Þ� f Pbη iþ1, jð Þð Þ,ef Pe i, jþ1ð Þð Þ¼ f Pη i, jþ1ð Þð Þ� f Pbη i, jþ1ð Þð Þ:

Before proceeding further, let us introduce the follow-
ing Definition, Assumption, and Lemmas, which will be
helpful in subsequent developments.

Assumption 2. The initial states of the 2-D
system (11) are located inside the given set of
ellipsoids:

η i,0ð Þ�bη i,0ð Þð ÞTP�1 i,0ð Þ η i,0ð Þ�bη i,0ð Þð Þ
≤ 1, η 0, jð Þ�bη 0, jð Þð ÞTP�1 0, jð Þ x 0, jð Þ�bx 0, jð Þð Þ≤ 1,

where P i,0ð Þ and P 0, jð Þ are given positive def-
inite matrices.

Definition 1. [40]: For the 2-D system (11)
and the proposed filters (12) and (13), the
given sequence of constrained positive matri-
ces P i, jð Þ�R nxþnyð Þ� nxþnyð Þ, the dynamic
filtering error e i, jð Þ is said to satisfy the
P i, jð Þ-dependent ellipsoidal constraint if the
following inequality:

eT i, jð ÞP�1 i, jð Þe i, jð Þ≤ 1

holds for i, j� 0,κ½ �.

Lemma 1. [47] (Suarze, 1989): (Principle of
Double Induction) Let us suppose that for
i, j� 0,κ½ �, Ω i, jð Þ is a proposition. If we want to
prove that each of propositions Ω i, jð Þ is
true, it is sufficient to exhibit a generative set,
with molecules Ω i�1,jð Þ, Ω i,j�1ð Þ, and initial
set Ι¼ i,0ð Þ : i� 0,κ½ �f g[ 0, jð Þ : j� 0,κ½ �f g for
which:

1. (initial step) Ω i, jð Þ is true for all i, jð Þ� Ι;
2. (inductive step) if Ω i�1,jð Þ and Ω i,j�1ð Þ are

true for all i�1, jð Þ, i, j�1ð Þf g�Q, which
yields that Ω i, jð Þ is true.

Then, Ω i, jð Þ is true for all i, j� 0,κ½ �.

Lemma 2. [42]: (S-procedure) Let
Υ0,Υ1,…,Υn �Rn�n be symmetric matrices.
Υ0,Υ1,…,Υn are assumed to satisfy the follow-
ing conditions: ψTΥ0ψ >0 for all
ψ �Rn, ψ ≠ 0ð Þ such that ψTΥμψ ≥ 0,
μ¼ 1,2,…,n. Note that if exist positive
scalars τ1 ≥ 0,τ2 ≥ 0,…,τn ≥ 0 such that
Υ0�

Pn
μ¼1τμΥμ >0. Then, ψTΥ0ψ >0 holds.

Now, we are in the position of analyzing the dynamic
FES (14) under the FRP and HCAs.

3 | MAIN RESULTS

3.1 | P i, jð Þ-dependent constraint analysis

The recursive set-membership filter design for the aug-
mented 2-D system (11) is accomplished by solving the
following problems:
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1. Deduce the sufficient conditions that can guarantee
the dynamic FES (14) inside the ellipsoidal set as
follows:

ℋ i, jð Þ≜ e i, jð ÞjeT i, jð ÞP�1 i, jð Þe i, jð Þ≤ 1
� �

:

2. Compute the set-membership filter gains K i, jð Þ by
optimizing the trace of the matrix P i, jð Þ to minimize
the ellipsoid size for the dynamic filtering error
e i, jð Þ.

Theorem 1. For the given sequence of
constraint matrices P i,0ð Þ, P 0, jð Þ for all
j¼ 0, i� 0,κ½ �ð or i¼ 0, j� 0,κ½ �Þ and the initial
conditions x i,0ð Þ and x 0, jð Þ, considering 2-D
system (11) under FRP (4) and HCAs (10), as
well as set-membership filter (12) and (13), if
there exist positive scalars ργ i, jð Þ
γ¼ 1,2,…,10ð Þ, μσ π iþ1, jð Þð Þ σ¼ l2þ1, l2þ2,ð
,…nyÞ, μσ π i, jþ1ð Þð Þ, σ¼ l2þ1, l2þð 2,…,nyÞ,
and filter gains K iþ1, jþ1ð Þ satisfying the
following RLMI:

�Λ i, jð Þ� eΛ i, jð Þ ΛT i, jð Þ
� �P iþ1, jþ1ð Þ

" #
≤ 0, i, j� 0,κ½ �, ð15Þ

where

Λ i, jð Þ¼Γ0þ
X10
γ¼1

ργ i, jð ÞΓγ ,

eΛ i, jð Þ¼
Xny

σ¼l2þ1

μσ π iþ1, jð Þð ÞΥT
i, jð Þ Φσ�Φπ iþ1,jð Þ

� 	
Υ i, jð Þ

þ
Xny

σ¼l2þ1

μσ π i, jþ1ð Þð ÞeΥT
i, jð Þ Φσ �Φπ i,jþ1ð Þ

� 	eΥ i, jð Þ,

Γ0 ¼ diag 1,0,0,0,0,0,0,0,0,0,0f g,
Γ1 i, jð Þ¼ diag �1,0,0,0,0,S�1 iþ1, jð Þ,0,0,0,0,0� �

,

Γ2 i, jð Þ¼ diag �1,0,0,0,0,0,S�1 i, jþ1ð Þ,0,0,0,0� �
,

Γ3 i, jð Þ¼ diag �1,0,0,0,0,0,0,R�1 iþ1, jð Þ,0,0,0� �
,

Γ4 i, jð Þ¼ diag �1,0,0,0,0,0,0,0,R�1 i, jþ1ð Þ,0,0� �
,

Γ5 i, jð Þ¼ diag �1,0,0,0,0,0,0,0,0,R�1 iþ1, jþ1ð Þ,0� �
,

Γ6 i, jð Þ¼ diag �1,0,0,0,0,0,0,0,0,0,v�1
� �

,

Γ7 ¼

0 0 0 0 0 0

0 LT iþ1, jð ÞPTℳ
T
1ℳ2þℳT

2ℳ1

2
PL iþ1, jð Þ 0 �LT iþ1, jð ÞPTℳ

T
1 þℳT

2

2
0 0

0 0 0 0 0 0

0 �ℳ1þℳ2

2
PL iþ1, jð Þ 0 I 0 0

0 0 0 0 0 0

0 0 0 0 0 0

266666666664

377777777775
,

Γ8 ¼

0 0 0 0 0 0

0 0 0 0 0 0

0 0 LT i, jþ1ð ÞPTℳ
T
1ℳ2þℳT

2ℳ1

2
PL i, jþ1ð Þ 0 �LT i, jþ1ð ÞPTℳ

T
1 þℳT

2

2
0

0 0 0 0 0 0

0 0 �ℳ1þℳ2

2
PL i, jþ1ð Þ 0 I 0

0 0 0 0 0 0

266666666664

377777777775
,
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ℳ1 ¼ diag G1 i, jð Þ,0,0f g,ℳ2 ¼ diag G2 i, jð Þ,0,0f g,
Γ9¼ diag �1, I,0,0,0,0,0,0,0,0,0f g,
Γ10 ¼ diag �1,0,I,0,0,0,0,0,0,0,0f g,
Λ i, jð Þ¼ Λ1 i, jð Þ Λ2 i, jð Þ½ �,Λ1 i, jð Þ¼ 1 eA1 iþ1, jð ÞL iþ1, jð Þ

h
eA2 i, jþ1ð ÞL i, jþ1ð Þ eF1 iþ1, jð Þ eF2 i, jþ1ð Þ

iT
,

Λ2 i, jð Þ¼ eB1 iþ1, jð Þ
h eB2 i, jþ1ð Þ �K iþ1, jþ1ð ÞeD iþ1, jþ1ð Þ
�K iþ1, jþ1ð Þϖ2 iþ1, jþ1ð Þ�T ,eD iþ1, jþ1ð Þ¼ 0 0 D iþ1, jþ1ð Þ½ �,Φπ i,jð Þ ¼ eΦΠπ i,jð Þ,eΦ¼ diag eΦl2þ1, eΦl2þ2,…, eΦny

n o
,Φσ ¼ eΦΠσ ,

Υ i, jð Þ¼ eC iþ1, jð Þbη iþ1, jð Þ eC iþ1, jð ÞL iþ1, jð Þ 0 0 P i, jð Þ 0
h i

,

L i, jð Þ¼ L iþ1, jð Þ 0½ �,P i, jð Þ¼ D 2½ � iþ1, jþ1ð Þ 0 0

 �

,eC i, jð Þ¼ ½C 2½ � i, jð Þ 0 �I� , eP i, jð Þ¼ 0 D 2½ � iþ1, jþ1ð Þ 0

 �

,eΥ i, jð Þ¼ eC i, jþ1ð Þbη i, jþ1ð Þ eC i, jþ1ð ÞeL i, jð Þ 0 0 eP i, jð Þ 0
h i

,eL i, jð Þ¼ 0 L i, jþ1ð Þ½ �:

Then, the dynamic FES (14) satisfy
P i, jð Þ-dependent ellipsoidal constraint for all
i, j�Q:

eT i, jð ÞP�1 i, jð Þe i, jð Þ≤ 1:

Proof. In what follows, the mathematical
induction, including the initial step and induc-
tion step, is employed to prove Theorem 1.

1. Initial step. For the initial set
Ι¼ i,0ð Þ : i� 0,κ½ �f g[ 0, jð Þ : j� 0,κ½ �f g,
based on Assumption 2, it can be imme-
diately inferred that eT i,0ð ÞP�1 i,0ð Þ
e i,0ð Þ≤ 1 and eT 0, jð ÞP�1 0, jð Þe 0, jð Þ≤ 1.

2. Inductive step. Suppose the initial states
x i,0ð Þ, x 0, jð Þ, bx i,0ð Þ, and bx 0, jð Þ satisfy
P i, jð Þ-dependent constraint, then the
immediate target would be to demon-
strate that

eT iþ1, jþ1ð ÞP�1 iþ1, jþ1ð Þe iþ1, jþ1ð Þ≤ 1, ð16Þ

to be true at iþ1, jþ1ð Þ on the basis of the
following inequality constraints hold at
i, jþ1ð Þ and iþ1, jð Þ:

eT i, jþ1ð ÞP�1 i, jþ1ð Þ
e i, jþ1ð Þ≤ 1 and eT iþ1, jð ÞP�1 iþ1, jð Þ e iþ1, jð Þ≤ 1: ▪

To facilitate succeeding analysis, the
eT iþ1, jþ1ð ÞP�1 iþ1, jþ1ð Þe iþ1, jþ1ð Þ�1≤ 0 can be
rewritten as:

rT iþ1, jþ1ð ÞLT iþ1, jþ1ð ÞP�1 iþ1, jþ1ð Þ
L iþ1, jþ1ð Þr iþ1, jþ1ð Þ�1≤ 0,

where e i, jð Þ¼L i, jð Þr i, jð Þ, and L i, jð Þ is a factorization of
P i, jð Þ¼ L i, jð ÞLT i, jð Þ, obviously, if r i, jð Þk k≤ 1 holds for all
i, j�Q, the following inequality constraint holds:

eT iþ1, jþ1ð ÞP�1 iþ1, jþ1ð Þe iþ1, jþ1ð Þ�1≤ 0:

Subsequently, we deduce sufficient conditions for the
eT iþ1, jþ1ð ÞP�1 iþ1, jþ1ð Þe iþ1, jþ1ð Þ≤ 1 under the
impact of nonlinear function (2), FRP (4), and HCAs
(10).

To simplify the derivation, let us define:

ξ i, jð Þ¼ 1½ rT i, jð Þ f
T
Pe i, jð Þð Þ ωT i, jð Þ υ i, jð Þ v iþ1, jþ1ð Þ

iT
,

r i, jð Þ¼ r iþ1, jð Þ
r i, jþ1ð Þ


 �
, f
_

Pe i, jð Þð Þ¼
ef Pe iþ1, jð Þð Þef Pe i, jþ1ð Þð Þ

" #
,

ω i, jð Þ¼ ω iþ1, jð Þ
ω i, jþ1ð Þ


 �
,υ i, jð Þ¼

υ iþ1, jð Þ
υ i, jþ1ð Þ

υ iþ1, jþ1ð Þ

264
375,

Λ i, jð Þ¼ Λ1 i, jð Þ Λ2 i, jð Þ½ �,
Λ1 i, jð Þ¼½1 eA1 iþ1, jð ÞL iþ1, jð Þ eA2 i, jþ1ð ÞL i, jþ1ð Þ

eF1 iþ1, jð Þ eF2 i, jþ1ð Þ�T ,

Λ2 i, jð Þ¼½eB1 iþ1, jð Þ eB2 i, jþ1ð Þ�K iþ1, jþ1ð ÞeD iþ1, jþ1ð Þ

�K iþ1, jþ1ð Þϖ2 iþ1, jþ1ð Þ�T ,
eD iþ1, jþ1ð Þ¼ 0 0 D iþ1, jþ1ð Þ½ �:

Furthermore, in view of the dynamic FES (14),
one has

e iþ1, jþ1ð Þ¼Λ i, jð Þξ i, jð Þ, ð17Þ

combining (16) with (17), which yields

eT iþ1, jþ1ð ÞP�1 iþ1, jþ1ð Þe iþ1, jþ1ð Þ�1

¼ ξT i, jð ÞΛT i, jð ÞP�1 iþ1, jþ1ð ÞΛ i, jð Þξ i, jð Þ
�ξT i, jð Þdiag 1,0,0,0,0,0,0,0,0,0,0f gξ i, jð Þ:

ð18Þ

Next, we will address the unknown-but-bounded
noises and FDI attacks energy limitation, from Assump-
tion 1 and (9), it is easy to obtain
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ωT iþ1, jð ÞS�1 iþ1, jð Þω iþ1, jð Þ≤ 1

ωT i, jþ1ð ÞS�1 i, jþ1ð Þω i, jþ1ð Þ≤ 1

υT iþ1, jð ÞR�1 iþ1, jð Þυ iþ1, jð Þ≤ 1

υT i, jþ1ð ÞR�1 i, jþ1ð Þυ i, jþ1ð Þ≤ 1

υT iþ1, jþ1ð ÞR�1 iþ1, jþ1ð Þυ iþ1, jþ1ð Þ≤ 1

vT iþ1, jþ1ð Þv�1v iþ1, jþ1ð Þ≤ 1

8>>>>>>>><>>>>>>>>:
,

which are further rewritten as follows:

ξT i, jð ÞΓ1 i, jð Þξ i, jð Þ≤ 1

ξT i, jð ÞΓ2 i, jð Þξ i, jð Þ≤ 1

ξT i, jð ÞΓ3 i, jð Þξ i, jð Þ≤ 1

ξT i, jð ÞΓ4 i, jð Þξ i, jð Þ≤ 1

ξT i, jð ÞΓ5 i, jð Þξ i, jð Þ≤ 1

ξT i, jð ÞΓ6 i, jð Þξ i, jð Þ≤ 1

8>>>>>>>><>>>>>>>>:
, ð19Þ

where Γ1 i, jð Þ¼ diag �1,0,0,0,0,S�1 iþ1, jð Þ,0,0,0,0,0� �
,

Γ2 i, jð Þ¼ diag �1,0,0,0,0,0,S�1 i, jþ1ð Þ,0,0,0,0� �
,

Γ3 i, jð Þ¼ diag �1,0,0,0,0,0,0,R�1 iþ1, jð Þ,0,0,0� �
,

Γ4 i, jð Þ¼ diag �1,0,0,0,0,0,0,0,R�1 i, jþ1ð Þ,0,0� �
,

Γ5 i, jð Þ¼ diag �1,0,0,0,0,0,0,0,0,R�1 iþ1, jþ1ð Þ,0� �
,

Γ6 i, jð Þ¼ diag �1,0,0,0,0,0,0,0,0,0,v�1
� �

:

Subsequently, the sector-bounded conditions of non-
linear function (2) are taken into account. From (2),
which yields

ef Pe iþ1, jð Þð Þ�ℳ1Pe iþ1, jð Þ
� �T ef Pe iþ1, jð Þð Þ�ℳ2Pe iþ1, jð Þ

� �
≤ 0,

ð20Þ

where ℳ1 ¼ diag G1 i, jð Þ,0,0f g, ℳ2 ¼ diag G2 i, jð Þ,0,0f g.
Obviously, (20) can be reorganized into the following

inequality:

1
2

ef Pe iþ1, jð Þð Þ�ℳ1Pe iþ1, jð Þ
� �T ef Pe iþ1, jð Þð Þ�ℳ2Pe iþ1, jð Þ

� �
þ1
2

ef Pe iþ1, jð Þð Þ�ℳ2Pe iþ1, jð Þ
� �T ef Pe iþ1, jð Þð Þ�ℳ1Pe iþ1, jð Þ

� �
≤ 0:

ð21Þ

Furthermore, one can reorganize (21) into the follow-
ing inequality:

ef T Pe iþ1, jð Þð Þef Pe iþ1, jð Þð Þ� rT iþ1, jð ÞLT iþ1, jð Þ

PTℳ
T
1 þℳT

2

2
ef Pe iþ1, jð Þð Þ�ef T Pe iþ1, jð Þð Þℳ1þℳ2

2
PL iþ1, jð Þr iþ1, jð Þ

þrT iþ1, jð ÞLT iþ1, jð ÞPTℳ
T
1ℳ2þℳT

2ℳ1

2
PL iþ1, jð Þr iþ1, jð Þ≤ 0,

ð22Þ

accordingly, it can be obtained that (22) is equivalent to

ξT i, jð ÞΓ7ξ i, jð Þ≤ 0, ð23Þ

where

Similarly, it can be readily obtained that the following
inequality holds true at instant i, jþ1ð Þ

ξT i, jð ÞΓ8ξ i, jð Þ≤ 0, ð24Þ

where

Γ7 ¼

0 0 0 0 0 0

0 LT iþ1, jð ÞPTℳ
T
1ℳ2þℳT

2ℳ1

2
PL iþ1, jð Þ 0 �LT iþ1, jð ÞPTℳ

T
1 þℳT

2

2
0 0

0 0 0 0 0 0

0 �ℳ1þℳ2

2
PL iþ1, jð Þ 0 I 0 0

0 0 0 0 0 0

0 0 0 0 0 0

266666666664

377777777775
:
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In addition, the constraints r iþ1, jð Þk k≤ 1 and
r i, jþ1ð Þk k≤ 1 for i, j�Q also need to be highlighted,
which implies that the following inequalities hold:

ξT i, jð ÞΓ9ξ i, jð Þ≤ 1and ξT i, jð ÞΓ10ξ i, jð Þ≤ 1, ð25Þ

where Γ9 ¼ diag �1, I,0,0,0,0,0,0,0,0,0f g, Γ10 ¼ diag �1,f
0, I,0,0,0,0,0,0,0,0g.

Moreover, noting the constraints of the TODP for
arbitrary σ � ι2 and shift instant iþ1, jð Þ, the following
inequality holds:

y 2½ � iþ1, jð Þ� y 2½ �� iþ1, jð Þ
� �T

Φπ iþ1,jð Þ y 2½ � iþ1, jð Þ� y 2½ �� iþ1, jð Þ
� �

≥ y 2½ � iþ1, jð Þ� y 2½ �� iþ1, jð Þ
� �T

Φσ y 2½ � iþ1, jð Þ� y 2½ �� iþ1, jð Þ:
�

ð26Þ

On the other hand, as per the scheduling rule of the
TODP, it is straightforward to obtain

y 2½ � iþ1, jð Þ� y 2½ �� iþ1, jð Þ
¼ y 2½ � iþ1, jð Þ� y 2½ � iþ1, j�1ð Þ
¼C 2½ � iþ1, jð Þx iþ1, jð ÞþD 2½ � iþ1, jð Þυ iþ1, jð Þ

�y 2½ � iþ1, j�1ð Þ
¼ eC iþ1, jð Þη iþ1, jð ÞþD 2½ � iþ1, jð Þυ iþ1, jð Þ
¼ eC iþ1, jð Þe iþ1, jð Þþ eC iþ1, jð Þbη iþ1, jð Þ
þD 2½ � iþ1, jð Þυ iþ1, jð Þ,

ð27Þ

where eC i, jð Þ¼ C 2½ � i, jð Þ 0 �I�



. Then, considering (26)
and (27), the constraints of the TODP can be further
deduced that

eC iþ1, jð Þe iþ1, jð Þþ eC iþ1, jð Þbη iþ1, jð ÞþD 2½ � iþ1, jð Þυ iþ1, jð Þ
� �T

Φσ �Φπ iþ1,jð Þ
� 	

� eC iþ1, jð Þe iþ1, jð Þþ eC iþ1, jð Þbη iþ1, jð ÞþD 2½ � iþ1, jð Þυ iþ1, jð Þ
� �

≤ 0,

ð28Þ

where Φπ i,jð Þ ¼ eΦΠπ i,jð Þ,eΦ¼ diag eΦl2þ1, eΦl2þ2,…, eΦny

n o
,

Φσ ¼ eΦΠσ . From (28), it is easy to obtain that

ξT i, jð ÞΥT
i, jð Þ Φσ �Φπ iþ1,jð Þ

� 	
Υ i, jð Þξ i, jð Þ≤ 0, ð29Þ

where Υ i, jð Þ¼ eC iþ1, jð Þbη iþ1, jð Þ eC iþ1, jð Þ
h

L iþ1, jð Þ
0 0 P i, jð Þ 0�, L i, jð Þ¼ L iþ1, jð Þ 0½ �, P i, jð Þ¼ D 2½ � iþ1, jð



þ1Þ00�.

Similarly, for arbitrary σ � ι2 and shift instant i, jþ1ð Þ,
one has

ξT i, jð ÞeΥT
i, jð Þ Φσ �Φπ i,jþ1ð Þ

� 	eΥ i, jð Þξ i, jð Þ≤ 0, ð30Þ

where eΥ i, jð Þ¼ eC i, jþ1ð Þ
h bη i, jþ1ð Þ eC i, jþ1ð ÞeL i, jð Þ 0 0 eP i, jð Þ 0�, eL i, jð Þ¼ 0 L i, jþ1ð Þ½ �, eP i, jð Þ¼

0 D 2½ � ið

 þ1, jþ1Þ0�.

Furthermore, comprehensive consideration of (18),
(19), (23)–(25), (29), and (30), if there exist the ργ i, jð Þ
i¼ 1,2,…,10ð Þ, μσ π iþ1, jð Þð Þ σ¼ l2þ1, l2þ2,…,ny

� 	
, and

μσ π i, jþ1ð Þð Þ σ¼ l2þ1, l2þ2,…,ny
� 	

, such that the
following inequality holds:

ξT i, jð ÞΛT i, jð ÞP�1 iþ1, jþ1ð ÞΛ i, jð Þξ i, jð Þ
�ξT i, jð ÞΛ i, jð Þξ i, jð Þ�ξT i, jð ÞeΛ i, jð Þξ i, jð Þ≤ 0, ð31Þ

where

Γ8 ¼

0 0 0 0 0 0

0 0 0 0 0 0

0 0 LT i, jþ1ð ÞPTℳ
T
1ℳ2þℳT

2ℳ1

2
PL i, jþ1ð Þ 0 �LT i, jþ1ð ÞPTℳ

T
1 þℳT

2

2
0

0 0 0 0 0 0

0 0 �ℳ1þℳ2

2
PL i, jþ1ð Þ 0 I 0

0 0 0 0 0 0

266666666664

377777777775
:
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Λ i, jð Þ¼Γ0þ
X10
γ¼1

ργ i, jð ÞΓγ ,Γ0

¼ diag 1,0,0,0,0,0,0,0,0,0,0f g,

eΛ i, jð Þ¼
Xny

σ¼l2þ1

μσ π iþ1, jð Þð ÞΥT
i, jð Þ Φσ �Φπ iþ1,jð Þ

� 	
Υ i, jð Þ

þ
Xny

σ¼l2þ1

μσ π i, jþ1ð Þð ÞeΥT
i, jð Þ Φσ �Φπ i,jþ1ð Þ

� 	eΥ i, jð Þ,

then, according to Lemma 2, it can be derived that

ΛT i, jð ÞP�1 iþ1, jþ1ð ÞΛ i, jð Þ
�diag 1,0,0,0,0,0,0,0,0,0,0f g≤ 0: ð32Þ

In view of (18), the inequality (32) is a sufficient
condition to guarantee that the P iþ1, jþ1ð Þ-dependent
constraint eT iþ1, jþ1ð ÞP�1 iþ1, jþ1ð Þe iþ1, jþ1ð Þ�
1≤ 0 to be true. By applying the Schur complement, (31)
is equivalent to

�Λ i, jð Þ� eΛ i, jð Þ ΛT i, jð Þ
� �P iþ1, jþ1ð Þ

" #
≤ 0, i, j�Q:

The proof is thus completed.
In Theorem 1, sufficient conditions are deduced

such that the FES (14) to satisfy P i, jð Þ-dependent
constraints, and the filter gains K i, jð Þ at each shift
instant i, jð Þ have been acquired by utilizing the
RLMIs technology. On account of P i, jð Þ-dependent
constraint, eT i, jð ÞP�1 i, jð Þe i, jð Þ�1≤ 0 is equivalent to
e i, jð ÞeT i, jð Þ≤P i, jð Þ; hence, the minimize dynamic filter-
ing error e i, jð Þ can be obtained by calculating the minimi-
zation problem of P i, jð Þ.

3.2 | Optimization problem

Corollary 1. For the given sequence of con-
straint matrices P i,0ð Þ, P 0, jð Þ j¼ 0, i� 0,κ½ �ð or
i¼ 0, j� 0,κ½ �Þ and the initial conditions x i,0ð Þ
and x 0, jð Þ, considering 2-D system (11) under
FRP (4) and HCAs (10), as well as set-
membership filter (12) and (13), if there
exist positive scalars ργ i, jð Þ i¼ 1,2,…,10ð Þ,
μσ π iþ1, jð Þð σ¼ l2þ1, l2þ2,…,ny

� 	
,

μσ π i, jþ1ð Þð Þ σ¼ l2þ1, l2þ2,…,ny
� 	

, and fil-
ter gains K iþ1, jþ1ð Þ, we can solve the fol-
lowing optimization problem:

OP : min
K iþ1, jþ1ð Þ

tr P iþ1, jþ1ð Þf g ð33Þ

subject to (15). Then, the dynamic filtering
error e i, jð Þ will be minimized at each instant
i, jð Þ.K i, jð Þ

In terms of Theorem 1 and Corollary 1, we summa-
rize the recursive set-membership filtering algorithm as
follows:

4 | NUMERICAL SIMULATION

The following equations can be utilized to represent the
relationship between voltage U x, tð Þ and current I x, tð Þ in
the long-distance transmission line system depicted in
Figure 3.

∂U x, tð Þ
∂x

¼�ℒ
∂I x, tð Þ

∂t
,
∂I x, tð Þ

∂x
¼C ∂U x, tð Þ

∂t
, ð34Þ

where x � 0 X½ � and t� 0 T½ � denote the spatial dimen-
sion and the time dimension, respectively. In addition,
the parameters ℒ and C with are used to represent induc-
tance and capacitance, respectively.

Then, let us define

Algorithm 1 Recursive Set-membership
Filtering Algorithm for 2-D Systems under
FRP and HCAs

Step 1: Set the initial conditions x i,0ð Þ,
x 0,jð Þ, bx i,0ð Þ, bx 0,jð Þ , P i,0ð Þ, P 0,jð Þ ,
S i,jð Þ and R i,jð Þ satisfying Assumption

1 and Assumption 2 for j¼0,i� 0,κ½ � or
i¼0,j� 0,κ½ �.

Step 2: For i¼ 0,κ½ � and j¼0, calculate K i,0ð Þ
from (15) and (33).

Step 3: For j¼ 1,κ½ � and i¼0, calculate K 0,jð Þ
from (15) and (33).

Step 4: For i¼1 : κ

For j¼1 : κ

calculate K i,jð Þ , P i,jð Þ and bx i,jð Þ
from (15) and (33)

end

end

Step 5: Stop.

808 ZHANG ET AL.
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U x, tð Þ
I x, tð Þ

" #
¼

1

ffiffiffiffiffi
ℒ
C

r
ffiffiffiffiffiC
ℒ

r
�1

26664
37775 U x, tð Þ

I x, tð Þ


 �
,

considering (34), one has

∂

∂t
U x, tð Þ
I x, tð Þ

" #
¼

1ffiffiffiffiffiffiffiffi
ℒCp 0

0 � 1ffiffiffiffiffiffiffiffi
ℒCp

2664
3775 ∂

∂x
U x, tð Þ
I x, tð Þ

" #
, ð35Þ

furthermore, we define U x, tð Þ≜Ue iΔx, jΔtð Þ,
I x, tð Þ≜ I e iΔx, jΔtð Þ,U x, tð Þ≈Ue i, jð Þ, and I x, tð Þ≈ I e i, jð Þ,
one has

∂U x, tð Þ
∂x

≈
Ue iΔx, jΔtð Þ�Ue i�1ð ÞΔx, jΔtð Þ

Δx
,

∂U x, tð Þ
∂t

≈
Ue iΔx, jþ1ð ÞΔtð Þ�Ue iΔx, jΔtð Þ

Δt
,

ð36Þ

∂I x, tð Þ
∂x

≈
I e iΔx, jΔtð Þ�I e i�1ð ÞΔx, jΔtð Þ

Δx
,

∂I x, tð Þ
∂t

≈
I e iΔx, jþ1ð ÞΔtð Þ�I e iΔx, jΔtð Þ

Δt
,

ð37Þ

therefore, according to (35)–(37), it is easy to obtain (38)
holds

Ue i, jþ1ð Þ¼ 1þ Δt
Δx

1ffiffiffiffiffiffiffiffi
ℒCp

� �
Ue i, jð Þ� Δt

Δx
1ffiffiffiffiffiffiffiffi
ℒCp Ue i�1, jð Þ

I e i, jþ1ð Þ¼ 1� Δt
Δx

1ffiffiffiffiffiffiffiffi
ℒCp

� �
I e i, jð Þþ Δt

Δx
1ffiffiffiffiffiffiffiffi
ℒCp I e i�1, jð Þ

8>>><>>>: ,

ð38Þ

then define xhe i, jð Þ¼ Ue i�1, jð Þ I e i�1, jð Þ½ �T ,xve i, jð Þ¼
Ue i,ð½ jÞI e i, jð Þ�T , and x i, jð Þ¼ xhe i�1, jð Þ xve i�1, jð Þ
 �T

,
based on (38), which yields

x iþ1, jþ1ð Þ¼A1x iþ1, jð ÞþA2x i, jþ1ð Þ,

where

A1 ¼

0 0 0 0

0 0 0 0

�Δt
Δx

1ffiffiffiffiffiffi
LC

p 0 1þ Δt
Δx

1ffiffiffiffiffiffi
LC

p 0

0
Δt
Δx

1ffiffiffiffiffiffi
LC

p 0 1� Δt
Δx

1ffiffiffiffiffiffi
LC

p

266666664

377777775,

A1 ¼

0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

26664
37775.

Then, based on [48], we employ the parameters as
follows:

Δt¼ 0:02,Δx¼ 0:02,ℒ¼ 10þ e�i
� 	

H,C
¼ 40� sin ið Þcos jð Þð Þ,

where H and  denote henry (unit of inductance) and
farad (unit of capacitance), respectively. The transmission
line system can be transformed into a 2-D system (1) with
the following parameters:

B1 iþ1, jð Þ¼

0:2þ0:5sin 0:3π iþ jð Þð Þ 0:2 0 0

0 0:4 0:1 0

0:1 0 0:3 0:1

0 0 0 0:3

26664
37775,

B2 i, jþ1ð Þ¼

0:1þ0:4sin 0:5π iþ jð Þð Þ 0 0:3 0:1

0:1 0:5 0:1 0:2

0:2 0 0:3 0:1

0:1 0 0 0:4

26664
37775,

F1 iþ1, jð Þ¼

0:2 0:1 0 0:1

0 0:3 0 0:4sin 0:4π iþ jð Þð Þ
0:2 0 0 0:2sin 0:5π iþ jð Þð Þ
0 0:2 0 0:3

26664
37775,

F2 i, jþ1ð Þ¼

0:3sin 0:4π iþ jð Þð Þ 0:1 0 0:1

0 0:3 0:2 0:3

0:2 0:5sin 0:5π iþ jð Þð Þ 0 0:4

0 0:2 0:2 0:3

26664
37775,

FIGURE 3 The long-distance transmission line

system.
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C i, jð Þ¼ I4,D i, jð Þ¼

0:5þ cos 0:3 iþ jð Þð Þ 0:3 0 0:5

0:3þ sin 0:5 iþ jð Þð Þ 0 0:3 0:1

0:6 0:2 0:4 0:6

0 0:2 0 0:5

26664
37775:

Moreover, we set f x i, jð Þð Þ¼ 0:4sin �x i, jð Þð Þþ0:2x i, jð Þ
and consider that the sin �ð Þ� �1 1½ �, it is easy to
observe that the sector-bounded conditions (2) hold
with G1 i, jð Þ¼G2 i, jð Þ¼ 0:2. In the simulation, the
initial states are taken as x i, jð Þ¼ 3:2sin ið Þcos jð Þ½
3:3sin jð Þcos i�1ð Þ4:2sin ið Þcos jð Þ: 3:3sin jð Þcos i�1ð Þ�T for
i� 0 50½ � and j¼ 0, x i, jð Þ¼ 4sin ið Þcos jð Þ3:5sin jð Þ½
cos ið Þ4:2sin jð Þcos ið Þ:3:1sin jð Þcos iþ1ð Þ�T for i¼ 0 and
j� 1 50½ �. Moreover, let P i,0ð Þ¼ P 0, jð Þ¼ 16I4 for
i, j� 0,50½ �.

The unknown-but-bounded process noises ω i, jð Þ and
measurement noises υ i, jð Þ are selected as:

ω i, jð Þ ¼
0:5sin 0:6 iþ jð Þð Þ 0:4cos 0:7 iþ jð Þð Þ 0:6sin 0:9 iþ jð Þð Þ 0:6cos 0:6 iþ jð Þð Þ½ �T

i, j� 1 30½ �
0 otherwise

8><>: ,

υ i, jð Þ¼
0:3sin 0:4 iþ jð Þð Þ 0:3cos 0:6 iþ jð Þð Þ 0:3cos 0:7 iþ jð Þð Þ 0:3cos 0:3 iþ jð Þð Þ½ �T

i, j� 1 30½ �
0 otherwise

8><>: ,

then, the matrix R i, jð Þ and S i, jð Þ can be chosen be 1:5I4
for i, j� 0,50½ �.

It is assumed that the first two nodes of the sensors
are scheduled via RRP and the remaining nodes are

scheduled by TODP, that is, l1 ¼ 2, l2 ¼ 2, and weight
matrix Φm2 l1þ1≤m2 ≤ny

� 	
are set as 30.

Then, suppose that HCAs parameters satisfy ϑ¼ 0:15
and ξ¼ 0:85. In addition, consider the HCAs occur in the
interval i, j� 20 40½ � and chose the bounded energy single
v i, jð Þ as

v i, jð Þ ¼
0:3sin 0:2 iþ jð Þð Þ 0:3cos 0:2 iþ jð Þð Þ 0:3cos 0:3 iþ jð Þð Þ 0:3cos 0:3 iþ jð Þð Þ½ �T

i, j� 20 40½ �
0 otherwise

8><>: :

Finally, we take the following parameters
ρ1 i, jð Þ¼ ρ2 i, jð Þ¼ ρ3 i, jð Þ¼ ρ4 i, jð Þ¼ 0:57, ργ i, jð Þ¼ 1:21
γ¼ 5,6,…,10ð Þ,μ3 π iþ1, jð Þð Þ¼ μ4 π iþ1, jð Þ¼ 1:0314,ð

FIGURE 4 Communication sequence under the FlexRay

protocol (FRP).

FIGURE 5 The hybrid cyber attacks (HCAs) scenarios.

FIGURE 6 The trajectory of state x1 i, jð Þ and its estimatebx1 i, jð Þ.
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μ3 π i, jþ1ð Þð Þ¼ μ4 π i, jþ1ð Þð Þ¼ 1:8424, and by applying
Theorem 1 and Corollary 1, the part of the
set-membership filter gains K i, jð Þf g are exhibited as
follows:

K 1,1ð Þ¼

0:5102 �0:0275 0:0022 1:6321

0:0125 0:4332 1:3469 �0:0650

1:5321 0:0076 0:0030 0:0011

�0:0083 1:2846 0:0021 �0:0000

0:1561 0:5932 0:2404 �0:2101

1:5932 0:0000 0:0045 �0:0148

0:0091 0:0128 1:0000 0:0000

�0:0214 �0:0005 0:0000 1:6264

266666666666664

377777777777775
,

K 1,2ð Þ¼

0:2417 1:1221 0:0001 �0:0001

�0:0006 �0:0004 0:2141 0:1451

0:0384 1:0527 0:0206 1:6321

1:2213 �0:0013 �0:0043 1:2147

0:3085 0:3351 0:0358 �0:0021

0:0841 0:1376 0:1320 �0:0386

0:0003 1:2147 0:0566 0:0002

0:0001 �0:0002 �0:0000 1:1196

266666666666664

377777777777775
,

K 1,3ð Þ¼

0:2671 �0:0971 0:0301 �0:1045

1:3144 0:0787 0:7581 �0:0000

�0:0000 0:0000 0:0140 0:0000

0:4522 1:7674 0:9920 0:0000

0:3114 �0:2541 0:0000 �0:0001

�0:4077 0:0000 �0:0151 �0:0000

0:2525 0:2867 1:0014 0:0000

1:4633 �0:0000 �0:0000 0:4962

266666666666664

377777777777775
,

K 1,50ð Þ¼

0:0000 0:5841 �0:0001 �0:0000

�0:0000 0:0000 0:2417 �0:3321

�0:0002 0:0042 0:0201 0:5414

0:0001 �0:0201 0:0513 0:0047

0:0014 0:0004 0:1647 �0:0132

0:0000 1:0125 �0:0002 0:0000

�0:0000 0:3516 �0:0002 �0:0000

0:0000 �0:0104 �0:0000 0:3786

266666666666664

377777777777775
:

The simulation results are shown in Figures 4–18.
Figures 4 and 5 depict the communication sequence
subject to the FRP and the HCAs scenarios, respec-
tively. Figures 6–9 are concerning the trajectories of the
first component of state x i, jð Þ, the second component of
state x i, jð Þ, the third component of state x i, jð Þ, and the
fourth component of state x i, jð Þ, respectively.
Figures 10–13 describe the trajectories of the first compo-
nent of estimate bx i, jð Þ, the second component of estimate

FIGURE 7 The trajectory of state x2 i, jð Þ and its estimatebx2 i, jð Þ.

FIGURE 8 The trajectory of state x3 i, jð Þ and its estimatebx3 i, jð Þ.

FIGURE 9 The trajectory of the x4 i, jð Þ and its estimate bx4 i, jð Þ.
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FIGURE 10 The trajectory of filtering error e1 i, jð Þ and e2 i, jð Þ.

FIGURE 11 The trajectory of filtering error e3 i, jð Þ and e4 i, jð Þ.

FIGURE 12 Filtering error e1 i, jð Þ under the different filtering
algorithms.

FIGURE 13 Filtering error e2 i, jð Þ under the different filtering
algorithms.

FIGURE 14 Filtering error e3 i, jð Þ under the different filtering
algorithms.

FIGURE 15 Filtering error e4 i, jð Þ under the different filtering
algorithms.

812 ZHANG ET AL.
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bx i, jð Þ, the third component of estimate bx i, jð Þ, and the
fourth component of estimate bx i, jð Þ, respectively.
Figures 14–17 describe the trajectories of the first compo-
nent of the filtering error e i, jð Þ, the second component of
the filtering error e i, jð Þ, the third component of the
filtering error e i, jð Þ, and the fourth component of the
filtering error e i, jð Þ, respectively. It can be seen from
Figures 14–17 that the filtering error e i, jð Þ converge

rapidly after the initial horizon. In addition, it can be
seen from Figures 10–17 that the systems estimation
and filtering error fluctuate in horizon i, j� 0 40½ �
due to process noises, measurement noises, and HCAs.
Moreover, the filtering error finally converges to
0 after the end of the external disturbance, which reflects
the excellent performance of the proposed filtering
algorithm.

FIGURE 16 The state

xm i, jð Þm� 1,2f g and its estimate bxm i, jð Þ on
j¼ 16.

FIGURE 17 The state

xm i, jð Þm� 3,4f g and its estimate bxm i, jð Þ on
j¼ 16.
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In addition, we compare the proposed set-
membership filtering algorithm with the robust H∞ filter-
ing algorithm proposed in [49] under the same systems
(1), FRP (7), and HCAs (10) conditions to demonstrate
the superiority of the proposed filtering Algorithm 1. We
define the mean square filtering error as MSE i, jð Þ¼
1=T2ð ÞP j ¼ 1T

PT
i¼1 x i, jð Þ�bx i, jð Þð Þ2 , the simulation

results are displayed in Figures 12–18. Figures 12–15
describe the component of filtering error e i, jð Þ under the
different filtering algorithms. Furthermore, the compari-
son of systems state x i, jð Þ and its estimate bx i, jð Þ with the
qualification j¼ 16 are shown in Figures 16 and 17. It
can be seen from Figures 12–17 that the filtering error
e i, jð Þ under the set-membership filtering algorithm is
overall smaller than that under the robust H∞ filtering
algorithm. Finally, Figure 18 demonstrates the MSE i, jð Þ
under both filtering algorithms, and it can be seen that
the developed set-membership filtering algorithm pro-
vides better filtering performance compared to the robust
H∞ filtering algorithm.

5 | CONCLUSIONS

In this research, the set-membership filtering problem for
the 2-D systems with FRP and the HCAs has been
examined. A bi-directional time-sequence hybrid com-
munication protocol is developed to alleviate the
communications burden, which is based on the idea of
employing predefined time-triggered and event-triggered
conditions to decide whether the current measurement
output is released. In addition, considering the influence
of HCAs occurring in random patterns on filtering per-
formance, a comprehensive model of 2-D systems
affected by FRP and HCAs is constructed. Sufficient

conditions are deduced to ensure that the FES always sat-
isfies the ellipsoidal restriction. Furthermore, the optimal
set-membership filter gains have been derived by mini-
mizing the ellipsoidal constraints of filtering error. The
effectiveness and superiority of the developed set-
membership filter design approach are validated by a
long-distance transmission line example. It is one of the
future development directions to extend the presented
FRP with bi-directional evolutionary indexes to various
2-D systems filtering algorithms, such as Kalman filtering
and bounded filtering, based on the noise characteristics.
Additionally, the HCAs considered in this paper all occur
in a stochastic manner, which simplifies the analysis to
some extent. Investigating security control/filtering prob-
lems for 2-D systems with queued DoS attacks and replay
attacks is worth pondering.
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 Encryption-Decryption-Based Bounded Filtering for 
2-D Systems under Dynamic Event-Triggered 

Mechanism 
 

Pan Zhang, Chaoqun Zhu, Bin Yang, Bohan Zhang and Zhiwen Wang* 
 

 Abstract—This paper investigates the bounded filtering problem 
for two-dimensional (2-D) discrete systems with encryption-
decryption mechanism (EDM) and dynamic event-triggered 
mechanism (ETM). Firstly, considering the potential information 
leakage, a novel EDM is designed for 2-D systems based on the 
quantization-based encoding-decoding mechanism. In addition, 
the dynamic ETM with bidirectional evolutionary characteristics 
is proposed to alleviate the computational and communication 
burdens. In such a framework, the filtering error systems (FESs) 
at the eavesdropper side and the user side are obtained, 
respectively. Subsequently, the encryption parameters are devised 
such that the filtering error at the eavesdropper side diverges. 
Additionally, the boundedness criteria are established to ensure 
that the client-side FESs are bounded in terms of Lyapunov 
stability analysis approach. Finally, it is demonstrated that the 
proposed bounded filtering algorithm is valid for 2-D systems in 
several types of industrial environments. 
 
Index Terms: Two-dimensional systems, Fornasini and Marchesini 
model, dynamic event-triggered mechanism, encryption-
decryption mechanism, filtering algorithm design 
 

Abbreviations and Acronyms 
ETM                   Event-triggered mechanism. 
2-D systems        Two-dimensional systems. 
EDM                   Encryption-decryption mechanism. 
FESs                    Filtering error systems 

n                       The n-dimensional Euclidean space. 
 diag                The block-diagonal matrix 

LMI                     Linear matrix inequality 

A                       max ( )TA A A  . 
TG                      The transpose of the matrix G . 

1G                       The inverse of the matrix G . 
ynI                        The ny-dimensional identity matrix. 

max ( )                 The largest eigenvalue. 

                         The mathematical expectation of the variable. 
I. INTRODUCTION 

-D systems is found in many real-world systems, such as 
seismographic data processing, thermal processes, gas 
absorption, and water stream heating [1-4]. To emphasize 
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the unique bidirectional evolutionary features of 2-D systems, the 
Roesser model [5], the Fornasini-Marchesini model [6], and the 
Kurek model [7] have been proposed and continuously refined. 
Based on the models developed above, the issues of stability 
analysis [8], control synthesis [9], filter design [10], and fault 
diagnosis [11] for 2-D systems have garnered substantial research 
interest among scholars. Meanwhile, control theory has progressed 
from classical control methods to network-based control methods. 
With this background, the investigations have contributed 
significantly to the accelerated development of 2-D systems, which 
renders them one of the most active research directions in the 
control field [12-18].  

With the explosive growth of information, alleviating the 
communication and computational burdens caused by redundant 
data has become particularly urgent. In this context, the ETM has 
arisen. Its core philosophy is to reduce the frequency of data 
transmission or sampling while ensuring the preservation of system 
performance, thereby achieving a balance between system 
performance and network load. In general, ETM has been 
developed as a transmission mechanism that decides whether to 
release data based on preset triggering conditions. In contrast to the 
time-triggered mechanism, which delivers data at each sampling 
instant, the ETM can reduce the frequency of data transmission to 
conserve network resources. Up to date, the ETM can be primarily 
categorized into two types: static ETM and dynamic ETM. 
Typically, the triggering condition in static ETM is fixed. In 
contrast, dynamic ETM introduces an auxiliary variable based on 
the static ETM to further reduce the frequency of data transmission. 
It is worth emphasizing that, although the ETM based on 1-D 
systems as the research baseline has achieved fruitful results, many 
of these methods are difficult to directly apply to 2-D systems due 
to their unique bidirectional evolutionary complexity, which leads 
to a lag in the investigation of the dynamic ETM for 2-D systems. 
Moreover, most of the available results primarily focus on the static 
ETM [19-22]. The challenge of designing dynamic ETM for 2-D 
systems lies in constructing a non-incremental, bidirectional, and 
positive auxiliary variable. Up to now, there is limited literature on 
dynamic ETM for 2-D systems [23-25]. Among them, the designed 
dynamic auxiliary variable changes only with respect to the vertical 
direction and focuses on the recursive filtering theory presented in 
[23]. While references [24] and [25] are both based on the set-
membership filtering theory, i.e., allowing all possible state vectors 
to satisfy a given ellipsoid set constraint, which is quite different 
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from the filtering theory based on Lyapunov stability. Therefore, 
enriching the design methodology of dynamic ETM for 2-D 
systems based on existing results, and analyzing its impact on 
filtering performance by utilizing Lyapunov stability theory, are 
among the motivations for this investigation. 

Due to the openness and vulnerability of communication 
networks, the security of networked systems has garnered 
significant attention, and research on cyber-attacks has yielded 
fruitful results. Several categories of widely researched attack 
tactics include, but are not limited to, DoS attacks [26], deception 
attacks [27], and replay attacks [28]. These attack strategies 
generally disrupt the performance of the networked systems by 
maliciously interfering with the transmission of original normal 
data. Additionally, as another type of attack, eavesdropping is 
stealthier and more dangerous because it does not actively inject 
data into the communication network and does not change the 
characteristics of network traffic. Therefore, it is of theoretical 
value and practical significance to deal with potential 
eavesdropping attacks from the perspectives of security filtering 
and state estimation. Currently, the defense strategy against 
eavesdropping attacks on networked systems primarily relies on 
the design of encryption mechanisms, i.e., the adoption of secure 
protocols for data transmission, which mainly encompass 
encryption mechanisms based on data scheduling [29-31] and data 
encoding [32-35]. Considering that all the data information being 
encrypted would be costly, reasonably encrypting part of the data 
to minimize encryption costs while guaranteeing the desired 
estimated performance is the objective of the data scheduling-
based encryption mechanism. The data encoding-based encryption 
mechanism involves encrypting the original data into a codeword 
by using a key, and the client can restore the original data to the 
maximum extent possible through the decryption process. 
Apparently, the key is unknown to the eavesdropper, which results 
in the eavesdropper obtaining useless information. In brief, the data 
encoding-based encryption mechanism encrypts data at all instants, 
which leads to improved security performance but requires the 
allocation of additional computational and communication 
resources. Unfortunately, the aforementioned research results are 
all based on 1-D systems, and the development of EDM for 2-D 
systems deserves intensive research. Considering the 
characteristics of the encryption mechanism based on data 
compression encoding, the challenge of collaboratively designing 
the dynamic ETM and EDM for 2-D systems, specifically, to 
alleviate the network burden while ensuring the security of the 
systems is an open problem that merits investigation, which is 
another motivation of our research. 

We are committed to investigating the filtering algorithm design 
for 2-D systems under dynamic ETM and EDM in response to the 
previously demonstrated issue. The challenges encountered mainly 
include the following aspects:1) How to establish the ETM and 
EDM within the framework of 2-D systems; 2) How to evaluate 
the impact of the ETM nd EDM on system security; 3) How to 
analyze the performance of the client’s filtering system under the 
influence of dynamic ETM and EDM. To address the 
aforementioned challenges, the contributions are summarized: (1) 
A positive definite and bounded dynamic auxiliary variable is 
designed using the stability criterion of 2-D systems, which serves 
as the foundation for proposing a bidirectional evolutionary 
dynamic ETM; (2) For the first time, the EDM is provided for 

potential eavesdropping attacks in 2-D systems, and the encryption 
parameters are quantitatively analyzed to enable the divergence of 
the eavesdropper's filtering error dynamics; (3) Based on the 
developed dynamic ETM and EDM, the client’s filter gains are 
obtained, which guarantee the controlled output error is 
exponentially ultimately bounded in the mean-square sense. 

  The rest of this paper is organized as follows: In Section 2, the 
dynamic ETM and EDM based on bidirectional evolutionary 
mechanisms are proposed. In Section 3, the effect of encryption 
parameters on the eavesdropper is analyzed, and boundedness 
criterion are deduced to ensure that the FESs of client are bounded. 
Section 4 illustrates the effectiveness of the proposed dynamic 
ETM and EDM, as well as filtering algorithms, with the help of 
several practical examples. Section 5 presents conclusions and 
discusses potential development directions. 

II. PRELIMINARIES 

Sensor

Plant

Encrypoter

DecryptorClient’s filter

Eavesdropper’s 
filter

( , ) 1 ( , 1) 2 ( 1, )

( , ) ( , ) ( , )           
u v u v u v
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
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Fig. 1. Diagram of 2-D systems structure under dynamic ETM 
and EDM 

Consider the discrete 2-D systems [18] indicated by the FM-
II model in a finite horizon as follows:  

 

[1] [2]
( 1, 1) ( 1, ) ( 1, ) ( , 1) ( , 1)

[1] [2]
( 1, ) ( 1, ) ( , 1) ( , 1)

( , ) ( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , )

u v u v u v u v u v

u v u v u v u v

u v u v u v u v u v

u v u v u v

x x x

w w
y x
z x



     

   

  

 


 
 

 

 

 



, , [0, ]u v    (1) 

where   is a given positive integer. The parameters u  and v  
denote generalized time variables, signifying either time itself or 
variables that exhibit characteristics which change with time.

( , )
xn

u vx   represents the systems state vector, ( , )
yn

u vy  is 

the measurement output, ( , )
zn

u vz   is the controlled output, 

( , )
wn

u vw   and ( , )
n

u v
  denote the process noise and 

measurement noise, respectively, both of them are zero-mean 
Gaussian white noise sequences with variances 0TW  
and 0TV   , respectively. [1]

( , )u v  , [2]
( , )u v  , [1]

( , )u v  , [2]
( , )u v  , 

( , )u v  , ( , )u v   and ( , )u v   are known time-varying matrices with 
proper dimensions. With respect to the distinctive evolutionary 
properties (1) of the 2-D system, the current system state ( 1, 1)u vx    
always consists of the past state ( 1, )u vx   and ( , 1)u vx   . Therefore, 
to be concise, the generalized temporal characteristics of the 2-D 
systems are represented by the transversal line {( , )| }j u v j u v    . 

In addition, the initial states, ( ,0)ux  and (0, )vx  are independent of 
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other variables, and their mean values obey the following 
distribution:  
  ( ,0) 1( )ux u   (0, ) 2 ( ) ,vx v   ,u v , 

where 1( )u  and 2 ( )v  are known vectors with 1 2(0) (0)  .  

A. Dynamic event-triggered mechanism 
Some measures are necessary to organize data transmission 

rationally in order to alleviate the communication burdens. The 
ETM is one of the most prevalent methods for allocating 
network resources, which prompts us to develop the dynamic 
ETM in the context of 2-D systems as shown in Fig. 1. Firstly, 
the bidirectional time series is defined as follows: 

( , ) ( , ) {( , ) | , } {( , ) | , }
( , ) ( , )     
u v u v u v u u v v u v u u v v
u v u v u u and v v

     
    


. 

Furthermore, we present the following triggering sequence to 
indicate the instants that the measurement output is released: 

0 0 1 1(0,0) ( , ) ( , ) ( , )   [1 )r ru v u v u v r          , 
where ( , )r ru v  stands for the r-th triggering instant. The update 
of the triggering sequence is determined by the rule (2). In the 
case that (2) holds, the measurement output of the current 
instant is allowed to be transmitted through the communication 
network, and the triggering instant is updated accordingly. 
Conversely, the filter follows the measurement output from the 
latest triggering instant. 

1 1 ( , ) ( , ) ( , ) ( , )
1( , ) inf ( , ) | ( , ) ( , ),  T

r r r r u v u v u v u vu v u v u v u v l l  
 

 
     

 
, (2) 

where ( , ) ( , ) ( , )r ru v u v u vl y y  . ( , )u v  is a positive definite matrix.

( , )
y

r r

n
u vy   represents the latest released measurement output. 

 and   are given positive constants, in addition, the update 
rule of the dynamic auxiliary variable ( , )u v  is characterized as 
follows: 
 ( , ) 1 ( , 1) 2 ( 1, ) ( , ) ( , ) ( , )

T
u v u v u v u v u v u vl l           , (3) 

where 10 1/ 2  , 20 1/ 2  . The bounded initial 
conditions satisfy ( ,0) 0u   and (0, ) 0v   for all ,u v . 

We now propose the following lemmas and proposition, 
which reveal the essential property of the dynamic auxiliary 
variable ( , )u v . 
Lemma 1 [4]: Considering the FM-II model as follows: 

( 1, 1) 1 ( 1, ) 2 ( , 1) 1 ( 1, ) 2 ( , 1)u v u v u v u v u vx A x A x B w B w         ,    (4) 
if there exist scalars 1  and 2  satisfying 1 2 1   , as well as 
positive definite matrix P such that the following inequality 
holds: 
 0TA PA Q  ,  
where 1 2[    ]A A A  and 1 2{ , }Q diag P P  , then, the 2-D 
systems (4) is asymptotically stable. 
Lemma 2 [36]: (Principle of Double Induction) Suppose that 

( , )u v  is a proposition for all ,u v . If the molecules ( 1, )u v  

and ( , 1)u v  of ( , )u v  as well as the initial condition (0, )v  and 

( ,0)u  satisfy the following steps for all ,u v : 

1) (Initial step) (0, )v  and ( ,0)u  are true for all ,u v ; 
2) (Inductive step) if the molecules ( 1, )u v  and ( , 1)u v  are 

true, then ( , )u v  is true. 
Then, ( , )u v  is true for all ,u v . 

Lemma 3: Let the positive scalars  ,  , 1  and 2  be given. 
If initial value satisfy ( ,0) 0u   and (0, ) 0v  ( ,u v ), then,

( , ) 0u v   holds for all ,u v . 

Proof: Define the set of time sequence ( , )0
( , ) u vu v
u v 

 
   , 

where ( , ) 1 1{( , ) | ( , ) ( , ) ( , )}u v r r r ru v u v u v u v    . According to 
(2), one has 
 ( , ) ( , ) ( , ) ( , )(1 )T

u v u v u v u vl l      . (5) 
Combine the (3) and (5), which yields 

 ( , ) 1 ( , 1) 2 ( 1, )( ) ( )u v u v u v         , (6) 

where (1 (1 ))   . Moreover, the new variable ( , )u v  is 
constructed that adheres to the following evolutionary rule: 
 ( , ) 1 ( , 1) 2 ( 1, )( ) ( )u v u v u v         , (7) 

and the initial conditions satisfy (0, ) (0, ) 0v v    and ( ,0)u 

( ,0) 0u  . With the help of the following 2-D mathematical 
induction one can obtain Lemma 3 is established. Initial step. 
For  0,  0,u v    or  0,  0,v u   , it is straightforward 
to observe that (0, ) (0, )v v   and ( ,0) ( ,0)u u  . Inductive step. 
Our aim is to prove that ( , ) ( , )u v u v   holds under the 
assumption that ( , 1) ( , 1)u v u v    and ( 1, ) ( 1, )u v u v    are true. 
Based on (6) and (7), it is easy to obtain that ( , ) ( , )u v u v  . Then, 
assuming 1 2 1/ 2   , it follows from Lemma1 and (7) , one 
can deduce ( , )u v  is asymptotically stable and ( , ) 0u v  , which 
can be immediately infer that ( , ) ( , ) 0u v u v    for all ,u v . 
Remark 1: According to the Lemma 3 and the triggering rule 
(2), compared with the static ETM under the same conditions, 
the designed dynamic ETM provides a lower triggering 
frequency and can more effectively alleviate the burdens on the 
communication network. In addition, when the parameter   
tends to infinity, the dynamic ETM will degenerate into the 
static one. 
Proposition 1：For the update rule (3), let the parameters 

1 2, (0,1 2)    , the bounded initial value ( ,0) 0u    and 

(0, ) 0v   ( ,u v  ), as well as positive integer 0k   be given, 

then, ( , )u v  and ( , )u vl are bounded. 
Proof: According to the update rule (3) and Lemma 3, one has 

( , ) 1 ( , 1) 2 ( 1, )0 u v u v u v          . It can be further concluded 

that ( , ) ( , 1) ( 1, )0 u v u v u v         , where 1 2max{ , }    .  

For a given positive integer 0k , the following relationship is 
obtained by utilizing an iterative procedure: 
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k
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 


 





,                             (8) 

it is easy to deduce ( , )u v  is bounded and 
min ( , )

1(1 )
( ) (1 2 )u v


 


  
 

is an asymptotic upper bound for ( , )u vl . 

Remark 2: Indeed, Lemma 3 and Proposition 1 analyze the 
sufficient conditions that guarantee the boundedness of ( , )u v

( i.e., 1/ 2  ), which coincides with stability criterion for 2-D 
systems presented in Lemma 1. For the given initial condition 

( ,0) 0u   and (0, ) 0v   for all ,u v , the parameters 1  and 

2  render ( , )u v  gradually converge to 0 if the two terms on the 
right side of the update rule (3) are removed. This prevents 

( , )u v  from diverging to avoid invalidating the triggering 
condition (2). Furthermore, the only relevant literature 
published for the investigation of dynamic ETM for 2-D 
systems is found in [24, 25]. Compared with the literature [24], 
the triggering condition (2) presented in this paper introduces a 
fixed parameter   to further reduce the triggering frequency 
and improve flexibility. In [25], the design idea of the dynamic 
auxiliary variable is based on the exponential convergence, and 
the corresponding parameters 1 , 2  and   need to meet 
specific conditions mutually. Our developed parameters 1  
and 2  are simple and easy to implement, compared to the 
method of literature [25], thus reducing the design complexity 
to a certain extent. 

B. Encryption-decryption Mechanism 
Considering the vulnerability of communication networks 

and data privacy, preventing eavesdropping attacks and 
improving the security of networked systems are key starting 
points for the design of the EDM. The developed EDM is 
committed to enhancing the security of data transmission and 
the reliability of the filter, primarily through the following steps: 
1) Based on the dynamic ETM, the variable ( , )r ru vy  is encrypted 

by utilizing the an encoding mechanism and transmitted 
through the network; 2) A decoder-based decryption 
mechanism is employed to maximize the restoration of ( , )r ru vy . 

Inspired by the encoding and decoding mechanisms proposed 
in [32-34], the following bidirectional index-based EDM for 2-
D systems is developed: 

Encryption mechanism: 

 

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , ) ( , )

( , 1) ( , ) ( , ) ( , ) ( , )

(0, ) ( ,0) 0

( )

         ,

r r

r r

u v u v u v u v

u v u v u v u v u v

u v u v u v u v u v

v u

y q y

q y y

q q
q q g u v







 

   


  
    





M N
, (9) 

where ( , )
yn

u vq   and ( , )
yn

u vy 
   denote the internal state of 

the encoder and the encrypted output, respectively. 0
yng   is 

the given initial state of ( , )u vq  without the element 0. ( )p   
represents the quantization function that is subsequently 
defined. ( , )u vM  and ( , )u vN  are known time-varying full rank 

matrices with proper dimensions. ( , )u v  is a known time-
varying scaling factor, representing encryption parameters that 
are inaccessible to the eavesdropper. ( , )

yn
u v   represents 

the decoding error that will be subsequently interpreted. The 
encryption encoder employs a quantizer structure with the 
following form: 

[ ] [ ]( ) { , , 0, 1, 2, }, {1, 2,3, , }p p p p yp n              , 

where ( )p   represents the p-th quantization function. The 

known positive scalar p  indicates the quantization interval 

and [ ]
p
  denotes the quantization level. Defining ( , )u vy 

( , ) ( , ) ( , )r ru v u v u vq y  , it is easy to obtain that [ ] [ 1]
( , )p u v py     , 

and the p-th quantization level satisfies the following 
probability distribution: 

[ ]
,( , ) ,( , ) ,( , )

[ 1]
,( , ) ,( , ) ,( , )

Pr{ ( ) } 1

Pr{ ( ) }
p u v p p u v p p u v

p u v p p u v p p u v

y y

y y





 

 

    


  

 
 

, 

where [ ]
,( , ) ,( , ) ,( , )( ) / ( ) /p u v p u v p p p u v p py y          ( ,( , )0 1p u v  ).  

Furthermore, the decoding error of the p-th quantization 

function satisfies the following probability distribution: 

,( , ) ,( , ) ,( , ) ,( , )Pr{ } Pr{ } Pr{ } 1p u v p u v p p p u v p u vy           

and ,( , ) ,( , ) ,( , ) ,( , )Pr{ } Pr{ ( 1) } Pr{ ( 1)}p u v p u v p p p u v p u vy            .  

Then, we can directly calculate the mean value and variance 

of the ,( , )p u v  as  

,( , ) ,( , ) ,( , ) ,( , ) ,( , ){ } (1 ) ( 1) 0p u v p p u v p u v p u v p p u v          
and  

2 2 2
,( , ) ,( , ) ,( , ) ,( , ) ,( , ){ } ( ) (1 ) ( ( 1))p u v p p u v p u v p p u v p u v           

2 2
,( , ) ,( , )(1 ) / 4p p u v p u v p      , 

therefore, it can be immediately inferred that ( , ){ } 0u v   and 
2 2 2

( , ) ( , ) 1 2{ } { / 4, / 4,..., / 4}
y

T
u v u v ndiag       . 

Remark 3: It is assumed that the systems is maximally 
threatened by eavesdropping, which means that the system 
parameters [1]

( , )u v , [2]
( , )u v , [1]

( , )u v , [2]
( , )u v , ( , )u v  and ( , )u v , the 
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noise statistics characteristics W  and V , as well as encrypted 
output ( , )u vy  are publicly available to both the client and the 

eavesdropper. The encryption parameters ( , )u vM  and ( ,u v）N , 

the quantization function ( )p  , and internal state of the 

encoder ( , )u vq  are not available to the eavesdropper, but are 
available to the client. In addition, the system’s initial values 

1( )u  and 2 ( )v  serve as internal variables of system, which 
are difficult to access directly for both the eavesdropper and the 
client. 
Decryption mechanism: 

Based on the encryption mechanism, the following 
decryption mechanism for client is designed: 

 
( , 1) ( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , )

(0, ) ( ,0) 0

ˆ

         ,

u v u v u v u v u v

u v u v u v

v u

y y
g u v

 



 

   


 
    


M N

, (10) 

where ( , )
yn

u v   and ( , )ˆ yn
u vy   represent the internal state 

of the decoder and the decrypted output, respectively, both of 
them are available to the client. Suppose that the client and the 
eavesdropper use the identical recursive filter structure as 
follows: 
Client： 

 

[1] [2]
( , ) ( , 1) ( , 1) ( 1, ) ( 1, )

( , ) ( , ) ( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , )

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ( )
ˆ

u v u v u v u v u v

u v u v u v u v u v u v

u v u v u v

x x x

x x y x
z x


   

 

  
   
 



 




, (11) 

Eavesdropper: 

 
[1] [2]

( , ) ( , 1) ( , 1) ( 1, ) ( 1, )

( , ) ( , ) ( , ) ( , ) ( , ) ( , )( )
u v u v u v u v u v

u v u v u v u v u v u v

x x x

x x y x


   

 

  


  

  
  

 

 
, (12) 

where ( , )ˆ u vx  and ( , )u vx  denote the estimates of the ( , )u vx  at the 
client side and the eavesdropper side, respectively. ( , )ˆ u vz  is the 
estimate of the controlled output ( , )u vz  at the client side. ( , )u v  
and ( , )u v  represent filter gains at the client side and the 
eavesdropper side, respectively. It is important to emphasize 
that, due to the EDM, the client estimates the internal state of 
systems based on ( , )ˆ u vy , while the eavesdropper uses ( , )u vy  to 
estimate the actual state of systems. Then, we define the 
filtering error dynamics of the client and the eavesdropper as 

( , ) ( , ) ( , )ˆu v u v u ve  x x  and ( , ) ( , ) ( , )u v u v u ve x x   , respectively. The 
controlled output error of the client is defined as 

( , ) ( , ) ( , )ˆu v u v u vz z  . According to (1), (3), (9), (10), (11) and 
(12), one has 

  

[1] [2] [1]
( , ) ( , 1) ( , 1) ( 1, ) ( 1, ) ( , 1) ( , 1)

[2]
( 1, ) ( 1, ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , )

u v u v u v u v u v u v u v

u v u v u v u v u v u v u v u v u v

i j u v u v

e e e

l
e



 
     

 

   
    
 

  

  

 

 
, (13) 

and 

[1] [2] [1] [2]
( , ) ( , 1) ( , 1) ( 1, ) ( 1, ) ( , 1) ( , 1) ( 1, ) ( 1, )

( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )

u v u v u v u v u v u v u v u v u v

u v u v u v u v u v u v u v u v u v u v

e e e
q l

 

 
          

    

        

     ,    (14) 

where [1] [1] [1]
( , 1) ( , 1) ( , ) ( , ) ( , 1)u v u v u v u v u v        , 

[2] [2] [2]
( 1, ) ( 1, ) ( , ) ( , ) ( 1, )u v u v u v u v u v       , [1] [1] [1]

( , 1) ( , 1) ( , ) ( , ) ( , 1)u v u v u v u v u v       , 
[2] [2] [2]

( 1, ) ( 1, ) ( , ) ( , ) ( 1, )u v u v u v u v u v       , [1] [1] [1]
( , 1) ( , 1) ( , ) ( , ) ( , 1)u v u v u v u v u v        , 

[2] [2] [2]
( 1, ) ( 1, ) ( , ) ( , ) ( 1, )u v u v u v u v u v        , [1] [1] [1]

( , 1) ( , 1) ( , ) ( , ) ( , 1)u v u v u v u v u v        , 
[2] [2] [2]

( 1, ) ( 1, ) ( , ) ( , ) ( 1, )u v u v u v u v u v        . 
Remark 4: Comparing the FESs (13) and (14), the influence of 
the internal state ( , )u vq  on the filtering error dynamics ( , )u ve  is 
avoided due to the client employs the decryption mechanism 
(10). In addition, the variables ( , )u v , ( , )u vl  and ( , )u v  are 
bounded, which are necessary conditions for the filter gains 

( , )u v  to ensure convergence of the FESs (13) at the client side. 
Remark 5: In this paper, we propose an encryption and 
decryption mechanism tailored to the characteristics of 2-D 
systems, which provides the following advantages: 1) The 
proposed EDM leverages encoding and decoding techniques to 
achieve data compression, facilitating digital data transmission; 
2) The decoding error ( , )u v with its stochastic properties, as 

well as encryption parameters ( , )u vM  and ( , )u vN  are introduced 
into the encryption mechanism (9), which further ensures the 
security of the system; 3) The addition of the scaling function 

( , )u v  provides more flexibility. 
III. Main Results 

A. Encryption Parameters Design of Eavesdropper’s Filter 
The main purpose of this section is to design suitable 

encryption parameters ( , )u vM and ( , )u vN such that ( , )u vq  

diverges, thereby guaranteeing that the encrypted output ( , )u vy  
at the eavesdropper is unavailable. 
Assumption 1: Considering the energy constraints, the 
encryption matrices ( , )u vM  and ( , )u vN  satisfy the following 
inequalities relationships: 

 
22 2

( , )u vm I m I M , 
22 2

( , )u vn I n I N , (15) 

where m , m , n  and n  are positive scalars. 

Theorem 1: Let the parameter satisfies 
1

( ,0)um q


   

{ }ntr  ( 1  ) and ( , ) 0u v   be given, where { }tr  denotes 

the trace of matrix  . then the inequality ( , ) ( ,0)
M

u M uq q ,

( , )u v  holds based on encryption rule (9), where M  is a 
positive integer. Furthermore, for the eavesdropper’s FESs (14), 
if the condition ( , )u v  0  holds (i.e., there exists ( , ) 0u v  ), 

we can conclude that ( , ){ }u ve is divergent. 
Proof: Depending on the encryption rule (9) and the property 
of the matrix norm, it is easy to establish the following 
relationship: 

( , 1) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )u v u v u v u v u v u v u v u v u vq q q      M N M N
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( , ) { }u vm q ntr   .      (16) 

Then, the ( , ) ( ,0)
M

u v M uq q   holds for all ,u v , which 
can be summarized by mathematical induction as follows: Initial 
step. For 0v  , it follows that (16) and m    

1

( ,0) { }uq ntr


 , it is straightforward to deduce that 

( ,1) ( ,0)u uq q  is true. Inductive step. Assuming 
1

( , 1) ( ,0)
M

u M uq q 
   holds for 1v M  , from (16) and 

1

( ,0) { }um q ntr


    , it is not difficult to calculate that 

 1
( , ) ( , 1) ( ,0){ } { }M
u M u M uq m q ntr m q ntr 

      , 
1 1

( ,0) ( ,0)( { }) { }M
u uq ntr q ntr 

       
1

( ,0) ( ,0)( 1) { }M M M
u uq ntr q       .        (17) 

It has been proven that ( , ) ( ,0)
M

u v M uq q  ( , )u v , 

which implies that ( , )u vq  is divergent. 

Subsequently, computing the mathematical expectation of 
(14), one has 
 [1] [2]

( , ) ( , 1) ( , 1) ( 1, ) ( 1, ){ } { } { }u v u v u v u v u ve e e            

( , ) ( , ) , ) ( , ) ( , ){ } { }u v u v u v u v u vq l （   .    (18) 
It follows from (18) that 

( , ) ( , ) ( , ) ( , ) ( , ){ } { }u v u v u v u v u vq l     
[1] [2]

( , 1) ( , 1) ( 1, ) ( 1, ) ( , ){ } { } { }u v u v u v u v u ve e e            ,  (19) 

then we assume ( , ){ }u vE e e  , where e represents the 

existence of a positive scalar. According to the boundedness of 
( , )u vl  in Proposition 1, it can be further concluded from (19) 

that 

( , ) ( , ) ( , )lim { }u v u v u vu v
q

 
  

  [1] [2]
( , 1) ( 1, ) ( , )

1( 1) (1 ) lim
(1 2 )u v u v u vu v

e 
    

    


 


    , (20) 

based on (20), this conflicts with the assumption that 

( , ){ }u vE e e   in the case of ( , )u v  0 , therefore, the

( , ){ }u ve is divergent. The proof is thus completed. 

Remark 6: If 
1

( ,0) { }um q ntr


   ( 1  ) holds, it follows 

that the ( , )u vq  is divergent. Therefore, the LMI obtained by the 

eavesdropper according to Lyapunov stability theory is 
unsolvable, as the difference along the FESs of the 
eavesdropper is positive definite. If the eavesdropper desires 

( , ){ }u ve  to be bounded, then the filter gains should satisfy 

( , )u v  0  as early as possible. Taking into account noise and 
the effect of unknown initial values, the estimation of the open-
loop FESs becomes unavailable. In addition, we can set the 
parameter   as large as possible to enable ( , )u vq  to diverge 

faster and improve the system’s security. In conclusion, under 

the encryption mechanism (9), the eavesdropper cannot access 
the actual state of the system, regardless of whether the filter 
gains ( , )u v  can be calculated or not. 
Remark 7: In contrast to the encoding-decoding schemes 
developed in the literature [34] and [35], Theorem 1 presents a 
design method of the encryption parameters that renders 
eavesdropping attacks invalid and quantitatively analyzes the 
effects of these parameters. Moreover, for another filter 
structure [1] [2]

( , ) ( , 1) ( , 1) ( 1, ) ( 1, ) ( , 1) ( , 1)(u v u v u v u v u v u v u vx x x y       
    

( , 1) ( , 1) ( 1, ) ( 1, ) ( 1, ) ( 1, )) ( )u v u v u v u v u v u vx y x       
    , which is common 

in 2-D systems, following the same analytical approach as 
Theorem 1, the ( , ){ }u ve  is also divergent when ( , ) 0u v  . 

Remark 8: In actual control practice, we can initially select the 
upper and lower bounds for ( , )u vN , non-zero elements for the 

initial encoder state ( ,0)uq , and the scalar  ( 1)  . 

Subsequently, according to
1

( ,0) { }um q ntr


   , it is 

straightforward to calculate m , thereby obtaining a lower 

bound mI  for ( , )u vM . 
B. Filtering Performance Analysis of Client’s Filter 
Theorem 2: For the client’s FESs (13) subject to the dynamic 
ETM (2) and EDM (9)-(10), let the scalars 1 2, (0,1 2)   ,

(1 2,1) ,  ,   as well as filter gains ( , )u v  be given, if 

there exist positive definite symmetric matrices ( 1, 1)u v  , 

( 1, )u v  and ( , 1)u v , positive scalars 1,( 1, )u v  , 2,( , 1)u v    and   
such that the following inequality hold: 

 

11 12 13

22 23

33

44

55

0 0
* 0 0

0* * 0 0
* * * 0
* * * *

   
   
   
 

 
  

  
 

 




, (21) 

where [1] [1]
11 ( 1, ) ( 1, 1) ( 1, ) ( 1, )( ) (1 )T

u v u v u v u v            , 
[1] [2]

12 ( 1, ) ( 1, 1) ( , 1)( )T
u v u v u v        , [1]

13 ( 1, ) ( 1, 1) ( 1, 1)( )T
u v u v u v         , 

[2] [2]
22 ( , 1) ( 1, 1) ( , 1) ( , 1)( ) (1 )T

u v u v u v u v            ,
[2]

23 ( , 1) ( 1, 1) ( 1, 1)( )T
u v u v u v         , 

33 ( 1, 1) ( 1, 1) ( 1, 1) 1,( 1, ) ( 1, 1)
2(1 ) ( )T

u v u v u v u v u v 
                , 

44 1 1,( 1, )(2 1 )u v        , 55 2 2,( , 1)(2 1 ) /u v        , 
[1] [1] [2] [2]

max ( 1, ) ( 1, 1) ( 1, ) ( , 1) ( 1, 1) ( , 1){( ) ( ) } { }T T
u v u v u v u v u v u v tr W                 

max ( 1, 1) ( 1, 1) ( 1, 1) ( 1, 1) ( 1, 1){ } { }T T
u v u v u v i j i j tr V                

max ( 1, 1) ( 1, 1) ( 1, 1) 1,( 1, ) 2,( , 1)
2{ } { } ( )T

u v u v i j u v u vtr    
             , 

then the FESs of client (13) are exponentially ultimately 
bounded in mean square sense. 
Proof: To guarantee that the FESs of client (13) are 
exponentially ultimately bounded in the mean square sense, we 
define the Lyapunov-like function as follows 
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 [1] [2]

( , ) ( , ) ( , )u v u v u vV V V   (22) 

with [1]
( , ) ( , ) ( , ) ( , ) ( , )(1 )T
u v u v u v u v u vV e e    , [2]

( , ) ( , ) ( , ) ( , ) ( , )(1 )T
u v u v u v u v u vV e e    . 

Considering the following index: 
[1] [2] [1] [1] [2] [2]

( , ) ( 1, 1) ( 1, ) ( , 1) ( 1, 1) ( 1, ) ( 1, 1) ( , 1)u v u v u v u v u v u v u v u vV V V V V V V V                 
[1] [2]

( , ) ( , )u v u vV V    , 
then the difference of (22) can be calculated as: 

[1]
( , ) ( 1, 1) ( 1, 1) ( 1, 1) ( 1, 1){ } { (1 )T
u v u v u v u v u vV e e              

( 1, ) ( 1, ) ( 1, ) ( 1, )(1 ) }T
u v u v u v u ve e       ,                 (23)                                     

( 1, 1) ( 1, )

1 ( 1, ) 2 ( , 1) ( 1, 1) ( 1, 1) ( 1, 1) ( 1, )

(1 )( )

(1 )( )
u v u v

T
u v u v u v u v u v u vl l

  

      
  

        



      , (24) 

2,( , ) ( 1, 1) ( 1, 1) ( 1, 1) ( 1, 1){ } { (1 )T
i j u v u v u v u vV e e              

( , 1) ( , 1) ( , 1) ( 1, )(1 ) }T
u v u v u v u ve e       ,                (25)                                   

( 1, 1) ( , 1)

1 ( 1, ) 2 ( , 1) ( 1, 1) ( 1, 1) ( 1, 1) ( , 1)

(1 )( )

(1 )( )
u v u v

T
u v u v u v u v u v u vl l

  

      
  

        



      , (26) 
Moreover, by taking into account the triggering condition (2), 

it can be easily seen that there exist positive scalars 1,( 1, )u v   and 

2,( , 1)u v   such that the following inequalities hold: 

 1,( 1, ) ( 1, ) ( 1, ) ( 1, ) ( 1, )( (1 ) ) 0T
u v u v u v u v u vl l           , (27) 

 2,( , 1) ( , 1) ( , 1) ( , 1) ( , 1)( (1 ) ) 0T
u v u v u v u v u vl l           . (28) 

Subsequently, with the help of the elementary inequality 
1   ( 0)T T T Ta b b a a a b b        , where   is a positive 

scalar, a  and b  are vectors with proper dimensions. Then, the 
coupling term can be rewritten in the following form: 

( 1, 1) ( 1, 1) ( 1, 1) ( 1, 1) ( 1, 1) ( 1, 1)

( 1, 1) ( 1, 1) ( 1, 1) ( 1, 1) ( 1, 1) ( 1, 1)

1
( 1, 1) ( 1, 1) ( 1, 1) ( 1, 1) ( 1, 1) ( 1, 1) ( 1,

T T T
u v u v u v u v u v u v

T T
u v u v u v u v u v u v

T T T
u v u v u v u v u v u v u v

l

l





  

           

           


            





 

 

 

 

 

   1)  

( 1, 1) ( 1, 1) ( 1, 1) ( 1, 1) ( 1, 1)
T T
u v u v u v u v u vl l             ,                              (29)                       

Then, we define ( , ) ( 1, ) ( , 1) ( 1, 1) ( 1, )
T T T

u v u v u v u v u ve e l     
   

( , 1)

T

u v 

 , and consider (23)-(29), which yields 

[1] [2]
( , ) ( 1, ) ( , 1) ( , ) ( , ){ } { ( )} T
u v u v u v u v u vV V V           ,           (30)    

where 

11 12 13

22 23

33

44

55

0 0
* 0 0
* * 0 0
* * * 0
* * * *

   
   
   
 

 
  

  
 

 




,  

[1] [1]
11 ( 1, ) ( 1, 1) ( 1, ) ( 1, )( ) (1 )T

u v u v u v u v            , 
[1] [2]

12 ( 1, ) ( 1, 1) ( , 1)( )T
u v u v u v        , [1]

13 ( 1, ) ( 1, 1) ( 1, 1)( )T
u v u v u v         ,  

[2] [2]
22 ( , 1) ( 1, 1) ( , 1) ( , 1)( ) (1 )T

u v u v u v u v            , 
[2]

23 ( , 1) ( 1, 1) ( 1, 1)( )T
u v u v u v         ,  

33 ( 1, 1) ( 1, 1) ( 1, 1) ( 1, 1)(1 ) (2 )T
u v u v u v u v               , 

44 1 1,( 1, )(2 1 ) /u v        , 55 2 2,( , 1)(2 1 )u v        , 

If 0  , based on (30) and (22), one has 
( 1, 1){ }u vV    

[1] [2]
( 1, ) ( , 1){(1 )( )}u v u vV V       
[1] [2] [2] [1]

( 1, ) ( , 1) ( 1, ) ( , 1){(1 )( ) (1 )( )}u v u v u v u vV V V V             

( 1, ) ( , 1){(1 )( )}u v u vV V      .                                      (31)  
Similarly, by employing the identical iterative approach 

outlined in (8), for any sufficiently large positive integer  , it 
can be further deduced that 

( , ){ }u vV  

1 2
( , )

1 (2 ) { } (2 ) (2 ) ...
2 u vu v

V  
 

           


  

( , )
1 1 (2 )(2 ) { }
2 1 2u vu v

V
 


  

 






  ,                        (32) 

where 1   . It follows from (32) that    2

1 ( , ) ( , )u v u ve V   , 

where 1 min ( , )( )u v    . Then, we have  2( , ) ( , )
1

1 { }u v u ve V

   

( , )
1 1

1 1(2 ) { }
2 (1 2 )u vu v

V
  

 






 . Obviously, if 0   

holds, the client’s FESs (13) are exponentially ultimately 
bounded in the mean-square sense. The proof is thus completed. 
Theorem 3: For the client’s FESs (13) with the dynamic ETM 
(2) and EDM (9)-(10), let the scalars 1 2, (0,1 2)   , 

(1 2,1) ,  , and   be given. If there exist positive definite 
symmetric matrices ( 1, 1)u v  , ( 1, 1)u v  , ( 1, )u v  and ( , 1)u v , 
positive scalars 1,( 1, )u v  , 2,( , 1)u v   and   such that the following 
inequalities hold: 

 
[1] [2]

[3] 0
*

  
    

, (33) 

 ( , ) ( , ) ( , )
T
u v u v u v   , (34) 

where [1] [1] [1] [1] [1] [1]
11 22 33 44 55{ , , , , }diag       , 

[2]
11
[2]
21

[2]
( 1, 1) ( 1, 1)

0
0

0 0
0 0

u v u v   

 
  
     
 
 
 

  , [3]
( 1, 1) ( 1, 1){ , }u v u vdiag         , 

[1]
11 ( 1, )(1 ) u v      , [1]

22 ( , 1)(1 ) u v     , [1]
33 ( 1, 1)(2 ) u v      , 

[1]
44 1 1,( 1, )(2 1 )u v       , [1]

55 2 2,( , 1)(2 1 )u v       , 
[2] [1] [1]
11 ( 1, ) ( 1, 1) ( 1, ) ( 1, 1) ( 1, 1)( ) ( )T T T

u v u v u v u v u v              , 
[2] [2] [2]
21 ( , 1) ( 1, 1) ( , 1) ( 1, 1) ( 1, 1)( ) ( )T T T

u v u v u v u v u v              , and the 

other symbols are defined in Theorem 2. Then, ( , )u v is 
exponentially ultimately bounded in the mean square sense, and 
the filter gains ( , )u v  can be given as: 

1
( , ) ( , ) ( , )( )T
u v u v u v

   . 
Proof. By utilizing the Schur complement lemma and 
performing a congruent transformation on (21) with the matrix
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 ( 1, 1) ( 1, 1), , , , ,u v u vdiag I I I I      , then defining ( , ) ( , ) ( , )
T
u v u v u v   , 

it is easily to shown that (33) holds. Furthermore, by combining 
(13) and (34), it is not difficult to obtain that 

( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )

( , ) ( , )

{ } { } { }

1 1 (2 ){ } (2 ) { }
2 1 2

T T T
u v u v u v u v u v u v u v u v

u v u vu v

e e e e

V V
 

 


  

 







     

  , 

which implies that the controlled output error ( , )u v  is 
exponentially ultimately bounded in the mean square sense with 

an asymptotic upper bound 
1 2

 

. The proof is thus completed. 

Remark 9: The client’s filter gains design method 
developed in this paper is accomplished with the help of LMI 
technology, and the algorithms based on the standard LMI 
systems have polynomial time complexity, e.g., the 
computational complexity of LMI is defined as 

3( log( / ))   [37], where   denotes the row size,   
represents for the number of scalar decision variables,   is 
a data-dependent scaling factor, and   is relative accuracy 
set for algorithm. In addition,  ,  ,   and   are the 
same for each instant of the (33)-(34). Therefore, the 
computational complexity of Theorem 3 is easily derived by 
the method presented in [37]. Moreover, Theorem 3 can be 
solved offline since the matrices of the time-varying system 
are known. 

In view of Theorem 2 and 3, we summarize the the design of 
encryption and decryption parameters, as well as the filtering 
algorithm as follows:  
Encryption parameters design and filtering algorithm for 
2-D systems 

Step 1: Set the initial value ( , )u vq  for  0,  0,u v   or 

 0,  0,v u   , the positive scalar 1   and n , as 

well as  ( {1,2,3, , })p yp n   . 

Step 2: Given   , 2 2 2
1 2{ / 4, / 4,..., / 4}

yndiag     , ( ,0)uq

and n , then, calculate 
1

( ,0) { }um q ntr


   . 

Step 3: Determine appropriate encryption rule (9). 
Step 4: Initialization ( ,0)ux , (0, )vx , ( ,0)ˆ ux , (0, )ˆ vx , ( ,0)u  and 

(0, )v  for  0,  0,u v    or  0,  0,v u    as 

well as parameters 1 , 2  ,   and  .
 

Step 5: For 1:u    
For 1:v   
Calculate filter gains of client ( , )u v  by applying 

Theorem 2, then, compute the ( , )ˆ u vx  and ( , )u ve  
End 

End 
Step 6: Stop. 

IV. NUMERICAL SIMULATIONS 
In this section, the effectiveness and superiority of the 

proposed filtering method is verified through two examples. 
Example 1: A practical metal strip process example is 

employed to verify the effectiveness of the proposed algorithm. 

Zero compression
separation

Metal strip







1

2

Roller

Spring

1f

f1f

 
Fig.2. Physical diagram of the metal rolling process. 

The metal rolling process depicted in Fig. 2 can be characterized 
by the following delayed differential system equation [38]: 

2

12
1 2

1( ) 1 ( )f t f t 
   

            
,         (35) 

where ( )f t  denotes the  -th actual roll-gap thickness,   
denotes the differentiation operator,   represents the 
aggregated mass of the roll-gap adjustment mechanism. Let 1  
represents the spring constant of the adjustment mechanism. 

2  is the hardness coefficient of the metal strip, and define 
  as the composite stiffness. Considering the effects of 

heterogeneous materials, the 1 2
( , )

1 2

(1 )u v


 
 

 


 characterizes 

the combined rigidity of both the metal strip and the rolling 
mechanism, where ( , ) 0.25cos(0.6( ))u v u v   .   means the 
force generated by the motor. 

By utilizing a backward difference scheme and choosing 
the sampling interval T , the equation (35) can be rewritten 
as follows: 

1 2 3 1( ) ( ) ( ) ( )f t T c f t c f t T c f t T          

4 1 5 1( ) ( )c f t c f t T c                            (36) 

where 1 2

2c
T





, 2 2c
T


 


, 2
3 2

1

( )c T
T





 


, 

4 2
1

2
( )

c
T


 


 


, 5 2
1( )

c
T


 





, 
2

2
2 ( )

Tc
T


 



. 

Define t vT  and 0 , then, the equation (36) can be 
constructed as the following state-space model: 

[1] [2]
( 1, 1) ( 1, ) ( 1, ) ( , 1) ( , 1)u v u v u v u v u vx x x        , 

where 

3 4 1 2 5

[1]
( 1, )

0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

u v

c c c c c



 
 
 
 
 
 
  

 , [2]
( , 1) 3 4 1 2 5

0 0 0 0 0
0 0 0 0 0

0 0 1 0 0
0 1 0 0 0

u v c c c c c

 
 
 
 
 
 
  

 , 

 ( , ) 1 1 1(( 1) ) ( ) ( ) (( 1) ) (( 1) ) T
u vx f v T f vT f vT f v T f v T        . 

Considering the parameters 50kg , 1T s , 1 300 /mmN  , 
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 [1]
( , ) 0.2 0.5sin(0.2( )) 0.3 0.4 0.5 0.4 T
u v u v   ,  

 [2]
( , ) 0.35 0.14 0.6 0.4 0.2 0.5sin(0.2( )) T
u v u v   , 

2 1000 / mmN  , ( , ) 0.64u v I , ( , ) 0.8u v I , ( , ) 1.02u v I . 

Setting the initial state as ( , ) 3.2cos( )sin( ) 3.4cos( 1)sin( )u vx u v u v   

3.14cos( )sin( ) 3.3cos( 1)sin( ) 3.65cos( 1)sin( ) Tu v u v u v   for [0   30]u  

and 0v  , ( , ) 3.2cos( )sin( ) 3.3cos( 1)sin( ) 3.14cos( )sin( )u vx u v u v u v 

3.3cos( 1)sin( ) 3.65cos( 1)sin( ) Tu v u v  for 0u   and [1   30]v . 
Moreover, the initial conditions of filter are set as ( ,0) (0, )ˆ ˆu vx x  

 ( ,0) (0, ) 0 0 0 0 0 T
u vx x     for ,u v . The initial values of  

dynamic auxiliary variables are set as ( ,0) (0, ) 0.4u v    for all 

,u v , and the remaining parameters are selected as 1 0.3  , 

2 0.2   and 0.4  . It is assumed that the process noise ( , )u vw  

and measurement noise ( , )u v  with variance 0.75W I  and 

0.82V I  for  , 0  20u v . Subsequently, suppose that

( , ) (1.73 0.2sin( ))u v u v I  M , ( , ) (0.98 0.2cos( ))u v u v I  N ,

0.2p   ( {1,2,3, , })yp n  , 1.2  , and 

( ,0) (0, ) 0 0.2 0.2u vq q g   0.2 0.2 0.2 T for all ,u v . Then, 

we can easily calculate that ( , ) 1.53 1.93u v M , ( , )0.78 1.12u v N , 

and the condition m   
1

( ,0) { }uq ntr


   is satisfied. 

 
Fig.3. The trajectories of 1,( , )u vx  and 1,( , )ˆ u vx  

 
Fig.4. The trajectories of 2,( , )u vx  and 2,( , )ˆ u vx  

 
Fig.5. The trajectories of 3,( , )u vx  and 3,( , )ˆ u vx  

 
Fig.6. The trajectories of 4,( , )u vx  and 4,( , )ˆ u vx  

 
Fig.7. The trajectories of 5,( , )u vx  and 5,( , )ˆ u vx  

 
Fig.8. The trajectory of the client’s filtering error ( , )u ve  

 
Fig.9. The trajectory of ( , ){ }u ve  

 
Fig.10. The event-triggered instants with different    

 
Fig.11. The ( , )u vMSFE  under different triggering conditions 
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The simulation results are displayed in Figs.3-11. The 
trajectories of ( , )u vx  and ( , )ˆ u vx  under the ETM and EDM are 

shown in Figs.3-7, where ,( , )u vx  and ,( , )ˆ u vx  ( {1, 2,3, 4,5}) 

represent the  -th component of ( , )u vx  and ( , )ˆ u vx , respectively. 

Fig.8 shows the trajectory of the client’s filtering error ( , )u ve , where 

,( , )u ve  ( {1, 2,3, 4,5})   denotes the  -th component of ( , )u ve . 
The above figures demonstrate that the provided bounded filtering 
algorithm exhibits superior performance. The eavesdropper’s 
filtering error with 4

( , ) 10u v
 is plotted in Fig. 9, which shows 

that even if the filter gain is small enough, the ( , ){ }u ve  still 

diverges rapidly under the effect of the encryption parameters 
( , )u vM and ( , )u vN . Then, the impact of different triggering 

conditions on the filtering performance is demonstrated. 
Furthermore, we introduce the mean square filtering error as

2 2
( , ) ( , ) ( , )1 1

ˆ(1 / ) ( )T T
u v u v u vu v

MSFE T x x
 

   . Subsequently, as 

shown in Figs. 10-11, the dynamic ETM efficiently mitigates the 
communication pressure and guarantees filter performance. 
Moreover, the reduction of the triggering frequency leads to a 
degradation of the filtering performance that is within an 
acceptable range. 

Example 2: The following partial differential equation is 
utilized to describe the industrial heating exchange process [39]:  

 ( , ) ( , )
( , ) ( , )h iU   
   

 


 
 

   
 

, (37) 

where ( , )   is the temperature function connected to the time 

[0, ]    and the spatial [0, ]   , where   and  are 
given positive scalars. ( , )U    represents external input. The 

parameters h  and i  denote the exchange factors. Define 

( , ) ( , )u v       , then one has ( , ) ( , ) (( 1) , )u v u vo o     
 

     


 
, 

( , ) ( , ) ( ,( 1) )u v u vo o     
 

     


 
 and ( , ) ( , )u vo   . Additionally, the 

equation (37) can be approximately rewritten as follows for 0i  : 

( 1, 1) ( 1, ) ( , 1)

0 0
0 1

1 0 0u v u v u vx x x
h  

 
   

 
              

.    (38) 

Subsequently, according to the literature [39], we adopt the 
following parameters: 

2sin(0.5( ))h u v  , 0.1  , 0.1  ,  
then, we consider (38) with the following variables: 

[1]
( 1, )

0 0
1 0.2cos(0.5( ))u v u v

 
   

 , [2]
( , 1)

0 1
0 0u v
 

  
 

 ,

[1]
( 1, )

0.4sin(0.4( ))
0.32u v

u v


 
  
 

 , [2]
( , 1)

0.59
0.61cos(0.3( ))u v u v

 
   

 ,

( , )

0.55
0.46 0.2sin( )u v u v
 

    
 , ( , ) 0.6u v I , ( , ) 0.73u v I . 

The event-triggered parameters are set as ( ,0) (0, ) 0.4u v  

( , )u v , 1 0.25  , 2 0.15   and 0.8  . Setting the initial 

state as ( , ) 1.9cos( )sin( )u vx u v  1.3cos( 1)sin( ) Tu v  for [0   30]u  

and 0v , ( , ) 3.1sin( )cos( 1)u vx u v   2.6cos( 1)sin( ) Tu v  for 0u   
and [1   30]v . The initial states of the estimate are ( ,0) (0, )ˆ ˆu vx x  

 ( ,0) (0, ) 0 0 T
u vx x     for ,u v . In addition, it is assumed 

that 0.5W I  and 0.62V I . The encryption parameters are 

chosen as 0.2p  ( {1,2,3, , })yp n  , ( , )

1.73 0.2sin( ) 0.3
0.27 1.76u v

u v  
 
 

M = ,  

( , )

0.98 0.2cos( ) 0.59
0.27 0.36u v

u v  
 
 

N = , 1.36  , and ( ,0) (0, ) 0u vq q g 

 0.4 0.4 T for all ,u v . It is easy to deduce that1.3378

( , ) 2.1425u v M , ( , )1.0706 1.2984u v N , and the condition 
1

( ,0) { }um q ntr


    is satisfied. 
Then, by applying Theorem 3 with the help of LMI toolbox 

in Matlab, the client’s filter gains ( , )u v  are exhibited as follows: 

Table 1. Part of the filter gains ( , )u v   

(1,1)

0.5351 0.0584
0.0647 0.6419
 

  
 

  (1,1)

0.5760 0.0322
0.0715 0.7012
 

  
 

  … 

(2,1)

0.5124 0.0640
0.0514 0.5951
 

  
 

  (3,2)

0.5786 0.0334
0.0726 0.5981
 

  
 

  … 

… … … 

(30,1)

0.4335 0.0072
0.0269 0.4652
 

  
 

  (30,2)

0.6100 0.1023
0.0038 0.5691
 

  
 

  … 

The simulation figures are exhibited in Figs.12-17. The 
trajectories of ( , )u vx  and ( , )ˆ u vx  are shown in Figs.12-13, 

respectively. Fig.14 illustrates the client’s filtering error ( , )u ve , and 
it is easy to observe that the estimates can track the actual system 
state well. To intuitively illustrate the superior performance of 
proposed filtering algorithm, we compare the proposed bounded 
filtering algorithm with the H∞ filtering algorithm developed in [17] 
and [40]. Figs. 15-16 show system state and its estimate of client 
at instants {8,9}u  and {8,9}v , respectively. Fig.17 indicates 
that the mean square filtering error ( , )u vMSFE  of our proposed 
bounded filtering algorithm is smaller, which results in superior 
performance compared to that of H∞ filtering algorithm. Based on 
Figs.15-17, the proposed bounded filtering algorithm provides 
better performance compared to the H∞ algorithm. 
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Fig. 12. The trajectories of 1,( , )u vx  and 1,( , )ˆ u vx  

 
Fig. 13. The trajectories of 2,( , )u vx  and 2,( , )ˆ u vx  

 
Fig. 14. The trajectory of the client’s filtering error ( , )u ve  

 
Fig.15. The 1,( , )u vx  and its estimate 1,( , )ˆ u vx  on 8,9u   

 
Fig.16. The 2,( , )u vx  and its estimate 2,( , )ˆ u vx  on 8,9v   

  
Fig. 17. The ( , )u vMSFE  under different filtering algorithms. 

V. CONCLUSIONS 
The bounded filtering issues for 2-D systems involving dynamic 

ETM and EDM have been addressed in this paper. To prevent 
eavesdroppers from stealing system-critical information, a novel 
EDM that depends on the encoding-decoding mechanism is 
designed. Furthermore, the dynamic ETM is employed to conserve 
network computing and communication resources. Based on the 
proposed dynamic ETM and EDM, the FESs at eavesdropper side 

and user side are obtained, respectively. Then, the encryption 
parameters have been designed such that the filtering error at the 
eavesdropper side is divergent, and boundedness criteria are 
deduced to ensure that the client-side FESs are bounded. 
Eventually, the validity of the developed filtering strategy is 
confirmed by several examples. This is the first attempt to design 
an EDM for 2-D systems, and future research directions include 
improving the reliability of the EDM and generalizing additional 
filtering algorithms. 

REFERENCES 

[1] C. K. Ahn, P. Shi, and H. R. Karimi, “Novel results on generalized 
dissipativity of two-dimensional digital filters,” IEEE Trans. Circuits 
Syst., II -Express Briefs, vol. 63, no. 9, pp. 893-987, Sept. 2016. 

[2] C. Du and L. Xie, “Stability analysis and stabilization of uncertain two-
dimensional discrete systems: an LMI approach,” IEEE Trans. Circuits 
Syst., I-Regular Papers, vol. 46, no 11, pp. 1371-1374, Nov. 1999. 

[3] S. Knorn and R. H. Middleton, “Stability of two-dimensional linear 
systems with singularities on the stability boundary using LMIs,” IEEE 
Trans. Autom. Control, vol. 58, no. 10, pp. 2579-2590, Oct. 2013. 

[4] L. Wu and Z. Wang, Filtering and control for classes of two-dimensional 
systems. Cham, Switzerland: Springer International Publishing, 2015, pp. 
6-7. 

[5] R. P. Roesser, “A discrete state-space model for linear image processing,” 
IEEE Trans. Autom. Control, vol. 20, no 1, pp. 1-10, Feb. 1975. 

[6] E. Fornasini and G. Marchesini, “State-space realization theory of two-
dimensional filters,” IEEE Trans. Autom. Control, vol. 21, no. 4, pp. 
484-492, Aug. 2016. 

[7] J. E. Kurek, “The general state-space model for a two-dimensional linear 
digital system,” IEEE Trans. Autom. Control, vol. 30, no 6, pp. 600-602, 
Jun. 1985. 

[8] P. H. Coutinho, I. Bessa, P. Pessim, and R. Palhares, “A switching 
approach to event-triggered control systems under denial-of-service 
attacks,” Nonlinear Anal-Hybrid, vol. 50, Nov. 2023, Art. no. 101383. 

[9] M. Yang and J. Y. Zhai, “Observer-based dynamic event-triggered 
secure control for nonlinear networked control systems with false data 
injection attacks,” Inf. Sci, vol. 644, Jun. 2023, Art. no. 119262.  

[10] T. Saravanakumar and T. H. Lee, “Hybrid-driven-based resilient control 
for networked T-S fuzzy systems with time-delay and cyber-attacks,” Int. 
J. Robust Nonlinear Control, vol. 33, no. 13, pp. 7869-7891, Jun. 2023. 

[11] T. T. Jiang, Y. P. Zhang, J. H. Park, X. S. Cai, and K. B. Shi, “Novel 
dropout compensation control design for networked control systems 
with mixed delays,” IEEE Trans. Syst. Man Cybern, vol. 54, no. 1, pp. 
212-224, Jan. 2024. 

[12] H, Y. Wang, J. C. Xu, H. T. Zhao, and W. Shang, “A self-triggered 
stochastic model predictive control for uncertain networked control 
system,” Int. J. Control, vol. 96, on. 8, pp. 2113-2123, Aug. 2023. 

[13] L. V. Hie and H. Trinh, “Exponential stability of two-dimensional 
homogeneous monotone systems with bounded directional delays,” 
IEEE Trans. Autom. Control, vol. 63, no. 8, pp. 2694-2700, Aug. 2018. 

[14] D. Peng and H. M. Nie, “Abel lemma-based finite-sum inequality 
approach to stabilization for 2-D time-varying delay systems,” Asian J 
Control, vol. 23, no. 3, pp. 1394-1406, May. 2021. 

[15] Y. Yan, L. L. Su, and V. Gupta, “Analysis of two-dimensional feedback 
systems over networks using dissipativity,” IEEE Trans. Autom. Control, 
vol. 65, no. 8, pp. 3241-3255, Aug. 2020. 

[16] S. P. Huang and Z. Y. Xiang, “Delay-dependent robust H∞ control for 2-
D discrete nonlinear systems with state delays,” Multidimens Syst Signal 
Process, vol. 25, no. 4, pp. 775-794, Oct. 2014. 

[17] D. H. Li, J. L. Liang, and F. Wang, “Robust H∞ filtering for 2D systems 
with RON under the stochastic communication protocol,” IET Control. 
Theory Appl, vol. 18, no. 14, pp. 2795-2804, Dec. 2021. 

[18] F. Wang, J. Liang, and Z. Wang, “Robust finite-horizon filtering for 2-
D systems with randomly varying sensor delays,” IEEE Trans. Syst. Man 
Cybern.: Syst, vol. 50, no. 1, pp. 220-232, Jan. 2020. 

0 5 10 15 20 25 30
-3

-2

-1

0

1

2

3

0 5 10 15 20 25 30
-3

-2

-1

0

1

2

3

0 5 10 15 20 25 30
-3

-2

-1

0

1

2

3

0 5 10 15 20 25 30

-2

-1

0

1

2

3

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2025.3542177

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Lanzhou University of Technology. Downloaded on February 19,2025 at 05:27:33 UTC from IEEE Xplore.  Restrictions apply. 



12 
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 
[19] L. L. Li, R. N. Yang, Z. G. Feng, and L. D. Wu, “Event-triggered 

dissipative control for 2-D switched systems,” Inf. Sci, vol. 589, pp. 802-
812, Jan. 2022. 

[20] Y.-Y Tao and Z.-G. Wu, “Asynchronous control of two-dimensional 
Markov jump Roesser systems: an event-triggering strategy,” IEEE 
Trans. Netw. Sci. Eng, vol. 9, no. 7, pp. 2278-2289, Aug. 2022. 

[21] X. Y. Lv, Y. G. Niu, and Z. R. Cao, “Sliding mode control of uncertain 
FMII 2D systems under directional event-triggered schemes,” Int. J. 
Robust Nonlinear Control, vol. 32, pp. 5226-5246, Oct. 2023. 

[22] X. D. Wang, Z. Y. Fei, P. Shi, and J. Y. Yu, “Zonotopic fault detection 
for 2-D systems under event-triggered mechanism,” IEEE Trans Cybern, 
vol. 52, no. 5, pp. 3510-3518, May. 2022. 

[23] F. Wang, Z. D. Wang, J. L. Liang, and Steven. X. Ding, “Recursive 
distributed filter design for 2-D systems over sensor networks: on 
component-based node-wise and dynamic event-triggered scheme,” 
IEEE Trans. Signal Inf. Pr, vol. 8, pp. 584-596. Jul. 2022. 

[24] K. Q. Zhu, Z. D. Wang, H. L. Dong, and G. L. Wei, “Set-membership 
filtering for two-dimensional systems with dynamic event-triggered 
mechanism,” Automatica, vol. 143, Jun. 2022, Art. no. 110416.  

[25] Z. Y. Fei, L. Yang, C. X. Gu, and Y. H. Wu, “Zonotopic state bounding 
for 2-D systems with dynamic event-triggered mechanism,” Automatica, 
vol. 154, Aug. 2023, Art. no. 111066.  

[26] L. J. Zha, Y. P. Guo, J. L. Liu, X. P. Xie, and E. G. Tian, “Protocol-based 
distributed security fusion estimation for time-varying uncertain systems 
over sensor networks: tackling DoS attacks,” IEEE Trans. Signal Inf. Pr, 
vol. 10, pp. 119-130, Jan. 2024. 

[27] Z. Z. Pan, R. H. Chi, and Z. S. Hou, “Distributed model-free adaptive 
predictive control for MIMO multi-agent systems with deception attack,” 
IEEE Trans. Signal Inf. Pr, vol. 10, pp. 32-47, Jan. 2024.  

[28] Y. Sun, Y. M. Ju, D. R. Ding, and H. J. Liu, “Distributed H∞ filtering of 
replay attacks over sensor networks,” ISA. T, vol.141, pp. 113-120. Oct. 
2023. 

[29] L. Wang, X. H. Cao, H. Zhang, C. Y. Sun, and W. X. Zheng, 
“Transmission scheduling for privacy-optimal encryption against 
eavesdropping attacks on remote state estimation,” Automatica, vol. 137, 
May. 2022, Art. no. 110145. 

[30] L. Y. Huang, K. M. Ding, A. S. Leong, D. E. Quevedo, and L. Shi, 
“Encryption scheduling for remote state estimation under an operation 
constraint,” Automatica, vol. 127, May. 2021, Art. no. 109537.  

[31] L. Wang; X. H. Cao, B. W. Sun, H. Zhang, and C. Y. Sun, “Optimal 
schedule of secure transmissions for remote state estimation against 
eavesdropping,” IEEE Trans. Ind. Inf, vol. 17, no. 3, pp. 1987-1997, Mar. 
2021. 

[32] L. Zou, Z. D. Wang, B. Shen, and H. L. Dong, “Encryption-decryption-
based state estimation with multirate measurements against 
eavesdroppers: a recursive minimum-variance approach,” IEEE Trans. 
Autom. Control, vol. 68, no. 12, pp. 8111-8118, Dec. 2023. 

[33] C. Gao, Z. D. Wang, X. He, and H. L. Dong, “Fault-tolerant consensus 
control for multiagent systems: an encryption-decryption scheme,” IEEE 
Trans. Autom. Control, vol. 67, no. 5, pp. 2560-2567, May. 2022. 

[34] K. Q. Zhu, Z. D. Wang, Q.-L. Han, and G. L. Wei, “Distributed set-
membership fusion filtering for nonlinear 2-D systems over sensor 
networks: an encoding-decoding scheme,” IEEE Trans Cybern, vol. 53, 
no. 1, pp. 416-427, Jan. 2022. 

[35] K. Q. Zhu, Z. D. Wang, Y. Chen, and G. L. Wei, “Neural-network-based 
set-membership fault estimation for 2-D systems under encoding-
decoding mechanism,” IEEE Trans. Neural Netw, vol. 34, no. 2, pp. 786-
978, Feb. 2023. 

[36] R. Suarez, “Difference equations and a principle of double induction,” 
Mathematics Magazine, vol. 62, no. 5, pp. 334-339, Dec. 1989. 

[37] B. Shen, Z. D. Wang, and X. H. Liu, “Bounded H∞ synchronization and 
state estimation for discrete time-varying stochastic complex networks 
over a finite horizon,” IEEE Trans. Neural Netw, vol. 22, no. 1, pp. 145-
157, Jan. 2011. 

[38] S. Foda and P. Agathoklls, “Control of the metal rolling process-a 
multidimensional system approach,” J. Frankl. Inst, vol. 329, no. 2, pp. 
317-332, Feb. 1992. 

[39] I. Ghous, Z. R. Xiang, and H.  R. Karimi, “State feedback H∞ control for 
2-D switched delay systems with actuator saturation in the second FM 
model,” Circ Syst. Signal Pr, vol. 34, pp. 2167-2192, Jan. 2015. 

[40] D. H. Li, J. L. Liang, and F. Wang, “H∞ state estimation for two-
dimensional systems with randomly occurring uncertainties and Round-
Robin protocol,” Neurocomputing, vol. 349, pp. 248-260, Apr. 2020. 

 
PAN ZHANG received the M.E. degree in 
control theory and control engineering from 
Lanzhou University of Technology, Lanzhou, in 
2019. He is currently working toward the Ph.D. 
degree in control theory and control engineering 
from Lanzhou University of Technology, 
Lanzhou, China. His current research interests 

include networked control systems, two-dimensional systems 
and robust filtering 
 

CHAOQUN ZHU He received the M.E. 
degree in control theory and control 
engineering from Lanzhou University of 
Technology, Lanzhou, in 2008 and the Ph.D. 
degree in control theory and control 
engineering from Dalian Maritime University, 
Dalian, in 2013. His current research interests 

include networked control systems and cyber physical systems 
security. He has published over 30 Journal papers within these 
areas. 
 

BING YANG received the M.E. degree in 
control theory and control engineering from 
Lanzhou University of Technology, Lanzhou, 
in 2008. Her current research interests include 
networked control systems and autonomous 
vehicle control. 
 
 
BOHAN ZHANG received his Bachelor’s 
degree in Communication Engineering from 
Shandong University of Science and 
Technology in 2022. He is currently pursuing 
a Master’s degree at the School of Electrical 
Engineering and Information Engineering, 
Lanzhou University of Technology. His 

research focus is on attack detection in industrial cyber-physical 
systems. 
 

ZHIWEN WANG, born in Minqin, Gansu, 
China in 1976, He is a senior member of the 
Chinese Society of Automation, a member of 
the Youth Working Committee of the Chinese 
Society of Automation, a member of the 
Working Committee of the Robotics 
Engineering Professional Union. He graduated 
from Xi'an Jiaotong University, School of 

Electrical Engineering, majoring in industrial automation in 
1999, and received the Ph.D. degree in control theory and 
control engineering from Lanzhou University of Technology, 
Lanzhou, in 2008. His current research interests include 
networked control systems, cyber physical systems security, 
advanced control theory and applications for industrial 
processes. 

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2025.3542177

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Lanzhou University of Technology. Downloaded on February 19,2025 at 05:27:33 UTC from IEEE Xplore.  Restrictions apply. 



Applied Intelligence          (2025) 55:491 
https://doi.org/10.1007/s10489-025-06374-9

ADIMPL: a dynamic, real-time and robustness attack detection model
for industrial cyber-physical systems based on improvedmeta pseudo
labels

Bohan Zhang1 · Pan Zhang1 · Zhiwen Wang1 · Jiaqi Lv1 ·Wei Miao2

Accepted: 14 February 2025
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025

Abstract
While the introduction of networking has increased the efficiency of Industrial Cyber-Physical Systems (ICPS), it has also
lowered the cost for attackers, significantly increasing security risks. Current research on ICPS attack detection focuses on deep
learning methods. However, the dependence on large labeled datasets often hinders these systems from adapting quickly to
the dynamic changes and real-time demands of the ICPS environment. To address these issues, we present an attack detection
method based on improved meta pseudo label (ADIMPL). ADIMPL innovatively combines two-layer network traffic feature
extraction with the compact SqueezeNet deep neural network, achieving high performance with a minimal number of labeled
samples. Additionally, the method dynamically adapts to changing attack patterns, significantly increasing detection accuracy
while enhancing the robustness and real-time processing capabilities of the detection system. Extensive experiments on real-
world industrial CPS datasets (CIC-IDS2017, CIC-IDS2018, and the CIC-Attack Dataset 2023) demonstrate that ADIMPL
can effectively, robustly, and in real-time detect network attacks against industrial CPS.Notably, ADIMPL achieves a detection
accuracy of 99.13% with an average latency of 0.098s and maintains a minimum attack detection accuracy of 91.99% even
under our proposed GAN+OPSO malicious attacks.

Keywords Attack detection · Democracy co-training · Dual-level feature · Meta pseudo labels ·
Industrial Cyber-physical systems · Semi-supervised learning

1 Introduction

With the advent of a new industrial revolution, Industrial
Cyber-Physical Systems (ICPS) utilize the characteristics
of “3C” (computing, communication, and control) [1] to
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enhance real-time perception and dynamic control within
industrial frameworks. These systems are extensively inte-
grated into several national strategies, including “Made in
China 2025”, “Industry 4.0” and the “Advanced Manufac-
turing National Program of the United States” [2, 3]. On a
technical level, ICPS adds a cyberspace dimension to tradi-
tional industrial systems, markedly improving information
sensing capabilities and the efficiency of big data process-
ing in industrial processes [4]. However, the integration of
cyberspace also offers attackers lower-cost pathways, esca-
lating the security risks to industrial systems. According to
the “2022 China Industrial Information Security Situation
Report” [5] a total of 312 industrial system security inci-
dents were publicly reported globally in 2022. These attacks
on ICPS not only compromise the economic and security
aspects of the businesses involved but also pose threats to the
safety and property of local residents.

To increase the security of ICPS, Attack Detection Sys-
tems (ADS) have become crucial. Existing research catego-
rizes these systems based on the basis of detection principles
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into rule-based, estimation-based, and learning-based meth-
ods [6]. Rule-based attack detection employs predefined
rules to identify and respond to potential malicious activi-
ties, includingfixed thresholds, specific datawatermarks, and
authentication signatures to identify and respond to potential
malicious activities [7]. For example, Ankit et al. [8] intro-
duced a verificationmechanism using Physically Unclonable
Functions (PUF) for systems utilizing the MQTT protocol,
which generates unique credentials to significantly reduce
the risks associated with traditional password vulnerabilities
such as dictionary attacks. However, rule-basedmethods face
two main disadvantages when applied to ICPS: (1) limited
applicability: as they may fail to detect previously undefined
attack patterns, and (2) high maintenance costs: due to the
continual need to update rule sets to address new security
threats. Estimation-based methods leverage control theory
to establish state observers for estimating system states in
industrial processes to detect attacks. For example, Zhang
et al. [9] proposed the use of the consistency and stationar-
ity features of the system data to construct state observers
for direct current microgrid systems, distinguishing genuine
state changes from those induced by attacks. However, this
approach increases the communication overhead as industrial
devices communicate via low-speed sensor links, and state
observers may not simultaneously process the extensive net-
work data in ICPS, thus occupying the network bandwidth
and causing detection delays.

To address the processing challenges associated with
large-scale network traffic data in networked environments,
Machine Learning (ML) [10] is extensively employed in
ICPS for attack detection. These systems leverage advanced
algorithms to manage substantial data volumes and itera-
tively recognize emerging threats. Various detection models
have been developed to suit different ICPS contexts. For
example,Alper et al. [11] proposed theRAIDSsystem,which
uses autoencoders to reconstruct and analyze network traf-
fic data. This method helps the model recognize standard
traffic patterns and detect significant anomalies. Rana et al.
[12] proposed the FTG-Net-E model, which is a sophis-
ticated framework employing a hierarchical ensemble of
Graph Neural Networks (GNN) to scrutinize traffic across
multiple granularity levels, thus enhancing the detection of
complex attack patterns. This model integrates the strengths
of multiple GNNs through ensemble learning, significantly
increasing the prediction accuracy. The efficacy of such an
ADS heavily depends on the quantity of labeled data avail-
able [13]. However, acquiring labeled network traffic data
in real-world settings involves considerable human and tem-
poral resources, which hampers the deployment of ADS in
practical ICPS scenarios. Furthermore, the prevalent issue
of data imbalance in existing datasets necessitates intricate

feature engineering to achieve precise detection, presenting
substantial challenges in developing a well-balanced ADS.

In response to the limitations of the existing research,
this paper proposes an ADS termed ADIMPL, which bal-
ances effectiveness, real-time performance, and robustness.
This model first attempts to apply the proposed Improved
Meta Pseudo Labels (IMPL) [14] method to attack detection
in ICPS. The IMPL method merges meta-learning con-
cepts with the principles of Deep Semi-Supervised Learning
(DSSL) [15], enabling the ADS to dynamically adjust its
optimal detection parameters. This adjustmentminimizes the
impact of insufficient labeled samples on the detection pre-
cision. Furthermore, the introduction of frequency domain
feature analysis simplifies feature engineering, enhancing the
real-timeperformance of the detection system.Themain con-
tributions of this paper are outlined as follows:

(1) We propose an attack detection model based on IMPL
for ICPS. This model integrates meta-learning with
deep semi-supervised learning, achieving high detec-
tion accuracy (98.61%) even with extremely few labeled
samples and dynamically updates the optimal parame-
ters based the basis of system status.

(2) We improve the meta pseudo labels method through
democratic co-training. The improved method shows
increased sensitivity to attack traffic and significantly
reduces the impact of dataset imbalances on the system
performance.

(3) We propose a dual-level network traffic feature extrac-
tion method that extracts both the time-domain and
frequency-domain features from network traffic data,
effectively reducing the granularity of detection. This
significantly lowers the detection overhead and enhances
the system’s real-time performance and robustness.

Extensive experiments demonstrate the following: (1)
On three real datasets for ICPS, ADIMPL outperforms the
most advanced semi-supervised detection models in terms of
accuracy, recall, F1 score, and AUC values; (2) Under var-
ious network load conditions, ADIMPL exhibits excellent
real-time performance with average latencies of 0.098s and
0.314s; (3) Compared with other models, ADIMPL shows
superior robustness under our proposed GAN+OPSO attack
algorithm, with less than 10% performance degradation even
under high attack costs.

The remainder of this paper is organized as follows:
Sect. 2 introduces related work on attack detection. Section3
describes the proposed method. Section4 details the exper-
imental process and analysis of results. Section5 presents
conclusions and future discussions.
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2 Related work

The most extensively researched attack types currently
include Denial-of-Service (DoS) attacks, Deception attacks
and False Data Injection (FDI) attacks. Various other attack
types are derived from these three categories. For example,
the Stuxnet [16, 17] virus, which extensively damaged Iran’s
nuclear facilities in 2010, evolved from deception attacks
[18].As the stealth andvariety of attacks have increased, deep
learning-based detection methods have diversified according
to the type of attack. In this section, we briefly introduce the
work on attack detection via three deep learning approaches,
with a focus on explaining the MPL method.

2.1 Deep learning-based attack detectionmethods
for ICPS

With the emergence of neural networks [19], deep learn-
ing models have increasingly been deployed in clustering
tasks because of their robust learning capabilities. These
models are categorized into supervised, unsupervised, and
semi-supervised learning, depending on the required labeled
data volume [20]. In attack detection research, unsupervised
deep learning-based ADS have been extensively explored
due to the scarcity of labeled data. For example, Lan et al.
[21] proposed HAT-UDA, an attack detection method that
employs a hierarchical attention triple networkwith unsuper-
vised domain adaptation, enhancing model generalizability
across new network environments. This method uses a vari-
ant of the One-Class Support Vector Machine (OCSVM)
and Support Vector Data Description (SVDD) for thresh-
old setting. Liu et al. [22] combined deep autoencoders with
Gaussian Mixture Models to develop MemAe-gmm-ma, an
ADS that produces data’s low-dimensional representations
and reconstruction errors through autoencoders. This sys-
tem optimizes the parameters of both the autoencoder and
Gaussian Mixture Models end-to-end, effectively balancing
reconstruction and density estimation to avoid local optima
and improves the attack detection accuracy to 98.54%. To
address data imbalance in unsupervised learning, Yang et
al. [23] proposed the ADUL method, which extracts and
converts network packet payloads into characters. ADUL
integrates a one-dimensional Convolutional Neural Network
(1D-CNN)with Bidirectional Encoder Representations from
Transformers (BERT), and analyzes the payload data’s short-
term and long-term dependencies to detect anomalies.

Although unsupervised deep learning-based ADS can
effectively reduce detection costs, their performance sig-
nificantly decreases or even collapses when facing specific
attacks that target detection models, such as generative
adversarial attacks. Consequently, more accurate supervised
deep learning-based ADS have been extensively studied.
For example, Fathima et al. [24] compared three classic

supervised learning algorithms-Random Forest, K-Nearest
Neighbors (KNN), and Logistic Regression-in detecting
DDoS attacks. Their experiments demonstrated that the ran-
dom forest method achieved the highest detection accuracy.
Altunay et al. [25] compared a standaloneCNNmodel, a stan-
dalone LSTM model, and a hybrid model (CNN+LSTM).
The results indicate that the hybrid model effectively detects
various types of attacks in the dataset, demonstrating superior
classification and detection capabilities. To handle high-
dimensional data, Xu et al. [26] introduced an edge-based
self-attention mechanism, establishing a self-supervised
graph representation learning framework named NetFlow-
Edge Generative Subgraph Contrast (NEGSC). This system
generates subgraphs of central nodes and their immediate
neighbors, uses graph contrastive learning to differentiate
between normal and anomalous network traffic, accurately
detects high-dimensional datawith significant computational
costs. With the widespread adoption of attention mecha-
nisms, Sikder et al. [27] proposed the Deep H2O system
to detect cyberattacks in urban water supply systems. Deep
H2O utilizes a Temporal Graph Convolutional Network
(TGCN) combined with an attention mechanism and robust
Mahalanobis distance to increase classification accuracy and
robustness. This model achieves an accuracy of 98.78% in
detecting data poisoning samples processed by GANs. Com-
paredwith unsupervisedmethods, supervised learning-based
ADS generally exhibit superior effectiveness in detection;
however, they often lack generalizability due to data lim-
itations, and both supervised and unsupervised methods
struggle to adjust dynamically to changes in industrial pro-
cesses.

Considering the above limitations, semi-supervised lear-
ning-based ADS excels in achieving high accuracy with
minimal labeled data. Most current systems utilize pseudo-
labeling methods [28]. For example, Zhang et al. [29]
proposed a detection model called FS-DL, which is based on
Mutual Adversarial Networks (MAN). This system outputs
residual network traffic data to detect attacks and achieves
99.60% accuracy with only 5% labeled samples. Liu et al.
[30] proposed a system for ICPS that relies on a bias net-
work and feature selection called SFAD, which uses minimal
labeled data to create a bias loss function and effectively
distinguishes between positive and negative samples. To
address data imbalances in semi-supervised learning, Niu et
al. [31] proposed ADESSA. This system combines margin
sampling with democratic co-learning to build a balanced
training set of manually labeled high-information samples
and high-confidence auto labeled samples. Li et al. [32] pro-
posed an enhanced model named EseT, which incorporates
a confidence selection module to remove low-confidence
pseudo-labels and achieves 98.59% detection accuracy.

Table 1 briefly summarizes the existing work on deep
learning-based attack detection, highlighting the unique
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Table 1 Summary of part of the existing work

ADS Type Efficiency Robustness Generalizability Limitations

HAT-UDA [21] Unsupervised Inability to detect traffic quickly; Poor abil-
ity to detect new attack traffic

MemAe-gmm-ma [22] Unsupervised More complex feature engineering and
higher detection overhead

ADUL [23] Unsupervised Larger coarse-graining of detection may
cause attacks to escape

CNN+LSTM [25] Supervised Lack of attention to spatial characterization
of network traffic

NetFlow-Edge [26] Supervised Requires specific modeling based on spe-
cific ICPS

FS-DL [27] Semi-supervised Detection thresholds cannot be changed
dynamically

SFAD [29] Semi-supervised High computational overhead

ADESSA [31] Semi-supervised High modeling cost; Not applicable to
attack detection in industrial scenarios

Eset [32] Semi-supervised Detection thresholds cannot be changed
dynamically

The symbol indicates that the features are supported, indicates that the features are not supported, indicates that the features are partially
supported

shortcomings in each study. Moving forward, we aim to
refine semi-supervised deep learning algorithms to support
high-accuracy and real-time detection with very few labeled
samples. Additionally, we optimize the meta pseudo-label
algorithm for dynamic updates in response to changes in the
ICPS environment.

2.2 Meta pseudo labels

In reference [14], the authors introduced the MPL method
to make the detection model dynamic. This method employs
teacher and student networks, adding feedback and loops
to the pseudo label (PL) method to identify optimal model
parameters at any given time. The MPL framework is
depicted in Fig. 1. The pseudo label method is fundamentally
an optimization problem. We define the teacher network as
T and the student network as S, with θT and θS representing
their respective parameters. The PLmethod trains the student
model to minimize cross-entropy loss on unlabeled samples,

and the optimization process is described in (1).

θ PL
S = argmin

θs

Exu [CE (T (xu; θT ), S (xu; θS))]
︸ ︷︷ ︸

:=L(θT ,θs )

, (1)

where xu denotes a set of unlabeled samples. T (xu; θT )

denotes the prediction results ofT for xu under certain param-
eters, S(xu; θS) denotes the prediction of T for xu under
certain parameters, and Exu [CE (T (xu; θT ), S (xu; θS))]
denotes the average cross-entropy loss between the two under
xu , which can be simplified as Lu(θT , θS). θ PL

S denotes the
optimal student network parameters that minimize the cross-
entropy loss.

In MPL, in addition to the dependency of the student
network on the teacher network θ PL

S (θT ), a reverse depen-
dency θMPL

T (θS) is added. Taking θ PL
S (θT ) as an example,

directly computing the dependency between the two requires
understanding the gradient∇θT θ PL

S (θT ), which is a complex
process involving the calculation of the gradient of the gradi-

Fig. 1 The MPL method utilizes the teacher network to generate pseudo-labeled data and employs feedback based on the student network’s
performance in the validation set, continuously optimizing the interaction between the two
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ent. Therefore, using relevant concepts from meta-learning,
we approximate this process as the one-step gradient update
of θS . The entire process is represented by (2).

θ PL
S (θT ) ≈ θ S − ηS · ∇θSLu (θT , θS) , (2)

where ηS is the learning rate; by incorporating this (2) into
the above (1), we can obtain the objective function of the
MPL method in (3).

min
θT

Ll
(

θ S − ηS · ∇θSLu (θT , θS)
)

. (3)

The continuous optimization process of teacher and stu-
dent network parameters in the MPL can be described as a
repeated cycle of the following two steps:

Student network By receiving the prediction results (pseudo
labeled samples) of the teacher network T (xu; θT ) for the
unlabeled data xu , the updated parameters of the student net-
work are

θ ′
S = θS − ηS∇θSLu (θT , θS) . (4)

Teacher network This network transforms unlabeled data
into pseudo-labeled samples and updates its parameters
according to the performance of the student network on the
validation set. The updated parameters of the teacher network
are

θ ′
T = θT − ηT∇θTLl

(

θS − ∇θSLu (θT , θS)
)

. (5)

3 Methodology

In this chapter, we first introduce the overall framework of
the proposed ADIMPL model. We propose a dual-level fea-
ture extraction method and analyze how to extract the vector
features of packet-level traffic and the frequency domain fea-
tures of flow-level traffic. Finally, we present an improved
MPL detection model based on democracy co-training, tai-
lored to address practical issues in ICPS.

3.1 Model framework

Figure 2 shows the overall structure of the ADIMPL system,
which includes two main parts: dual-level feature extrac-
tion and semi-supervised learning via the IMPL method.
In ICPS, the system extracts two types of features: packet-
level vector features and flow-level frequency domain fea-
tures. These features are then fed into the semi-supervised
learning module, which consists of teacher and student net-
works developed through co-training. Both networks use
the lightweight SqueezeNet [33] neural network to improve
the model’s ability to generalize. Initially, both the teacher
and student networks start from the same pre-trained model.
The teacher network processes the input data first, creating
“pseudo-labels” that help enhance the dataset for training the
student network. The student network then uses this enriched
dataset to update its parameters and shares these updates with
the teacher network. This cycle of mutual teaching allows
both networks to gradually become better at understanding
and processing the data, improving the overall performance
of the system.

Fig. 2 The ADIMPL framework
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3.2 Dual-level feature extraction

(1) Packet-level vector feature extraction
Input normalization: Based on the analysis of the
dataset, we select 1480 bytes as the length for each
data packet. If this length is not sufficient, the packet
is padded at the end at 0x00. Each truncated packet is
then encoded into an 8-bit number within the [0-255]
range. For data requiring detokenization, IP addresses,
MAC addresses, and attack type information within the
packets are replaced with zeros.
Vector encoding: With a fixed packet length of 1480
bytes, packets from the same dataset are obtained and
encoded, along with their features, via (6). We represent
the i th data packet and the total of features within the
packet using for the packet and for features [34].

S =
[

s(1), ..., s(M)
]

=
⎡

⎢

⎣

s11 · · · s1M
...

. . .
...

sN1 · · · sNM

⎤

⎥

⎦ . (6)

We obtain the packet-level vector feature υ by multiply-
ing the packet vector encoding S with the feature vector
matrix, as shown in (7). The feature vector matrix ω

represents the weight of each feature in the packet. The
initialization and updating of the matrix are detailed in
3.3.

υ = Sω = [υ1 . . . υi . . . υN ]
T , υi =

M
∑

l=1

sikωk, (7)

where υi denotes the real number representation of the
vector, and where Sik denotes the kth feature in the i th
packet.

(2) Flow-level frequency domain feature extraction
Vector segmentation: We convert packet-level data to
flow-level data by setting a stride, resulting in (8), where
represents the i th frame after segmentation, and where
N f denotes the number of frames after segmentation
[34].

N f =
[

N

Lseg

]

,

fi = υ
[[

(i − 1) × Lseg : i × Lseg
]]

.(1 � i � N f )

(8)

Discrete fourier transform (DFT): Due to the com-
plexity of the network traffic features in the time domain
and the difficulty in capturing correlations between fea-
tures, we apply the Discrete Fourier Transform (DFT)
to each frame to convert time-domain features into
frequency-domain features. Frequency domain features
are characterized by low overhead and fine granularity,

which can further enhance the accuracy and robustness
of the detection model while also shortening the detec-
tion time.Weobtain (9) and (10),where Fi represents the
frequency domain features of the i th frame and where
Fik represents the various frequency components in the
i th frame.

Fi = F( fi )(1 � i � N f ), (9)

Fik =
Lseg
∑

n=1

fine
− j 2π(n−1)(k−1)

Lseg (1 � k � Lseg). (10)

Numerical conversion: Since deep neural networks
cannot process complex number inputs, converting the
complex number Fik into a real number J jk is neces-
sary. Then, the real number J jk is transformed into R jk

through logarithmic conversion to prevent a floating-
point overflow in the detection model due to excessively
large input ranges. The entire conversion process is
demonstrated in (11)-(13).

Fik = aik + jbik(1 � i � N f , 1 � k � Lseg), (11)

Jik = a2ik + b2ik(1 � i � N f , 1 � k � Lseg), (12)

Rik = ln(Jik + 1)

C
(1 � i � N f , 1 � k � Lseg), (13)

where Jik represents themodulus of the complex number
and is also the real number representation after conver-
sion. C denotes a constant that controls the numerical
range, and Rik represents the real number after logarith-
mic transformation.
To demonstrate the low overhead and detailed granu-
larity of the frequency domain features, we examined
and displayed these features via 600 randomly chosen
packets from the CIC-IDS2017 dataset. With a stride
Lseg = 10, resulting in the number of frames N f = 60,
we extracted seven key features (M = 7) from each
packet: size, transmission frequency, TTL, numerical
protocol type, average delay, packet loss rate, and port
number. Finally wemap the extracted frequency domain
features to RGB space for visualization and the results
are shown in Fig. 3.
As shown in Fig. 3, we can clearly observe significant
differences between benign and attack traffic in the
frequency domain. Therefore, using frequency domain
feature analysis to extract the temporal information of
network traffic can significantly reduce the overhead of
the detection model while also enhancing the model’s
robustness against adversarial attacks.
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Fig. 3 The RGB pseudo-spectrogram of benign traffic and four types of malicious attack traffic under frequency domain features. (a) is DoS
slowloris attack and benign traffic; (b) is brute force attack and benign; (c) is FTP-patator attack and benign traffic

3.3 ImprovedMPL

In industrial processes, assembly line labor division inspires
collaborative training methods for models. Different data
feature descriptions enhance model performance through
mutual learning.We propose a democracy co-training appro-
ach for class collaboration to refine theMPLmethod. Specif-
ically, we train the teacher network with a real-world traffic
dataset (mostly benign traffic) and the student network with
a balanced artificial traffic dataset (equal parts benign and
attack traffic). We use a validation set consisting only of
anomalous traffic. The student network checks the pseudo-
label samples generated by the teacher network, enhancing
the sensitivity to the attack traffic and mitigating dataset
imbalance effects. Using deep semi-supervised learning, we
require fewer labeled samples and lower the cost of manually
designing the training and validation sets.

We define the total set of unlabeled samples as Du and the
total set of labeled samples asDL ,whereDLt is used for train-
ing the teacher network, DLs is used for training the student
network, and DLv serves as the validation set for updating the
student network’s parameters. In the labeled samples, attack
traffic is defined as AL = {(x1, y1) , . . . , (xN , yN )}, and
benign traffic is defined as BL = {(x1, y1) , . . . , (xN , yN )}.
The pseudo-label sample set generated by the teacher net-
work is DMPL , which includes pseudo-anomalous samples
ÂL = {(

x̂1, ŷ1
)

, . . . , ,
(

x̂N , ŷN
)

and pseudo-benign sam-

ples B̂L = {(

x̂1, ŷ1
)

, . . . , ,
(

x̂N , ŷN
)}

The initial parameters
of the trained teacher and student networks are θT and θS ,
respectively, which include the feature vector matrix ω.

To assess the confidence level of pseudo-label samples,
we introduce a concept called the margin. The teacher net-
work generates pseudo-labels and a probability p

(

ŷ1|x
)

for
unlabeled data, which are then processed and input into the

student network, which also generates a probability p
(

ŷ2|x
)

.
The margin between these two probabilities is calculated via
(14). A smaller margin indicates greater confidence, whereas
a larger margin suggests lower confidence. On the basis
of reference [35], we establish a threshold P = 6. Sam-
ples below this threshold are classified as high-confidence
pseudo-labels and added to the dataset DL , whereas those
above the threshold are considered low-confidence pseudo-
labels and returned to the dataset DU .

xm arg in = arg
∣

∣p
(

ŷ1|x
) − p

(

ŷ2|x
)∣

∣ . (14)

To ensure that teacher network generates more accurate
pseudo-attack samples, we use a fixed validation set Dp

to assess the performance of the student network. Simul-
taneously, we introduce an indicator that reflects the overall
network performance without increasing the model latency.
We choose the area under the precision-recall curve (AUC-
PR) metric, as it emphasizes the model’s ability to classify
minority classes (attack traffic) in imbalanced datasets,
thereby enhancing the student network’s sensitivity to attack
data.

We update the parameters of the two networks alter-
nately to approximate the calculation known as “gradient of
the gradient.” According to meta-learning principles, each
parameter optimization moves only one step in the direction
of the gradient, indicating that the current optimal parameters
are locally optimal. The proposed IMPL method is detailed
in Algorithm 1.

At the start of Algorithm 1, lines 1 to 5 cover the initial
training of the teacher and student networks. As shown in
lines 6 and 7, the teacher network generates pseudo-labels
for unlabeled samples. Then, from lines 8 to 12, the algo-
rithm filters pseudo-labels basis of the confidence level P
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and assigns samples to different sets according to their con-
fidence levels. Lines 14 to 16 create new parameters for the
student network and determine if the update leads to positive
behavior using the AUC-PR metric. Line 19 concludes this
epoch with the teacher network updating its parameters the
basis of feedback from the student network.

Algorithm 1 learning algorithm of ADIMPL.
Input: (1) Teacher network training data set DLt ;(2) Student network

training data set DLs ;(3) Unlabled data set DU ;(4) Validation set
DLv ;(5) Threshold for pseudo-label data P;(6) Epochs E , batch
size B and the number of batches every epoch Q

Output: (1) Current optimal parameters of the student network θ ′
S ;(2)

Current optimal parameters of the teacher network θ ′
T

1: while e<E,q<Q do
2: if e=1 then
3: θ

(0)
T ← Train teacher network T using DLt ;

4: θ
(0)
S ← Train student network S using DLs ;

5: else
6: Randomly sample B data from DU to comprise a batch and

send to teacher network and student network;
7: end if
8: Applying xm arg in = arg

∣

∣p
(

ŷ1|x
) − p

(

ŷ2|x
)∣

∣ to determine the
confidence level of pseudo-labeled data;

9: if xm arg in>p then
10: This data is sent to set DMPL as high-confidence data;
11: else
12: This data is sent back set DU as low-confidence data;
13: end if
14: Update the θ

(t)
S using the ÂL : θ

(t+1)
S = θ

(t)
S −

ηs∇θSL (yl , θS (xl )) |
θS=θ

(t)
S
;

15: Input the validation set DLv into θ
(t)
S to obtain theAUC-PR value

AUC − PR(t)
S at time t;

16: if AUC − PR(t)
S >AUC − PR(t−1)

S then

17: Update the θ
(t+1)
T using θ

(t)
S :θ(t+1)

T
= θ(t)

T
−

ηT∇θT L
(

θS − ∇θSL (yl , θS (xl ))
)

;
18: else
19: Teacher network still retains its original parameters θ

(t)
T ;

20: end if
21: end while
22: return θ ′

T ,θ
′
S

4 Experiment and analysis

4.1 Experimental setups

This section primarily introduces the public datasets used in
the experiments, comparison models, deep neural network
choices, experimental settings, and all the evaluation metrics
employed in the experiments (Table 2).

(1) Datasets
In our experiments, three benchmark datasets were used:
CIC-IDS2017 and CIC-IDS2018, which include real-

world network traffic and various types of network
attacks. In order to avoid the dependence of our proposed
method on a single dataset, we mix the CIC-IDS2017
and CIC-IDS2018, then divide them into two new train-
ing sets DU and DL , based on the presence or absence of
labels. The third dataset, CIC-Attack dataset 2023, con-
tains only attack network traffic. The main role of this
dataset is to validate the model’s ability to generalize
over ICPS in the realworld by obtaining the performance
of the model’s attack recognition. Hence the data for set
DLv originate from this dataset. The detailed informa-
tion for each dataset is as follows:
CIC-IDS2017 [36]: Provided by the Canadian Insti-
tute for Cybersecurity. It utilizes the CICFlowMeter
tool for traffic labeling, which is based on timestamps,
source and destination IPs, ports, protocols, and types
of attacks.
CIC-IDS2018 [36]: Building upon CIC-IDS2017, the
CIC-IDS2018 dataset offers more updated and diverse
attack scenarios. It includes a wider variety of attack
types and benign traffic.
CIC-Attack Dataset 2023 [37]: CIC-Attack Dataset
2023 is a real-time dataset provided by the Cana-
dian Institute for cybersecurity. It comprises 33 attacks,
divided into seven categories: DDoS, DoS, Recon, Web
Attack, Brute Force, Spoofing and Mirai.

(2) Comparative models
To demonstrate the superiority of the ADIMPL method,
we selected six advanced deep learning models for
comparison. The characteristics of each model are intro-
duced as follows:
MemAe-gmm-ma [22]:Thismodel optimizes theparam-
eters of both the autoencoder and Gaussian mixture
models end-to-end, effectively balancing the reconstruc-
tion and density estimation to avoid local optima.
NetFlow-edge [26]: This model uses graph contrastive
learning to differentiate between normal and anomalous
network traffic, accurately detecting high-dimensional
data with significant computational costs.
SFAD [29]: This model uses minimal labeled data to
create a bias loss function and effectively distinguishes
between positive and negative samples.
ADESSA [31]: This model combines margin sampling
with democratic co-learning to build a balanced training
set of manually labeled high-information samples and
high-confidence auto-labeled samples.
ESeT [32]: Based on the Transformer neural network,
ESeT extracts the byte encoding and frequency domain
features of the network traffic and introduces a con-
fidence selector to enhance semi-supervised learning
performance.
MPL [14]: MPL improves the traditional pseudo-label
method with a regularization strategy, using cycles
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Table 2 Statistics of
CIC-IDS2017, CIC-IDS2018
and CIC-Attack Dataset 2023

Attack Types CIC-IDS2017 CIC-IDS2018 CIC-Attack Dataset 2023 Total Used

benign 2,223,072 12,523,951 14,567 14,761,590

bot 1,847 265,089 1,089,417 1,356,353

dos 355,527 574,968 1,529,071 2,459,566

ddos 38,761 25,487 1,631,730 1,695,978

infiltration 34 148,260 794 149,088

portscan 148,531 1,179,251 1,572,997 2,900,779

web attack 2,164 180,206 951,034 1,133,404

brute force 13,083 175,240 867,314 1,055,637

between two networks to prevent premature conver-
gence, significantly enhancing the model’s ability to
adapt to environmental changes.

(3) Deep neural network
SqueezeNet is a compact deep neural network that per-
forms comparably to larger networks. It features two
convolutional layers, multiple Fire modules, and a Soft-
max layer. Each Fire module includes a “squeeze layer”
with 1x1 convolutional kernels and an “expand layer”
with both 1x1 and 3x3 kernels [33]. We have replaced
the network’s first convolutional layer with a level fea-
ture extraction module, effectively reducing the model’s
size and parameter count. The primary advantage of
SqueezeNet is its lightweight design, which facilitates
rapid data transfer and real-time processing without
sacrificing performance. This makes it ideal for clas-
sification tasks. Consequently, we chose SqueezeNet to
build both the teacher network T and the student network
S.

(4) Experimental settings
All the experiments were conducted on a computer
equippedwith an IntelCore i7-11800HCPU@2.30GHz
and 16 GB of RAM. The NVIDIA GeForce RTX 3050
Ti Laptop GPU was used for training acceleration. The
development framework is PyTorch 1.12.1, with an ini-
tial learning rate set to 0.001 and an optimizer set to
Adam. The training epochs E are set to 30, the batch
size B is set to 256, and the number of batches per epoch
Q is set to 5. The loss function is CrossEntropyLoss. The
kaiming_normal function is used to initialize the weight
parameters in the feature vector matrix ω, as well as
the initial parameters θ

(0)
T and θ

(0)
S for the student and

teacher networks.
Accuracy: Proportion of correct predictions (TP+TN)
in the total samples.
Recall: This metric measures the proportion of actual
positive class samples (attack traffic) correctly identified
(TP) out of the total positive class samples (TP+FN). A
high recall rate means that fewer positive class samples
are missed.

F1 score: This metric is the harmonic mean of the accu-
racy and recall, and is used to evaluate the precision and
robustness of the model. The closer the value is to 1, the
better.
AUC (Area Under The ROC Curve): This metric
reflects the balance between the false positive rate and
true positive rate (recall) at different thresholds.A higher
AUC, closer to 1, indicates a better model classification
performance.
MER (Malicious traffic Evasion Rate): This metric
measures the ratio of undetected malicious traffic. A
higher MER indicates more effective evasion and lower
model robustness. The calculation (15) is as follows:

MER = (1 − TrueAttack/TotalNumberof Samples)

× 100%. (15)

ADR (Accuracy Decline Rate): This metric calculates
the decrease in model accuracy after an post-attack. A
higher ADR signifies reduced robustness. The calcula-
tion (16) is as follows:

ADR = PreAttack Accuracy − Post Attack Accuracy

Post Attack Accuracy

× 100%. (16)

RDR (Recall Decline Rate): This metric quantifies the
reduction in the recall rate following an attack. Greater
values indicate less sensitivity to attacks and diminished
robustness. The calculation (17) is as follows:

RDR = PreAttackRecall − Post AttackRecall

Post AttackRecall
× 100%. (17)
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Fig. 4 CPU throughput at
runtime between MPL and
ADIMPL models

4.2 Effectiveness experiment

Experimental preparation To prevent the model from learn-
ing solely from a single dataset, we combined the CIC-
IDS2017 and CIC-IDS2018 datasets. In accordance with
our experimental design, we introduce the N-way and K-
shot concepts, where N-way represents the type of network
traffic. This experiment includes nine types: benign, bot,
dos, ddos, infiltration, portscan, web attack, brute force,
and other attacks; thus, N=9. We also set up three groups
with extremely few, moderately few, and few labeled sam-
ples, with K values of 100, 500, and 1000, respectively.
Labeled samples were randomly selected, with the remain-
ing data forming the unlabeled dataset DU . Additionally,
we randomly drew 5000 network traffic instances from the
CIC-Attack Dataset 2023 to create a validation set DLv . To
ensure fairness in the experiment, all the supervised models
were trained with only the same number of labeled samples,

whereas unsupervised models were trained with an equal
number of unlabeled samples.

Experimental results We measured the throughput of tra-
ditional MPL model and ADIMPL on 11th Gen Intel(R)
Core(TM) i7-11800H chip. As shown in Fig. 4, we find
that ADIMPL achieves an average throughput of 0.65 Mb/s,
while MPL achieves 4.42 Mb/s. ADIMPL obtains a lower
computational overhead due to the significant reduction in
feature engineering complexity. The average throughput of
0.65Mb/s also proves that our proposed ADIMPL model
can be deployed in resource-constrained real ICPS. Table
3 displays the performance of seven systems under different
labeled sample size groups (extremely few, moderately few,
and few) during pre-training. The results show that ADIMPL
outperforms the other seven models across all four evalua-
tion metrics. As shown in Fig. 5, 6 and 7, the performance of
each model varies an increasing number of detection epochs.

Table 3 The accuracy, recall, F1 score, and AUC results of each model with extremely few, moderately few, and few labeled samples

Dreege Extremely few labeled samples Moderately few labeled samples Few labeled samples
(Total 700 samples) (Total 3,500 samples) (Total 7,000 samples)

Setup N-way K-shot N-way K-shot N-way K-shot
7 100 7 500 7 1000

Metrics Acc Rec F1 AUC Acc Rec F1 AUC Acc Rec F1 AUC

Supervised MemAe-gmm-ma 0.8153 0.7863 0.8041 0.7985 0.8468 0.8369 0.8399 0.8316 0.9317 0.9472 0.9371 0.9346

Unsupervised NetFlow-Edge 0.9567 0.9542 0.9557 0.9431 0.9611 0.9608 0.9609 0.9589 0.9635 0.9625 0.9631 0.9543

Semi-Supervised SFAD 0.9545 0.9367 0.9431 0.9411 0.9677 0.9653 0.9662 0.9579 0.9701 0.9687 0.9695 0.9651

ADESSA 0.9675 0.9348 0.9572 0.9341 0.9764 0.9683 0.9724 0.9652 0.9811 0.9798 0.9802 0.9805

EseT 0.9735 0.9689 0.9713 0.9735 0.9826 0.9811 0.9817 0.9804 0.9857 0.9843 0.9850 0.9836

MPL 0.9296 0.9176 0.9215 0.9258 0.9317 0.9256 0.9259 0.9211 0.9357 0.9356 0.9356 0.9298

ADIMPL 0.9862 0.9901 0.9881 0.9844 0.9911 0.9906 0.9908 0.9905 0.9913 0.9911 0.9912 0.9912

The best results are boldfaced
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Fig. 5 The accuracy, recall rate, F1 score, and AUC results of each model under the pre-training with extremely few labeled samples

Specifically, as shown in Fig. 5, the ADIMPLmodel initially
performs worse than EseT at lower epochs, however, after
surpassing 50 epochs, due to continuous optimization and
adaptation to data changes, the performance of ADIMPL
significantly improves. The experimental results demonstrate
that evenwith an extremely small number of labeled samples,
ADIMPL can adapt to the detection task based on the basis
of its learning capabilities, showing excellent effectiveness.

4.3 Real-time experiment

To objectively assess the real-time performance of themodel,
we used overall latency as the benchmark. This measures the
time from data packet input to detection completion, includ-
ing transmission, queuing, and detection latency.

Experimental preparation We set up two network traffic
groups with different loads to test the latency across seven

models. The low-load group used traffic from “Tues-20-02-
2018” (short-duration DDoS attacks) in the CIC-IDS 2018
dataset. The high-load group used traffic from “Wed-14-02-
2018” (long-duration Bruteforce attacks) and “Thurs-15-02-
2018” (long-duration DDoSAttacks).We ran the experiment
with Ostinato software, using 1000 packets for each group,
which was evenly split between benign and attack traffic to
reduce randomness.

Experimental results To visualize latency, we introduced the
cumulative distribution function (CDF) [38]. Figure8 shows
a latency box plot for seven methods under low-load con-
ditions. The overall latency of ADIMPL ranged from 0.062
to 0.182s, with a median of 0.098s, outperforming those
of the other methods. Figure9 illustrates ADIMPL’s overall
latency and includes CDF curves for transmission, queu-
ing, and detection latencies. The average detection latency
was 0.108s, which was the largest component. Under high-
load conditions, as shown in Fig. 10, the overall latency of

Fig. 6 The accuracy, recall rate, F1 score, and AUC results of each model under the pre-training with moderately few labeled samples
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Fig. 7 The accuracy, recall rate, F1 score, and AUC results of each model under the pre-training with few labeled samples

ADIMPL varied from 0.267 to 0.385s, with a median of
0.314s. This ranked second among the seven methods, just
behind NetFlow-Edge, which uses a simpler classification
algorithm instead of deep neural networks. Figure11 indi-
cates that the queuing and detection latencies account for
99.5% of total latency under high load, highlighting that
increased detection overhead leads to congestion. To enhance
real-time detection, models need improved processing capa-
bilities. Among themodels employing deep neural networks,
ADIMPL had the lowest detection time overhead, indicating
a strong real-time performance.

4.4 Robustness experiment

On the basis of the results of increased overall latency of
ADIMPL in high-load environments, we observed that the
performance of the detection model is somewhat affected
when attackers send a large volume of attack traffic to the
ICPS in a short period. Consequently, we focus more on
the robustness of the model and verify the robustness of
ADIMPL through experiments.

Adversarial attacks can be divided into three types based
on the basis of the attacker’s knowledge of the model.
White-box attacks occur when the attacker has complete
knowledge of the target model, including its internal mecha-
nisms, parameters, architecture, and training data. Black-box
attacks occur when the attacker has a limited understanding
of the model. Gray-box attacks are intermediate, combining
elements of both white-box and black-box attacks. Owing
to their nature, black-box attacks are more common seen in
real-world scenarios.

In [39], the authors introduced a black-box attack method
that combines theGAN+PSOalgorithms. This approach uses
GANs to generate adversarial examples and PSO to mimic
benign traffic, enhancing the sample’s disguise. However,
PSO struggleswith large traffic volumes because to oversized
search spaces and local optima. We refine the PSO objective
function to better adapt to the network traffic environment in
our experiment.

In the standard PSO algorithm, particles find the opti-
mal particle by learning from their own historical experience
p_best and collective experience b_best . To solve the vari-

Fig. 8 The box plot based on the overall latency results of each method in low-load environments
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Fig. 9 We plotted the corresponding CDF curves based on the latency results of different stages in low-load environments

able X = {x1, x2, · · · , xi }}, with the objective function being
min { f (x)}, the particle update formulas in the standard PSO
algorithm are expressed as (18) and (19).

vi (t + 1) =wvi (t) + c1r1(p_besti − xi (t))

+ c2r2(g_besti − xi (t))
(18)

xi (t + 1) = xi (t) + vi (t + 1), (19)

where vi (t + 1) and xi (t + 1) represent the velocity and
position of particle i at the t + 1 generation, respectively;
w is the inertia weight, which linearly decreases with the
number of iterations in the standard PSO algorithm; c1 and
c2 are learning factors, typically set to 2; and r1 and r1 are
random numbers uniformly distributed in the range [0,1].

By linearly combining the individual best and the group

best, and replacing
(

p_besti+g_besti
2

)

and
(

p_besti−g_besti
2

)

with p_best and b_best respectively in the above formula,
we obtain the new particle velocity update equation as fol-
lows.

vi (t + 1) =wvi (t) + c1r1

{

p_besti + g_besti
2

− xi (t)

}

+ c2r2

{

p_besti − g_besti
2

− xi (t)

}

.

(20)

The Optimized PSO algorithm has a wider search range
and faster search speed, enhancing the likelihood of finding
the global optimum during the mutation process. To test the
effectiveness of the GAN+OPSO attack algorithm (black-
box attack), we incorporated the GAN+OPSO algorithm and
FGSM (white-box attack) based on the Ref. [39] experi-
mental setup. As shown in Fig. 12, when MER is used as

Fig. 10 The box plot based on the overall latency results of each method in high-load environments
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Fig. 11 We plotted the corresponding CDF curves based on the latency results of different stages in high-load environments

the evaluation metric, our GAN+OPSO algorithm slightly
outperforms the originalGAN+PSOand surpasses thewhite-
box attack FGSM, demonstrating its effectiveness.

We attacked the detection model via the GAN+OPSO
approach. First, we generated black-box adversarial attack

samples with the GAN model. We then mutate these sam-
ples via the optimized PSO algorithm. To validate the
robustness of the model, two metrics (lc, lt ) were used to
quantify the attack cost, where lc is the ratio of adver-
sarial attack packets to original packets, and where lt is

Fig. 12 Comparison of different attack algorithms across six types of attackswith the control group (higher values indicate better attack effectiveness)
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the ratio of mutated traffic in the packets to the origi-
nal traffic. We define (lc = 0.2, lt = 0.5) as a low attack
cost, (lc = 0.35, lt = 0.75) as a medium attack cost, and
(lc = 0.35, lt = 0.75) as a high attack cost. The performance
of each model under these three cost scenarios is shown in
the following Table 4.

Table 4 shows that NetFlow-Edge’s performance decreases
with increasing attack costs. This is due to its basic packet-
level detection which allows altered adversarial samples to
escape detection. SFAD and EseT, which use frequency
domain features, are more robust. After attacks via low
and medium-cost GAN+OPSO, their Attack Detection Rate
(ADR) and Recovery Detection Rate (RDR) remain below
10%. ADIMPL extracts features at two levels and updates
them cyclically with the IMPL method. It adapts continu-
ously to attack environment changes. Even under high-cost
GAN+PSO attacks, ADIMPL maintains its ADR and RDR

under 10%. These results showADIMPL’s strong robustness
against black-box attacks.

4.5 Analysis

In the ICPS environment, three key performance indica-
tors are critical for detection models: effectiveness, real-time
performance, and robustness. Effectiveness ensures accurate
identification and response to attacks, real-time performance
maintains system security without delays in detection, and
robustness allows the model to perform reliably, even under
attack. These indicators are vital for any detection model.
We normalized the performance data for seven models under
various scenarios and calculated the arithmetic mean of these
three metrics to evaluate the overall performance. Figure13
shows that our method significantly outperforms the other

Table 4 The accuracy, recall rate, F1 score, and AUC results of each model under the pre-training with moderately few labeled samples

Attack Cost Models ACC Recall F1 AUC MER ADR RDR

Non-attack MemAe-gmm-ma 0.8468 0.8369 0.8399 0.8316 0 0 0

NetFlow-Edge 0.9611 0.9608 0.9609 0.9589 0 0 0

SFAD 0.9677 0.9653 0.9662 0.9579 0 0 0

ADESSA 0.9764 0.9683 0.9724 0.9652 0 0 0

EseT 0.9826 0.9811 0.9817 0.9804 0 0 0

MPL 0.9317 0.9256 0.9259 0.9211 0 0 0

ADIMPL 0.9911 0.9906 0.9908 0.9905 0 0 0

Low-attack MemAe-gmm-ma 0.8015 0.7761 0.7886 0.7831 6.13% 5.35% 7.26%

NetFlow-Edge 0.7514 0.7377 0.7445 0.7431 28.25% 21.82% 23.22%

SFAD 0.9425 0.9274 0.9349 0.9289 4.56% 2.60% 3.93%

ADESSA 0.8863 0.8490 0.8672 0.8522 15.66% 9.23% 12.32%

EseT 0.9664 0.9571 0.9617 0.9579 3.72% 1.62% 2.09%

MPL 0.9025 0.8621 0.8818 0.8728 11.78% 2.16% 5.53%

ADIMPL 0.9865 0.9832 0.9848 0.9815 0.86% 0.45% 0.72%

Medium-attack MemAe-gmm-ma 0.6933 0.6519 0.6720 0.6523 23.51% 18.13% 18.50%

NetFlow-Edge 0.6278 0.5589 0.5913 0.5734 53.92% 34.68% 41.83%

SFAD 0.8871 0.8954 0.8912 0.8896 10.65% 8.33% 6.78%

ADESSA 0.7439 0.7028 0.7228 0.7125 30.29% 23.81% 27.42%

EseT 0.9468 0.9531 0.9499 0.9502 4.37% 3.62% 2.50%

MPL 0.8325 0.8421 0.8372 0.8397 15.71% 9.75% 7.72%

ADIMPL 0.9623 0.9845 0.9732 0.9798 0.73% 2.89% 0.59%

High-attack MemAe-gmm-ma 0.4322 0.3598 0.3927 0.3643 69.02% 48.84% 57.01%

NetFlow-Edge 0.3219 0.2015 0.2479 0.2265 79.85% 66.51% 79.03%

SFAD 0.7359 0.7856 0.7599 0.7664 21.44% 23.95% 18.62%

ADESSA 0.5523 0.6015 0.5758 0.5871 39.85% 43.44% 37.88%

EseT 0.8541 0.8961 0.8745 0.8872 10.39% 13.05% 8.33%

MPL 0.7015 0.7860 0.7413 0.7739 21.41% 23.95% 13.87%

ADIMPL 0.9199 0.9445 0.9320 0.9438 5.06% 7.17% 4.63%

The best results are boldfaced
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Fig. 13 We normalized the effectiveness, real-time performance, and
robustness of each model, plotting the average values in the graph (the
closer to 1, the better). Additionally, we calculated the overall perfor-
mance of each model and illustrated it at the top

methods, demonstrating its exceptional capabilities in ICPS
attack detection.

5 Conclusion

Within the framework of industrial control systems, this
paper introduces ADIMPL, an advanced deep semi-supervi-
sed learningmethod for attack detection. Thismodel employs
the IMPL method, which is based on democratic co-training
and incorporates dual-level network traffic feature extraction.
Applying the IMPL algorithm between teacher and student
networks enhances the sensitivity to attack traffic. Thismakes
it suitable for ICPS attack detection scenarios. ADIMPL
adapts to dynamic attack changes, improving detection per-
formance and significantly increasing the robustness and
real-time capabilities of the deep semi-supervised learning
models. Experiments show that ADIMPL outperforms other
models in terms of effectiveness and robustness under the
same conditions. Considering its effectiveness, real-time per-
formance, and robustness,ADIMPLdemonstrates significant
superiority. However, this study did not fully address the
security andprivacy of industrial process data. In futurework,
we plan to apply the proposed algorithm within a federated
learning framework. This will create independent industrial
information silos, isolating each industrial process to ensure
data privacy and security.
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Abstract
The asynchronous filtering problem for two-dimensional (2D) Markovian jump systems (MJSs) under hybrid cyber attacks and stochastic communica-

tion protocol (SCP) is the focus of this investigation. To avoid data transmission collisions, only a single sensor can send measurement data through the

communication network at each sample shift moment, and the sensor chosen is decided by the SCP mechanism. Besides, the impact of stochastic

hybrid cyber attacks on filtering performance is also considered. In the background of hybrid cyber attacks and SCP, an augmented model of 2D MJSs is

constructed. Then, a novel asynchronous filter structure is proposed that can simultaneously characterize the MJSs and filter pattern mismatch as well

as the mismatch between the actual SCP pattern information and the available SCP pattern information. Then, sufficient criteria conditions are estab-

lished to ensure that dynamic filtering error systems meet robust HN mean-square stability with a certain level of disturbance attenuation. Moreover,

the conservativeness of the stability criterion is further reduced by the 2D summation inequality lemma. Finally, an industrial heating exchange process

is employed to illustrate the effectiveness of the developed asynchronous filtering algorithm.

Keywords
Two-dimensional Markovian jump systems, asynchronous filtering, hybrid cyber attacks, stochastic communication protocol, 2D summation inequality lemma

Introduction

The ability of two-dimensional (2D) systems to precisely

characterize many practical systems, such as multi-variable

network implementation, seismic detection data processing,

power transmission lines, and X-ray image enhancement, has

drawn growing interest (Duan et al., 2020; Men and Sun,

2023; Yang et al., 2020, 2024). Consequently, one of the most

interesting fields in systems control has emerged: 2D systems

theory. In summary, the Roesser model (Roesser, 1975), the

Fornasini and Marchesini (FM) model (Fornasini and

Marchesini, 1978), and the Kurek model (Kurek, 1985) are

the three most popular categories of state space models.

Furthermore, the time-delay phenomenon commonly exists in

2D systems, which is one of the main causes of system perfor-

mance degradation or even instability. As a result, analyzing

the properties of time-delay systems is a fundamental concern

for practical applications and has attracted considerable

attention in recent years. The stability analysis and control

synthesis of the time-delay systems have been extensively

explored and developed, especially in the utilization of time-

delay correlation conditions to obtain stability criteria and

less conservative results (Chelliq et al., 2023; Ghous et al.,

2019; Hien and Trinh, 2018; Peng and Nie, 2021; Tandon

et al., 2019).

With the rapid advancement of computer science and

cybernetics, the structure of the controlled system has evolved

from classical point-to-point to networked, and networked-

based control theory is gradually established. In this scenario,

the investigation results of networked 2D systems are fre-

quently published owing to their deep significance in real-

world engineering (Li et al., 2020; Song et al., 2023; Wang

et al., 2020; Yan et al., 2020; Zhu et al., 2023). Meanwhile, the

vulnerability of shared communication network has brought

information security to the forefront. Generally speaking,

there are several different types of cyber attacks that are com-

prehensively investigated: denial-of-service (DoS), false data

injection (FDI), and replay attacks (Duo et al., 2022; He

et al., 2022; Hu et al., 2022; Li et al., 2022a, 2023; Li and Ye,

2023; Liu et al., 2023; Sun et al., 2023; Tan et al., 2022; Xing

et al., 2023; Yang and Zhai, 2023; Zhang et al., 2023; Zhao

et al., 2022). It is important to notice that adversaries tend to
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maximize the effectiveness of attacks by using collaborative

hybrid cyber attacks on networked systems. Recently, a lot of

research attention has been focused on the security issues of

hybrid cyber attacks. (Ali et al., 2023; Cao et al., 2021; Cheng

and Liu, 2023; Hamdan et al., 2022; Hu et al., 2023; Lian

et al., 2023; Liu et al., 2021; Mao et al., 2024). Unfortunately,

the abovementioned results are all obtained on the basis of

one-dimensional (1D) systems, and there are very few results

concerning the analysis of evolutionary behavior for 2D sys-

tems subject to hybrid cyber attacks, which is the main moti-

vation for our current investigation.
It is important to highlight that much fundamental

research for 2D systems generates the implicit assumption that

the network has enough bandwidths, which means that all

sensors are able to transmit data to the filter through the net-

work at each sampling shift instant. Nevertheless, it is quite

unfeasible to apply such an idealized communication scheme

due to the limited-bandwidth network and the complexity of

the network structure. The try-once-discard protocol (TODP)

(Niu et al., 2023), the round-robin protocol (RRP) (Xu et al.,

2022), and the stochastic communication protocol (SCP) (Li

et al., 2022b; Lv et al., 2023) are a few well-known communi-

cation scheduling mechanisms that have been developed to

rationally arrange data transmission. Among these protocols,

the SCP and RRP are classified as time-triggered scheduling

schemes, and the TODP is classified as an event-triggered

scheme. Numerous industrial control networks, such as

Ethernet’s CSMA (carrier sense multiple access) protocol and

the wireless local area network’s ALOHA protocol, can

widely employ SCP (Tobagi, 1980). Consequently, a great

deal of attention has been paid to the control/filtering issues

under SCP. However, to the author’s knowledge, considerable

research achievements have been obtained for the filter design

problem of 1D systems affected by SCP, whereas available

results for 2D systems under SCP are still relatively scattered,

which may be due to the distinctive evolutionary regulations

of 2D systems, and this is another motivation for our current

investigation.
On the contrary, the dynamic behavior of many practical

systems can change abruptly during operation due to exogen-

ous disturbances and component faults. As a kind of stochas-

tic hybrid system, Markovian jump systems (MJSs) can well

characterize such variations, and the analysis and synthesis of

MJSs have also gradually attracted research interests. More

significantly, mode switching is one of the most important

features for MJSs, and it is vital to fully utilize the mode jump

information for the design of the controller and filter.

Nevertheless, due to various uncertainties of the system itself

and the communication network (e.g. switching device fail-

ures, randomly occurring packet dropouts, and time delays)

in practice, it is almost impossible for the controller/filtering

mode and system mode to achieve synchronous matching at

each sampling instant, which is also referred to as the asyn-

chronous phenomenon. To explore an effective stability anal-

ysis strategy in the case of pattern mismatch, scholars have

conducted preliminary research on asynchronous control/fil-

tering of 2D systems in recent years (Cheng et al., 2023; Hien

and Trinh, 2017; Tao and Wu, 2022; Wu and Tao, 2022; Wu

et al., 2019). The Roesser model is the basis for all of the
above-reported results, even though some have been obtained
for asynchronous filtering of 2D systems. In contrast to the
more general Fornasini and Marchesini II (FM-II) model, the
asynchronous filtering of 2D systems remains unaddressed.

In addition, considering the network-induced problems, the
communication scheduling mechanism, and the jump pattern
that remains asynchronous with the 2D MJSs, designing a
reasonable filter structure to obtain the desired filtering per-
formance is a more practical issue.

In conclusion, there are few research results on the 2D

MJSs asynchronous filtering problem subject to SCP and
hybrid cyber attacks, and the potential challenges may be as
follows: (1) How to analyze the influence of hybrid cyber
attacks and SCP on 2D systems? (2) How to characterize the
asynchronous interactions between stochastic communication

mode, MJS mode, and filter mode in the context of 2D MJSs?
(3) How to design an asynchronous filtering algorithm to
obtain filtering gain matrices that guarantee the filtering error
systems satisfy the desired HN performance? The main pur-
pose of this article is to cope with the aforementioned chal-

lenges and develop an asynchronous filtering algorithm for
2D MJSs.

In this paper, we are dedicated to the investigation of
asynchronous filtering design for a class of 2D MJSs under
the SCP and hybrid cyber attacks. The following summarizes
this paper’s innovations: (1) A bidirectional index model for

determining SCP and hybrid cyber attacks is presented; (2)
on the basis of (1), a novel asynchronous filter structure is
proposed that can simultaneously characterize the pattern
information mismatch of MJSs and filter as well as the pat-
tern information mismatch between the actual SCP and the

available SCP; (3) with the help of the Lyapunov theory, the
2D summation inequality lemma, and the linear matrix
inequality (LMI) technology, the filter gains with explicit
parameters are derived to guarantee the delay-dependent low-
conservative stability of the filtering error systems.

Notation: The notation used throughout the paper is fairly

standard. Rn denotes the n-dimensional Euclidean space, and
P . 0 P ø 0ð Þ means that it is real symmetric and positive defi-
nite (semi-definite). GT and G�1 represent the transpose and
the inverse of the matrix G, respectively. diag r1, � � � , rnf g
stands for a diagonal matrix with the indicated elements on

the diagonal, and zeros are located elsewhere. Pr jf g means
the occurrence probability of the event j. E zf g indicates the
expectation of the stochastic variable z. Ak k refers to the
norm of a matrix A defined by Ak k=

ffiffiffiffiffiffiffiffiffi
AT A
p

. N denotes the
set of natural numbers. The Kronecker delta function d(c)

is a binary function that equals 1 if c= 0 and equals 0
otherwise.

Problem Description and Preliminaries

As shown in Figure 1, we consider a class of 2D MJSs with
time delays under hybrid cyber attacks and SCP, which is
described by the FM-II model as follows
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x(i+ 1, j+ 1)=A1(r(i+ 1, j))x(i+ 1, j)
+A2(r(i, j+ 1))x(i, j+ 1)
+Ad1(r(i+ 1, j))x(i+ 1, j� t(j))+Ad2(r(i, j+ 1))

x(i� d(i), j+ 1)
+E1(r(i+ 1, j))v(i+ 1, j)+E2(r(i, j+ 1))v(i, j+ 1)
y(i, j)=C(r(i, j))x(i, j)+D(r(i, j))v(i, j)
z(i, j)=H(r(i, j))x(i, j)

8>>>>>>>><
>>>>>>>>:

ð1Þ

where x(i, j) 2 Rnx represents the system state vector,
y(i, j) 2 Rny and z(i, j) 2 Rnz are the measurement output and

the controlled output, respectively. v(i, j) 2 Rnv denotes the
external disturbance with bounded energy. A1(r(i+ 1, j)),

A2(r(i, j+ 1)), Ad1(r(i+ 1, j)), Ad2(r(i, j+ 1)), E1(r(i+ 1, j)),
E2(r(i, j+ 1)), C(r(i, j)), D(r(i, j)), and H(r(i, j)) are known

time-varying matrices with proper dimensions, which depend
on a specific Markov chain r(i, j). Furthermore, r(i, j) indi-

cates the mode of the systems at shift instant (i, j), and its
value belongs to a finite set Ms = 1, 2, :::, sf g with the follow-

ing transition probabilities

Pr r(i+ 1, j+ 1)= n r(i, j+ 1)=mjf g
= Pr r(i+ 1, j+ 1)= n r(i+ 1, j)=mjf g
=pmn, 8m, n 2Ms

ð2Þ

where pmn ø 0(8m, n 2Ms) represents the transition probabil-
ity from mode m to mode n, and satisfying

Ps
n= 1 pmn=1 for

all m 2Ms, x = pmn½ � is defined as the transition probability
matrix. In addition, the positive integers d(i) and t(j) satisfy the

following limited constraints and represent time-varying delays

16d6d(i)6�d, 16t6t(j)6�t

where d,�d,t, and �t are known positive scalars. Assume that

the following the initial conditions hold

x(i, j)=c(i, j), 80 ł j ł t1, i= � �d, � �d + 1, :::, 0:
x(i, j)=G(i, j), 80 ł i ł t2, j= � �t, � �t + 1, :::, 0:
c(0, 0)=G(0, 0),
x(i, j)= 0, 8j . t1, i= � �d, � �d + 1, :::, 0:
x(i, j)= 0, 8i . t2, j= � �t, � �t + 1, :::, 0

8>>>><
>>>>:

ð3Þ

where c(i, j) and G(i, j) are known vectors, and t1 and t2 are

two sufficiently large positive integers.

SCP

To prevent data conflicts, specific network protocols arrange
the network resources for the 2D MJSs (equation (1)) that

have a large number of sensors. The SCP scheme based on the
concept of 2D systems is presented. Assuming that the SCP

allows only a single sensor node to gain access to the commu-
nication network, let j(i, j) 2 1, 2, � � � , ny

� �
indicate which

sensor is chosen to transmit data information at each shift
instant, and its value is taken in a finite set Ms = 1, 2, :::, ny

� �
with the following transition probabilities

Pr j(i+ 1, j+ 1)= ε j(i, j+ 1)= .jf g
= Pr j(i+ 1, j+ 1)= ε j(i+ 1, j)= .jf g= |.ε, 8., ε 2Ms

where |.ε ø 0(8., ε 2Ms) represents the transition probability

from mode . to mode ε, and satisfies
Pny

ε= 1 |.ε = 1. s= ½|.ε�
is defined as the transition probability matrix for the decision

of which sensor to communicate with filter according to the

SCP. The measurement output can be reconstructed in the fol-

lowing form

y(i, j)= yT
1 (i, j) yT

2 (i, j) � � � yT
ny
(i, j)

h iT

where yl(i, j)(1ł l ł ny) represents measured output of the lth

sensor at the shift instant (i, j). Furthermore, the update rule

of signal transmission is introduced. Define �yl(i, j) represents

the latest measurement output of the lth sensor, then �yl(i, j)

can be expressed as

�yl(i, j)=
yl(i, j) if l= j(i, j)
0 otherwise

�

The following composite form of �y(i, j) can be derived in

accordance with the update rule

�y(i, j)=Fj(i, j)y(i, j) ð4Þ

where Fj(i, j) = diag d(j(i, j)� 1), � � � , d(j(i, j)� l), � � � , d(j(i, j)� ny)
� �

1 ł l ł ny

� �
, and d( � ) is the Kronecker delta function.

Hybrid cyber-attack model

First of all, it is thought that FDI attacks usually result in a

degradation in filtering performance by altering correct infor-

mation with harmful data. We employ the random variable

q i, jð Þ 2 0, 1f g to represent FDI attack indicators. q i, jð Þ= 1

represents that the FDI attacks successfully distort regular

data by using false data, and q i, jð Þ= 0 represents that the

FDI attacks are unable to tamper with normal data.

Assuming that the random variable q i, jð Þ is determined by

Bernoulli distribution, and the occurrence probability of

q i, jð Þ is provided as follows

Pr q i, jð Þ= 1f g= �q, Pr q i, jð Þ= 0f g= 1� �q

Subsequently, the following measured output subject to FDI

attacks can be described

~y(i, j)=�y(i, j)+q i, jð Þg(i:j) ð5Þ

where g(i:j)= ½gT
1 (i, j) gT

2 (i, j) � � � gT
ny
(i, j) �T defined as

attacker-generated false data signals, which can be produced

as follows

g(i:j)= � �y(i, j)+ y(i, j)

where y(i, j) indicates the bounded energy single and satisfies

y(i, j)k kł �y.
In what follows, we discuss the DoS attacks that disrupt

the information transmission of the communication network.

Besides, suppose that the s i, jð Þ 2 0, 1f g represents DoS

attack indicators. Analogously, s i, jð Þ= 0 indicates that DoS

attacks arise when measurement output is being transmitted,
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whereas s i, jð Þ= 1 indicates that DoS attacks do not occur.
In addition, the following probability distribution is defined

Pr s i, jð Þ= 1f g= �s, Pr s i, jð Þ= 0f g= 1� �s

In addition, the zero-order hold strategy is employed to

guarantee the latest measurement data transmission.
Consequently, the latest measurement output after the com-

munication network can be expressed as

~y(i, j)=s i, jð Þ~y(i, j)+ (1� s i, jð Þ)~y(i, j� 1) ð6Þ

Remark 1. DoS attacks are a kind of cyber-attack strategy

that is often utilized for occupying the communication

resources to discourage the transmission of measurement and
signals. The deception attacks also known as FDI attacks are

defined as the tampering of normal data with false data to

disrupt system operation. Based on the proposed principle of
measured output under hybrid cyber attacks, when q i, jð Þ= 0

and s i, jð Þ= 0, the shared network is impacted only by DoS

attacks; when q i, jð Þ= 1 and s i, jð Þ= 0, the shared network
is impacted by both DoS and FDI attacks; when q i, jð Þ= 0

and s i, jð Þ= 1, the shared network is not impacted by cyber

attacks; when q i, jð Þ= 1 and s i, jð Þ= 1, the shared network
is only impacted by FDI attacks.

Problem formulation

The asynchronous filtering problem for 2D MJSs (equation
(1)) under the SCP and hybrid cyber attacks will be discussed

in this paper. Considering the possibility that the filter mode
remains in an asynchronous state with the system mode and
the SCP mode simultaneously, the following asynchronous fil-
ter structure is proposed

x̂(i+ 1, j+ 1)=A1(r(i+ 1, j))x̂(i+ 1, j)

+A2(r(i, j+ 1))x̂(i, j+ 1)

+Ad1(r(i+ 1, j))x̂(i+ 1, j� t(j))+Ad2(r(i, j+ 1))

x̂(i� d(i), j+ 1)

+K
d(i+ 1, j)
1, z(i+ 1, j)(~y(i+ 1, j)� C(r(i+ 1, j))x̂(i+ 1, j))

+K
d(i, j+ 1)
2, z(i, j+ 1)(~y(i, j+ 1)� C(r(i, j+ 1))x̂(i, j+ 1))

ẑ(i, j)=H(r(i, j))x̂(i, j)

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð7Þ

where x̂(i, j) 2 Rnx is the estimation of state vector x(i, j), and

ẑ(i, j) is the estimation of controlled output z(i, j). K
d(i+ 1, j)
1, z(i+ 1, j)

and K
d(i, j+ 1)
2, z(i, j+ 1) are parameters d(i, j) and z(i, j)-dependent

asynchronous HN filter gain matrices, in which d(i, j) denotes
a Markov chain with transition probability different from x

Figure 1. Asynchronous filtering problem for 2D MJSs with time-varying delays.
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to described the non-synchronous connections between the mode of filter and 2D discrete MJSs (equation (1)), and takes the

value in a finite set Mg = 1, 2, :::, gf g with the transition probability matrix fr(i+ 1, j+ 1) = m
r(i+ 1, j+ 1)
�hg

h i
as follows

Pr (d(i+ 1, j+ 1)= gjd(i+ 1, j)= �h)= Pr (d(i+ 1, j+ 1)= gjd(i, j+ 1)= �h)=m
r(i+ 1, j+ 1)
�hg

, 8�h, g 2Mg

The SCP usually regulates sensors to access the network medium according to some specific stochastic process, which is

essentially a scheduling strategy with uncertainty. In control engineering practice, it is often difficult to attain the real situation

of data exchange between the sensor and the filter due to the limitations of the system and network. Hence, the asynchronous

attribute is more consistent with the actual scheduling situation. To reflect the asynchronous characteristics of sensor nodes’

access to the communication network, we reintroduce another Markov stochastic process z(i, j), which is closely related to

j(i, j), and assume that z(i, j) denotes a Markov chain whose value belongs to a finite set Mg = 1, 2, :::, ny

� �
with the following

transition probabilities

Pr z(i+ 1, j+ 1)=yjz(i+ 1, j)=wf g= Pr z(i+ 1, j+ 1)=yjz(i, j+ 1)=wf g= oj(i+ 1, j+ 1)
wy , 8w,y 2Mg

and satisfying
Pny

y= 1 o
j(i+ 1, j+ 1)
wy = 1 for all y 2Mg. Similarly, �oj(i+ 1, j+ 1) = o

j(i+ 1, j+ 1)
wy

h i
is denoted as the transition prob-

ability matrix of z(i, j). Besides, the values of state estimation are set as x̂(i, 0)= x̂(0, j)= 0.
Then, we define e(i, j), x(i, j)� x̂(i, j) and ~z(i, j), z(i, j)� ẑ(i, j). By considering equations (7) and (8), the dynamic filtering error

e(i, j) of 2D MJSs (equation (1)) can be described as

e(i+ 1, j+ 1)

= (A1(r(i+ 1, j))� K
d(i+ 1, j)
1, z(i+ 1, j)C(r(i+ 1, j)))e(i+ 1, j)+ (A2(r(i, j+ 1))� K

d(i, j+ 1)
2, z(i, j+ 1)C(r(i, j+ 1)))e(i, j+ 1)

+Ad1(r(i+ 1, j))e(i+ 1, j� t(j))+Ad2(r(i, j+ 1))e(i� d(i), j+ 1)

+ (E1(r(i+ 1, j))� K
d(i+ 1, j)
1, z(i+ 1, j)s(i+ 1, j)�q(i+ 1, j)Fj(i+ 1, j)D(r(i+ 1, j))v(i+ 1, j)

+ (E2(r(i, j+ 1))� K
d(i, j+ 1)
2, z(i, j+ 1)s(i, j+ 1)�q(i, j+ 1)Fj(i, j+ 1)D(r(i, j+ 1))v(i, j+ 1)

+K
d(i+ 1, j)
1, z(i+ 1, j)(I � s(i+ 1, j)�q(i+ 1, j)Fj(i+ 1, j))C(r(i+ 1, j))x(i+ 1, j)

� K
d(i+ 1, j)
1, z(i+ 1, j)s(i+ 1, j)q(i+ 1, j)y(i+ 1, j)� K

d(i+ 1, j)
1, z(i+ 1, j)�s(i+ 1, j)~y(i+ 1, j� 1)

+K
d(i, j+ 1)
2, z(i, j+ 1)(I � s(i, j+ 1)�q(i, j+ 1)Fj(i, j+ 1))C(r(i, j+ 1))x(i, j+ 1)

� K
d(i, j+ 1)
2, z(i, j+ 1)s(i, j+ 1)q(i, j+ 1)y(i:j+ 1)� K

d(i, j+ 1)
2, z(i, j+ 1)�s(i, j+ 1)~y(i, j)

ð8Þ

In virtue of the following augmented matrices

h(i, j)= eT (i, j) xT (i, j) ~yT (i, j� 1)
� 	T

, ~v(i, j)= vT (i+ 1, j) vT (i, j+ 1) yT (i+ 1, j) yT (i, j+ 1)
� 	T

Moreover, the following structure can be implemented to regenerate the dynamic filtering error systems (equation (8))

:

h(i+ 1, j+ 1)= (~P1 +-1(i, j)P̂1 +-2(i, j)P
_

1)h(i+ 1, j)+ (~P2 +-1(i, j+ 1)P̂2 +-2(i, j+ 1)P
_

2)h(i, j+ 1)

+P3(i+ 1, j� t(j))h(i+ 1, j� t(j))+P4(r(i� d(i), j+ 1))h(r(i� d(i), j+ 1)

+ ( �Y+-1(i+ 1, j) ~Y+-1(i, j+ 1)Ŷ+-3(i+ 1, j)Y
_

+-3(i, j+ 1) �Y)~v(i, j)

~z(i, j)= ~H(r(i, j))h(i, j)

8>>>>><
>>>>>:

ð9Þ

where

~P1 =

A1(r(i+ 1, j))� K
d(i+ 1, j)
1, z(i+ 1, j)C(r(i+ 1, j)) ~P12

1 �K
d(i+ 1, j)
1, z(i+ 1, j)(1� �s)

0 A1(r(i+ 1, j)) 0

0 �s(1� �q)Fj(i+ 1, j)C(r(i+ 1, j)) 1� �s

2
64

3
75,

~P12
1 =K

d(i+ 1, j)
1, z(i+ 1, j)C(r(i+ 1, j))� �s(1� �q)Kd(i+ 1, j)

1, z(i+ 1, j)Fj(i+ 1, j)C(r(i+ 1, j)),

P̂1 =
0 �K

d(i+ 1, j)
1, z(i+ 1, j)Fj(i+ 1, j)C(r(i+ 1, j)) 0

0 0 0

0 Fj(i+ 1, j)C(r(i+ 1, j)) 0

2
4

3
5, P

_

1 =
0 0 �K

d(i+ 1, j)
1, z(i+ 1, j)

0 0 0

0 0 I

2
4

3
5,
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~P2 =
A2(r(i, j+ 1))� K

d(i, j+ 1)
2, z(i, j+ 1)C(r(i, j+ 1)) ~P12

2 �K
d(i, j+ 1)
2, z(i, j+ 1)(1� �s)

0 A2(r(i, j+ 1)) 0

0 0 0

2
4

3
5, P

_

2 =
0 0 �K

d(i, j+ 1)
2, z(i, j+ 1)

0 0 0

0 0 0

2
4

3
5,

~P12
2 =K

d(i, j+ 1)
2, z(i, j+ 1)C(r(i, j+ 1))� �s(1� �q)Kd(i, j+ 1)

2, z(i, j+ 1)Fj(i, j+ 1)C(r(i, j+ 1)), P̂2 =
0 �K

d(i, j+ 1)
2, z(i, j+ 1)Fj(i, j+ 1)C(r(i, j+ 1)) 0

0 0 0

0 0 0

2
4

3
5,

P3(i+ 1, j� t(j))=
0 Ad1(r(i+ 1, j)) 0

0 Ad1(r(i+ 1, j)) 0

0 0 0

2
4

3
5, P4(r(i� d(i), j+ 1))=

0 Ad2(r(i, j+ 1)) 0

0 Ad2(r(i, j+ 1)) 0

0 0 0

2
4

3
5,

�Y=

�Y11
�Y12 �K

d(i+ 1, j)
1, z(i+ 1, j)�s

�q �K
d(i, j+ 1)
2, z(i, j+ 1)�s

�q

E1(r(i+ 1, j)) E2(r(i, j+ 1)) 0 0

�s(1� �q)Fj(i+ 1, j)D(r(i+ 1, j)) 0 �s�q 0

2
64

3
75,

�Y11 =E1(r(i+ 1, j)� K
d(i+ 1, j)
1, z(i+ 1, j)�s(1� �q)Fj(i+ 1, j)D(r(i+ 1, j)), �Y12 =E2(r(i, j+ 1)� K

d(i, j+ 1)
2, z(i, j+ 1)�s(1� �q)Fj(i, j+ 1)D(r(i, j+ 1)),

~Y=

�K
d(i+ 1, j)
1, z(i+ 1, j)Fj(i+ 1, j)D(r(i+ 1, j)) 0 0 0

0 0 0 0

Fj(i+ 1, j)D(r(i+ 1, j)) 0 0 0

2
64

3
75, Ŷ=

0 �K
d(i, j+ 1)
2, z(i, j+ 1)Fj(i, j+ 1)D(r(i, j+ 1)) 0 0

0 0 0 0

0 0 0 0

2
64

3
75,

Y
_

=

0 0 �K
d(i+ 1, j)
1, z(i+ 1, j) 0

0 0 0 0

0 0 I 0

2
64

3
75, �Y=

0 0 0 �K
d(i, j+ 1)
2, z(i, j+ 1)

0 0 0 0

0 0 0 0

2
64

3
75, ~H(r(i, j))= H(r(i, j)) 0 0½ �,

-1(i, j)=s(i, j)(1� q(i, j))� �s(1� �q), -2(i, j)= (1� s(i, j))� (1� �s), -3(i, j)=s(i, j)q(i, j)� �s�q

In addition, the following statistical characteristics of the random sequences of DoS and FDI attacks are provided in order

facilitate the presentation of the subsequent results

E -2
1(i, j)

� �
= �s(1� �q)(1� �s(1� �q))= �12

1, E -2
2(i, j)

� �
=(1� �s)(1� (1� �s))= �12

2,

E -2
3(i, j)

� �
= �s�q(1� �s�q)= �12

3, E -1(i, j)-2(i, j)
� �

= � �s(1� �q)(1� �s)= �12
12,

E -1(i, j)-3(i, j)
� �

= � �s�q(1� �q)= �12
13, E -2(i, j)-3(i, j)

� �
= � �s�q(1� �s)= �12

23

Remark 2. From the control practice viewpoint, it is difficult

to accurately obtain all of system information at each instant

due to network limitations and its own component limita-

tions, and it is impractical to investigate control/filtering algo-

rithm design based on the assumption that all information is

available. According to filter structure (equation (7)), it is

easy to see the filter gain matrices K
d(i+ 1, j)
1, z(i+ 1, j) and K

d(i, j+ 1)
2, z(i, j+ 1)

are parameters d(i, j) and z(i, j)-dependent. By establishing

Markov stochastic processes d(i, j) and z(i, j) to allow the fil-

ter (equation (7)) simultaneously reflect that the MJSs and fil-

ter pattern communication mismatch as well as the pattern

information mismatch between the actual SCP and the avail-

able SCP. The above investigation better tackles the chal-

lenges imposed by the complexity of 2D MJSs in the real

world.

Definition 1 (Ghous et al., 2015). For arbitrary given initial

bounded conditions (equation (3)) and external disturbance

satisfying v(i, j)[0, the dynamic filtering error systems (equa-

tion (9)) based on 2D MJSs (equation (1)) is globally asymp-

totically stable in the mean-square sense if the following

relationship holds

lim
i+ j!‘

E h(i, j)k k2
n o

= 0

Definition 2 (Ghous et al., 2015). The dynamic filtering error

systems (equation (9)) satisfy the robust HN stability with dis-

turbance attenuation level g if the following conditions hold:

1. Dynamic filtering error systems (equation (9)) with
v(i, j)[0 is globally asymptotically stable in the mean-
square sense.

2. For a given scalar g . 0 and under zero initial condi-
tions, the following inequality is satisfied for any
bounded disturbance v(i, j) 6¼ 0
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X‘

i= 0

X‘

j= 0

Ef z
_
(i, j)



 

2gł g2
X‘

i= 0

X‘

j= 0

 !
Ef ~v(i, j)k k2g

where z
_
(i, j)



 

2
=

~z(i+ 1, j)
~z(i, j+ 1)

� �










2

, ~v(i, j)k k2 = vT (i+ 1, j)
�



vT (i, j+ 1)yT (i+ 1, j)yT (i, j+ 1)�Tk2.
Moreover, to reduce the conservatism of the stability cri-

terion, we introduce an inequality relation based on the 2D

Abel lemma.

Lemma 1 (Peng and Nie, 2021). In the vertical direction, for a

positive definite symmetric matrix R, integers r1 and r2 satis-

fying r2 � r1 . 1, the following inequality holds

u2(r1, r2)ø
1

Q1

vT
1 Rv1 +

3Q2

Q1Q3

vT
2 Rv2

where u2(r1, r2)=
Pr2�1

j= r1

yT
1, jRy1, j, Q1 = r2 � r1, Q2 = r2�

r1 � 1, Q3 = r2 � r1 + 1, y1, j = x1, j+ 1 � x1, j, v1 = x1, r2
� x1, r1

,

v2 = x1, r2
+ x1, r1

� 2
r2�r1�1

Pr2�1

j= r1 + 1

x1, j.

In the horizontal direction, it is obtained that

u1(r1, r2)ø
1

Q1

vT
1 Rv1 +

3Q2

Q1Q3

vT
2 Rv2

where u1(r1, r2)=
Pr2�1

i= r1

yT
i, 1Ryi, 1, yi, 1 = xi+ 1, 1 � xi, 1,

v1 = xr2, 1 � xr1, 1, v2 = xr2, 1 + xr1 , 1 � 2
r2�r1�1

Pr2�1

i= r1 + 1

xi, 1.

Remark 3. According to Peng and Nie (2021), for the finite-

sum term u1(r1, r2) and u2(r1, r2), the Lemma 1 can obtain

time-delay boundary conditions with smaller conservatism

than that of Jensen inequality, which is crucial for subse-

quently obtaining conclusions on the stability of the low con-

servativeness with respect to the time-delay boundary.
Heretofore, the dynamic filtering error systems (equation

(9)) with asynchronous characteristics are obtained for the 2D

MJSs (equation (1)) limited by SCP and hybrid cyber attacks.

Next, we will endeavor to establish sufficient criteria for the

dynamic filtering error system (equation (9)) with an HN dis-

turbance attenuation performance g. In addition, for the con-

venience of subsequent derivation, P
r(i+ 1, j), d(i+ 1, j)
j(i+ 1, j), z(i+ 1, j)(i+ 1, j),

Q
r(i, j+ 1), d(i, j+ 1)
j(i, j+ 1), z(i, j+ 1)(i, j+ 1), P

r(i+ 1, j+ 1), d(i+ 1, j+ 1)
j(i+ 1, j+ 1), z(i+ 1, j+ 1)(i+ 1, j+ 1),

Q
r(i+ 1, j+ 1), d(i+ 1, j+ 1)
j(i+ 1, j+ 1), z(i+ 1, j+ 1)(i+ 1, j+ 1), P1(i+ 1, j), P2(i, j+ 1),

P3(i+ 1, j� t(j)) and P4(i� d(i), j+ 1) are, respectively,

abbreviated as Pm, �h
.,w, Qm, �h

.,w, Pn, g
ε,y , Qn, g

ε,y , P1, P2, P3, and P4.

Main Results

Theorem 1: For given scalars �t, t, �d, and d, the dynamic fil-

tering error systems (equation (9)) with v(i, j)[0 is asympto-

tically stable in the mean-square sense if there exist positive

definite symmetric matrices Pm, �h
.,w, Qm, �h

.,w,
�Pn,g

ε,y ,
�Qn, g

ε,y , S1, S2, S3,

and S4, such that the following inequality holds

~F ~C
� X

_

� �
ł 0 ð10Þ

where

~F=

~F11
~F12

~F13

� ~F22
~F23

� � ~F33

2
64

3
75, ~F11 =

~S �S2
~P2 � ~PT

1 S4 �S2P3 �S2P4

� �S �S4P3 �S4P4

� � �S1 0

� � � �S3

2
6664

3
7775, �Pn,g

ε,y =
XMg

y= 1

XMs

ε= 1

XMs

n= 1

XMg

g = 1

pmnmn
�hg
|.εo

ε
wyPn, g

ε,y ,

�Qn, g

ε,y =
XMg

y= 1

XMs

ε= 1

XMs

n= 1

XMg

g = 1

pmnmn
�hg
|.εo

ε
wyQn, g

ε,y ,
~S =(1+ �t � t)S1 +

�4t + 2

t + 1
S2 � Pm, �h

.,w +(t2 +(�t � t)2)(I � ~PT
1 S2 � S2

~P1),

�S =(1+ �d � d)S1 +
�4d + 2

d + 1
S4 � Qm, �h

.,w +(d2 +(�d � d)2)(I � ~PT
2 S4 � S4

~P2),
~F12 = diag

�2t + 4

t + 1
S2,
�2d + 4

d + 1
S4, 0, 0

� 

,

~F13 =

0
6(t�1)
t + 1

S2 0 0

0 0
3(d�1)

d + 1
S4 0

0 0 0 0

0 0 0 0

2
66664

3
77775, ~F22 ¼

ð~t þ t
_ÞS2 0 t̂S2 0

0 ð~d þ d
_

ÞS4 0 d̂S4

0 0 t
_

S2 0

0 0 0 d
_

S4

2
66664

3
77775

~F23 =

6~tS2 0
6(t�1)
t + 1

S2 0

0 6~dS4 0
6(d�1)

d + 1
S4

6~tS2 0 0 0

0 6~dS4 0 0

2
66664

3
77775, ~F33 = diag �12~tS2, � 12~dS4, �

12(t � 1)

t + 1
S2, �

12(d � 1)

d + 1
S4

� 

,

~C= C12 C13 C14 C15 C16½ �, X
_

= I5 ��X, ~t =
�4t + 2

t + 1
, ~d =

�4d + 2

d + 1
, t
_
=
�4�t + 4t + 2

�t � t + 1
, d
_

=
�4�d + 4d + 2

�d � d + 1
,

t̂ =
�2�t + 2t + 4

�t � t + 1
, d̂ =

�2�d + 2d + 4
�d � d + 1

,~t=
(�t � t � 1)

�t � t + 1
, ~d=

(�d � d � 1)
�d � d + 1

, X=(�Pn, f
e +�Qn, f

e +(t2+(�t�t)2)S2+(d2+(�d�d)2)S4),

Zhang et al. 135



C12 = X~P1 X~P2 XP3 XP4 0 0 0 0 0 0 0 0
� 	T

, C13 = �11XP̂1 �11XP̂2 0 0 0 0 0 0 0 0 0 0
� 	T

,

C14 = �112XP
_

1 �112XP̂2 0 0 0 0 0 0 0 0 0 0

h iT

, C15 = �112XP̂1 �112XP
_

2 0 0 0 0 0 0 0 0 0 0

h iT

,

C16 = �12XP
_

1 �12XP
_

2 0 0 0 0 0 0 0 0 0 0

h iT

, eT
i = 0nx 3 (i�1)nx

Inx 3 nx
0nx 3 (12�i)nx

½ �, i= 1, 2, :::, 12:

Proof: First of all, we consider the globally asymptotically mean-square stability of the dynamic filtering error systems (equa-
tion (9)) under external disturbance v(i, j)[0. Choose the following Lyapunov energy-like function

V (i, j)=V1(i, j)+V2(i, j)=
X5

q= 1

V1, q(i, j)+
X5

q= 1

V2, q(i, j) ð11Þ

with V1, 1(i, j)=hT (i, j)P
r(i, j), d(i, j)
j(i, j) (i, j)h(i, j), V1, 2(i, j)=

P�1

u=�t(j)

hT (i, j+ u)S1h(i, j+ u),

V1, 3(i, j)=
X�t

u= 1��t

X�1

s= u

hT (i, j+ s)S1h(i, j+ s), V1, 4(i, j)= t
X�1

u=�t

X�1

s= u

}T
1 (i, j+ s)S2}1(i, j+ s)

}1(i, j+ s)=h(i, j+ s+ 1)� h(i, j+ s), V1, 5(i, j)= (�t � t)
X�t�1

u=��t

X�1

s= u

}T
1 (i, j+ s)S2}1(i, j+ s),

V2, 1(i, j)=hT (i, j)Qr(i, j), d(i, j)
j(i, j) h(i, j), V2, 2(i, j)=

X�1

u=�d(i)

hT (i+ u, j)S3h(i+ u, j),

V2, 3(i, j)=
X�d

u= 1��d

X�1

s= u

hT (i+ s, j)S3h(i+ s, j), }2(i+ s, j)=h(i+ s+ 1, j)� h(i+ s, j),

V2, 4(i, j)= d
X�1

u=��d

X�1

s= u

}T
2 (i+ s, j)S4}

T
2 (i+ s, j), V2, 5(i, j)= (�d � d)

X�d�1

u=��d

X�1

s= u

}T
2 (i+ s, j)S4}2(i+ s, j)

Based on the relationship between r(i, j), d(i, j), j(i, j), and z(i, j), the following probability transition relationship can be
obtained

Pr
r(i+ 1, j+ 1)= n, d(i+ 1, j+ 1)= g, z(i+ 1, j+ 1)=y, j(i+ 1, j+ 1)= ε

r(i, j+ 1)=m, d(i, j+ 1)= �h, z(i, j+ 1)=w, j(i, j+ 1)= .j

( )

= Pr r(i+ 1, j+ 1)= n
r(i, j+ 1)=m, d(i, j+ 1)= �h, z(i, j+ 1)=w, j(i, j+ 1)= .,

d(i+ 1, j+ 1)= g, z(i+ 1, j+ 1)=y, j(i+ 1, j+ 1)= ε

�����
( )

3 Pr d(i+ 1, j+ 1)= g

r(i, j+ 1)=m, d(i, j+ 1)= �h, z(i, j+ 1)=w, j(i, j+ 1)= .,

r(i+ 1, j+ 1)= n, z(i+ 1, j+ 1)=y, j(i+ 1, j+ 1)= ε

�����
( )

3 Pr j(i+ 1, j+ 1)= ε
r(i, j+ 1)=m, d(i, j+ 1)= �h, z(i, j+ 1)=w, j(i, j+ 1)= .,

r(i+ 1, j+ 1)= n, d(i+ 1, j+ 1)= g, z(i+ 1, j+ 1)=y

�����
( )

3 Pr z(i+ 1, j+ 1)=y
r(i, j+ 1)=m, d(i, j+ 1)= �h, z(i, j+ 1)=w, j(i, j+ 1)= .,

r(i+ 1, j+ 1)= n, d(i+ 1, j+ 1)= g, j(i+ 1, j+ 1)= ε

�����
( )

=pmnmn
�hg
|.εo

ε
wy

Similarly, it is easy to deduce that

Pr
r(i+ 1, j+ 1)= n, d(i+ 1, j+ 1)= g, z(i+ 1, j+ 1)=y, j(i+ 1, j+ 1)= ε

r(i+ 1, j)=m, d(i+ 1, j)= �h, z(i+ 1, j)=w, j(i+ 1, j)= .j

( )
=pmnmn

�hg
|.εo

ε
wy ð12Þ
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Furthermore, the mathematical expectation of matrix Pn, f
e

can be derived from the relation of equation (12) as follows

E Pn,g

ε,y

n o
=
XMg

y= 1

XMs

ε= 1

XMs

n= 1

XMg

g = 1

pmnmn
�hg
|.εo

ε
wyPn, g

ε,y = �Pn,g

ε,y ð13Þ

similarly, one has

E Qn,
ε,y

n o
=
XMg

y= 1

XMs

ε= 1

XMs

n= 1

XMg

g = 1

pmnmn
�hg
|.εo

ε
wyQn,g

ε,y = �Qn, g

ε,y ð14Þ

Considering the following index

J (i, j) ¼D Ef(V (i+ 1, j+ 1)� V1(i+ 1, j)� V2(i, j+ 1)j∂(i, j)g=

E
X5

q= 1

DV1, q(i, j)+
X5

q= 1

DV2, q(i, j)j∂(i, j)

( )

ð15Þ

where ∂(i, j) ¼D fh(i+ 1, j),h(i+ 1, j� 1), :::,h(i+ 1, j� �t),
h(i, j+ 1),h(i� 1, j+ 1), :::,h(i� �d, j+ 1)g,

DV1, q(i, j)=V1, q(i+ 1, j+ 1)� V1, q(i+ 1, j), DV2, q(i, j)=

V2, q(i+ 1, j+ 1)� V2, q(i, j+ 1):

Define the following augmented matrices

=T (i, j)=

"
hT (i+ 1, j):,hT (i, j+ 1),hT (i+ 1, j� t(j)),hT (i� d(i), j+ 1),hT (i+ 1, j� t), :

hT (i� d, j+ 1),hT (i+ 1, j� �t),hT (i� �d, j+ 1), 1
�t � t � 1

X�t�1

u=��t + 1

hT (i+ 1, j+ u),

1
�d � d � 1

X�d�1

u=��d + 1

hT (i+ u, j+ 1), 1
t � 1

X�1

u=�t + 1

hT (i+ 1, j+ u), 1
d � 1

X�1

u=�d + 1

hT (i+ u, j+ 1)

#
,

A(i, j)= ~P1 +-1(i+ 1, j)P̂1 +-2(i+ 1, j)P
_

1, ~P2 +-1(i, j+ 1)P̂2 +-2(i, j+ 1)P
_

2,P3,P4, 0, 0, 0, 0, 0, 0, 0, 0
h i

the dynamic filtering error system (equation (9)) with v(i, j)[0 can be rewritten as

h(i+ 1, j+ 1)=A(i, j)=(i, j) ð16Þ

Combine equations (11), (13), (14), and (15) with equation (16), which yields

E DV1, 1(i, j)f g=EfhT (i+ 1, j+ 1)Pn, f
e h(i+ 1, j+ 1)� hT (i+ 1, j)Pm, l

a h(i+ 1, j)j∂(i, j)g ð17Þ

E DV1, 2(i, j)f g

=Ef
X�1

u=�t(j+ 1)

hT (i+ 1, j+ 1+ u)S1h(i+ 1, j+ 1+ u)�
X�1

u=�t(j)

hT (i+ 1, j+ u)S1h(i+ 1, j+ u)j∂(i, j)g

=hT (i+ 1, j)S1h(i+ 1, j)� hT (i+ 1, j� t(j))S1h(i+ 1, j� t(j))+
X�1

u= 1�t(j+ 1)

hT (i+ 1, j+ u)S1h(i+ 1, j+ u)

�
X�1

u= 1�t(j)

hT (i+ 1, j+ u)S1h(i+ 1, j+ u)

6hT (i+ 1, j)S1h(i+ 1, j)� hT (i+ 1, j� t(j))S1h(i+ 1, j� t(j))+
X�t

u= 1��t

hT (i+ 1, j+ u)S1h(i+ 1, j+ u),

6=T (i, j)(eT
1 S1e1 � eT

3 S1e3)=T (i, j)+
X�t

u= 1��t

hT (i+ 1, j+ u)S1h(i+ 1, j+ u)

ð18Þ

E DV1, 3(i, j)f g

=Ef
X�t

u= 1��t

X�1

s= u

hT (i+ 1, j+ 1+ s)S1h(i+ 1, j+ 1+ s)�
X�t

u= 1��t

X�1

s= u

hT (i+ 1, j+ s)S1h(i+ 1, j+ s)j∂(i, j)g

=Ef
X�t

u= 1��t

(hT (i+ 1, j)S1h(i+ 1, j)� hT (i+ 1, j+ u)S1h(i+ 1, j+ u))j∂(i, j)g

=(�t � t)=T (i, j)eT
1 S1e1=T (i, j)�

X�t

u= 1��t

hT (i+ 1, j+ u)S1h(i+ 1, j+ u)

ð19Þ
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E DV1, 4(i, j)f g

=Eft
X�1

u=�t

X�1

s= u

}T
1 (i+ 1, j+ s+ 1)S2}1(i+ 1, j+ s+ 1)� t

X�1

u=�t

X�1

s= u

}T
1 (i+ 1, j+ s)S2}1(i+ 1, j+ s)j∂(i, j)g

= t2E }T
1 (i+ 1, j)S2}(i+ 1, j)

� �
� tEf

X�1

u=�t

}T
1 (i+ 1, j+ u)S2}1(i+ 1, j+ u)g

ð20Þ

E DV1, 5(i, j)f g

=Ef(�t � t)
X�t�1

u=��t

X�1

s= u

}T
1 (i+ 1, j+ s+ 1)S2}(i+ 1, j+ s+ 1)� (�t � t)

X�t�1

u=��t

X�1

s= u

}1(i+ 1, j+ s)S2}(i+ 1, j+ s)j∂(i, j)g

=(�t � t)2}T
1 (i+ 1, j)S2}1(i+ 1, j)� (�t � t)

X�t�1

u=��t

}T
1 (i+ 1, j+ u)S2}1(i+ 1, j+ u)

ð21Þ

Similarly, by applying the same procedure, one has

E DV2, 1(i, j)f g=EfhT (i, j+ 1)Qn, f
e h(i, j+ 1)� hT (i, j+ 1)

Qm, l
a h(i, j+ 1)j∂(i, j)g ð22Þ

E DV2, 2(i, j)f g6=T (i, j)(eT
2 S3e2 � eT

4 S3e4)=(i, j)+

X�d

u= 1��d

hT (i+ u, j+ 1)S3h(i+ u, j+ 1) ð23Þ

E DV2, 3(i, j)f g=(�d � d)=T (i, j)eT
2 S3e2=(i, j)�

X�d

u= 1��d

hT (i+ u, j+ 1)S3h(i+ u, j+ 1)) ð24Þ

E DV2, 4(i, j)f g= d2}T
2 (i, j+ 1)S4}2(i, j+ 1)� d

X�1

u=�d

}T
2 (i+ u, j+ 1)S4}2(i+ u, j+ 1) ð25Þ

E DV2, 5(i, j)f g=(�d � d)2E }T
2 (i, j+ 1)S4}2(i, j+ 1)

� �
� (�d � d)

X�d�1

u=��d

}T
2 (i+ u, j+ 1)S4}2(i+ u, j+ 1) ð26Þ

In addition, consider equation (11), which yields

}T
1 (i+ 1, j)S2}(i+ 1, j)==T (i, j)�XT

11S2
�X11=(i, j) ð27Þ

}T
2 (i, j+ 1)S4}2(i, j+ 1)==T (i, j)�XT

22S4
�X22=(i, j) ð28Þ

where

X11 = ~P1 +-1(i+ 1, j)P̂1 +-2(i+ 1, j)P
_

1 � I ~P2 +-1(i, j+ 1)

h

P̂2 +-2(i, j+ 1)P
_

2 P3 P4 0 0 0 0 0 0 0 0 �,

X22 = ~P1 +-1(i+ 1, j)P̂1 +-2(i+ 1, j)P
_

1
~P2 +-1(i, j+ 1)

h

P̂2 +-2(i, j+ 1)P
_

2 � I P3 P4 0 0 0 0 0 0 0 0 �:

Then, according to the Lemma 1, one has

� t
X�1

u=�t

}T
1 (i+ 1, j+ u)S2}1(i+ 1, j+ u)

6=T (i, j)(� (e1 � e5)
T S2(e1 � e5)�

3(t � 1)

t + 1
(e1 + e5 � 2e11)

T

S2(e1 + e5 � 2e11))=(i, j)

ð29Þ

� d
X�1

u=�d

}T
2 (i+ u, j+ 1)S4}2(i+ u, j+ 1)

6=T (i, j)(� (e2 � e6)
T S4(e2 � e6)�

3(d � 1)

d + 1
(e2 + e6 � 2e12)

T

S4(e2 + e6 � 2e12))=(i, j)
ð30Þ

� (�t � t)
X�t�1

u=��t

}T
1 (i+ 1, j+ u)S2}1(i+ 1, j+ u)

6=T (i, j)(� (e5 � e7)
T S2(e5 � e7)�

3(�t � t � 1)

�t � t + 1

(e5 + e7 � 2e9)
T S2(e5 + e7 � 2e9))=(i, j)

ð31Þ

� (�d � d)
X�d�1

u=��d

}T
2 (i+ u, j+ 1)S4}2(i+ u, j+ 1)

6=T (i, j)(� (e6 � e8)
T S4(e6 � e8)�

3(�d � d � 1)
�d � d + 1

(e6 + e8 � 2e10)
T S4(e6 + e8 � 2e10))=(i, j)

ð32Þ

Consider equations (17)–(32), which yields

J (i, j)=E
X5

q= 1

DV1, q(i, j)+
X5

q= 1

DV2, q(i, j)j∂(i, j)
( )

ł

=T (i, j)(~F+ �F)=(i, j),

where
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~F=

~F11
~F12

~F13

� ~F22
~F23

� � ~F33

2
4

3
5, �F=

X5

i

HT
i XHi, ~F11 =

~S �S2
~P2 � ~PT

1 S4 �S2P3 �S2P4

� �S �S4P3 �S4P4

� � �S1 0

� � � �S3

2
664

3
775,

~S =(1+ �t � t)S1 +
�4t + 2

t + 1
S2 � Pm, �h

.,w +(t2 +(�t � t)2)(I � ~PT
1 S2 � S2

~P1),

�S =(1+ �d � d)S1 +
�4d + 2

d + 1
S4 � Qm, �h

.,w +(d2 +(�d � d)2)(I � ~PT
2 S4 � S4

~P2),
~F12 = diag

�2t + 4

t + 1
S2,
�2d + 4

d + 1
S4, 0, 0

� 

,

~F13 =

0
6(t�1)

t + 1
S2 0 0

0 0
3(d�1)

d + 1
S4 0

0 0 0 0

0 0 0 0

2
6664

3
7775, ~F22 ¼

ð~t þ t
_ÞS2 0 t̂S2 0

0 ð~d þ d
_

ÞS4 0 d̂S4

0 0 t
_
S2 0

0 0 0 d
_

S4

2
6664

3
7775

~F23 =

6~tS2 0
6(t�1)
t + 1

S2 0

0 6~dS4 0
6(d�1)

d + 1
S4

6~tS2 0 0 0

0 6~dS4 0 0

2
6664

3
7775, ~F33 = diag �12~tS2, � 12~dS4, �

12(t � 1)

t + 1
S2, �

12(d � 1)

d + 1
S4

� 

, ~t =

�4t + 2

t + 1
,

~d =
�4d + 2

d + 1
,
_

t =
�4�t + 4t + 2

�t � t + 1
,
_

d =
�4�d + 4d + 2

�d � d + 1
, t̂ =

�2�t + 2t + 4

�t � t + 1
, d̂ =

�2�d + 2d + 4
�d � d + 1

, ~t =
(�t � t � 1)

�t � t + 1
,

~d =
(�d � d � 1)
�d � d + 1

,X= �Pn, g

ε,y + �Qn, g

ε,y +(t2 +(�t � t)2)S2 +(d2 +(�d � d)2)S4,

H1 = ~P1
~P2 P3 P4 0 0 0 0 0 0 0 0

� 	
, H2 = �11P̂1 �11P̂2 0 0 0 0 0 0 0 0 0 0

� 	
,

H3 = �112P
_

1 �112P̂2 0 0 0 0 0 0 0 0 0 0

h i
, H4 = �112P̂1 �112P

_

2 0 0 0 0 0 0 0 0 0 0

h i
,

H5 = �12P
_

1 �12P
_

2 0 0 0 0 0 0 0 0 0 0

h i
:

It is straightforward to verify that the index function J (i, j)ł 0 if ~F+ �F ł 0 holds. In virtue of Schur Complement Lemma,

we can obtain the following inequality

~F+ �F ł 0, C=
~F ~H
� X

_

� �
ł 0 ð33Þ

where

~H= HT
1X HT

2X HT
3X HT

4X HT
5X

� 	
, X

_

= I5 ��X:

Furthermore, the inequality (equation (33)) implies there is a scalar r . 0 such that

C\diag ‘11I , ‘22I , ‘33I , ‘44I , ‘44I , ‘44I , ‘44I , ‘44If g\diag G, 0, 0, 0, 0, 0f g ð34Þ

where ‘11=lmaxf~S, �S, � S1, � S2g, ‘22 =lmaxf(~t + t
_
)S2, (~d + d

_

)S4, t
_
S2, d

_

S4g, ‘33=lmax �12~tS2, � 12~dS4, � 12(t�1)

t + 1
S2, � 12(d�1)

d + 1
S4

n o
,

‘44 =lmax(� X), G= diag �rI , 0, 0, 0f g.
Moreover, it is easy to derive that equation (34) is equivalent to

Ef(V (i+ 1, j+ 1)� V1(i+ 1, j)� V2(i, j+ 1)j∂(i, j)gł � rEf h(i+ 1, j)k k2g ð35Þ

Summing up both sides of equation (35) with respect to both i and j from 0 to �l (�l is a positive integer that is larger enough,

and �l . maxft1, t2g), one has
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J (i, j)=
X�l

i= 0

X�l

j= 0

Ef(V (i+ 1, j+ 1)� V1(i+ 1, j)� V2(i, j+ 1)j∂(i, j)g

=
X�l

i= 0

X�l

j= 0

Ef(V1(i+ 1, j+ 1)� V1(i+ 1, j)+V2(i+ 1, j+ 1)� V2(i, j+ 1)j∂(i, j)g

ł � r
X�l

i= 0

X�l

j= 0

h(i+ 1, j)k k2

ð36Þ

It follows from equation (36) that

J (i, j)=
X�l

i= 0

Ef(V1(i+ 1, 1)+V1(i+ 1, 2)+ :::+V1(i+ 1, �h)+V1(i+ 1, �h+ 1)� V1(i+ 1, 0)

� V1(i+ 1, 1)� V1(i+ 1, 2)� ::::� V1(i+ 1, �h� 1)� V1(i+ 1, �h)g

+
X�l

j= 0

Ef(V2(1, j+ 1)+V2(2, j+ 1)+ :::+V2(�h, j+ 1)+V2(�h+ 1, j+ 1)

� V2(0, j+ 1)� V2(1, j+ 1)� :::� V2(�h� 1, j+ 1)� V2(�h, j+ 1)g

=
X�l

i= 0

Ef(V1(i+ 1, �h+ 1)�V1(i+ 1, 0)g+
X�h

j= 0

Ef(V2(�h+ 1, j+ 1)�V2(0, j+ 1)gł � r
X�l

i= 0

X�l

j= 0

Ef h(i+ 1, j)k k2g

ð37Þ

According to equation (37), we can further infer

X�l

i= 0

X�l

j= 0

h(i+ 1, j)k k2
ł r�1

X�l

i= 0

Ef(V1(i+ 1, 0)� V1(i+ 1, �h+ 1)g+ r�1
X�l

i= 0

EfV2(0, j+ 1)� V2(i+ 1, �h+ 1)g

ł r�1
X�l

i= 0

Ef(V1(i+ 1, 0)g+ r�1
X�l

i= 0

EfV2(0, j+ 1)g\‘

ð38Þ

According to the bounded initial conditions (3) and equation (38), which yields lim
i+ j!‘

P�l
i= 0

P�l
j= 0

h(i+ 1, j)k k2 = 0, which

implies lim
i+ j!‘

P�l
i= 0

P�l
j= 0

e(i, j)k k2 = 0. Based on Definition 1, it can be said that the filtering error systems (equation (9)) with

v(i, j)[0 are asymptotically stable in the mean-square sense. The proof is thus completed.
In what follows, based on the sufficient conditions obtained in Theorem 1, we aim to further guarantee the dynamic filtering

error systems (equation (9)) to be robust HN stability with disturbance attenuation level g in the presence of external distur-
bance v(i, j) 6¼ 0.

Theorem 2: Consider the filtering error systems (equation (9)) with zero initial condition, for given scalars �t, t, �d, and d, if
there exists positive scalars g, positive definite symmetric matrices Pm, �h

.,w, Qm, �h
.,w, �Pn, g

ε,y ,
�Qn, g

ε,y , S1,S2,S3, and S4, such that the fol-
lowing inequality holds

O=

P
11

P
12 O13 O14

0 �g2I 0 0

0 0 D1 0

0 0 0 D2

2
664

3
775ł 0 ð39Þ

where

X
11

¼
F
_

11
~F12

~F13

� ~F22
~F23

� � ~F33

2
64

3
75, F

_

11 =

~S �(t2 +(�t � t)2)S2
~P2 � (d2 +(�d � d)

2
)~PT

1 S4 �S2P3 �S2P4

� �S �S4P3 �S4P4

� � �S1 0

� � � �S3

2
664

3
775,

~S =(1+ �t � t)S1 +
�4t + 2

t + 1
S2 � Pm, �h

.,w +(t2 +(�t � t)2)(I � ~PT
1 S2 � S2

~P1)+
~HT (r(i+ 1, j)) ~H(r(i+ 1, j)),

�S =(1+ �d � d)S1 +
�4d + 2

d + 1
S4 � Qm, �h

.,w +(d2 +(�d � d)2)(I � ~PT
2 S4 � S4

~P2)+
~HT (r(i, j+ 1)) ~H(r(i, j+ 1)),
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X
12

= �(t2 +(�t � t)2) �YT
S2 �(d2 +(�d � d)

2
) �YT

S4 0 0
h iT

,

O13 = C1 C2 C3 C4 C5 C6½ �, O14 = C7 C8 C9 C10 C11 C12 C13½ �,

C1 = X~P1 X~P2 XP3 XP4 0 0 0 0 0 0 0 0 X �Y
� 	T

,

C2 = �11XP̂1 �11XP̂2 0 0 0 0 0 0 0 0 0 0 �11X ~Y+ �11XŶ
� 	T

,

C3 = �112XP
_

1 �112XP̂2 0 0 0 0 0 0 0 0 0 0 0

h iT

, C4 = �112XP̂1 �112XP
_

2 0 0 0 0 0 0 0 0 0 0 0

h iT

,

C5 = �12XP
_

1 �12XP
_

2 0 0 0 0 0 0 0 0 0 0 0

h iT

, C6 =
ffiffiffi
2
p

�113XP̂1 0 0 0 0 0 0 0 0 0 0 0
� 	T

,

C7 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�12

21 + 2�12
23

p
XP

_

1 0 0 0 0 0 0 0 0 0 0 0

h iT

, C8 = 0
ffiffiffi
2
p

�113XP̂2 0 0 0 0 0 0 0 0 0 0
� 	T

,

C9 = 0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�12

12 + 2�12
23

p
XP

_

2 0 0 0 0 0 0 0 0 0 0

h iT

, C10 = 0 0 0 0 0 0 0 0 0 0 0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2�12

21 + 2�12
1 + 2�12

13)
p

X ~Y
� 	T

,

C11 = 0 0 0 0 0 0 0 0 0 0 0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2�12

21 + 2�12
1 + 2�12

13)
p

XŶ
� 	T

,

C12 = 0 0 0 0 0 0 0 0 0 0 0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(4�12

13 + 2�12
23 + 2�12

3)
p

XY
_

h iT

,

C13 = 0 0 0 0 0 0 0 0 0 0 0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(4�12

13 + 2�12
23 + 2�12

3)
p

X �Y
� 	T

,

D1 = diag �X, � X, � X, � X, � X, � Xf g, D2 = diag �X, � X, � X, � X, � X, � X, � Xf g

the filtering error systems (equation (9)) satisfy the robust HN stability with disturbance attenuation level g.

Proof: Define new augmented matrices

~=(i, j)= =T (i, j) ~vT (i, j)
� 	T

, ~A(i, j)= A(i, j) Y(i, j)½ �

then the dynamic filtering error systems (equation (9)) can be reconstructed in the following form with external disturbance
v(i, j) 6¼ 0

h(i+ 1, j+ 1)=A(i, j)=(i, j)+ ( �Y+-1(i+ 1, j) ~Y+-1(i, j+ 1)Ŷ+-3(i+ 1, j)Y
_

+-3(i, j+ 1) �Y)~v(i, j)

Furthermore, consider the following robust HN stability performance index

Y(i, j) ¼D Efz_T
(i, j)z

_
(i, j)� g2 ~vT (i, j)~v(i, j)+ J (i, j)j∂(i, j)g ð40Þ

It is easy to deduce

Y(i, j)=hT (i+ 1, j) ~H
T
(r(i+ 1, j)) ~H(r(i+ 1, j))h(i+ 1, j)+hT (i, j+ 1) ~H

T
(r(i, j+ 1)) ~H(r(i, j+ 1))h(i, j+ 1)

� g2 ~vT (i, j)~v(i, j)+E
X5

q= 1

DV1, q(i, j)+
X5

q= 1

DV2, q(i, j)j∂(i, j)

( )

Similarly, based on the derivation process and result of Theorem 1, one has

Y(i, j)ł ~=T (i, j)
X

~=(i, j)+
X13

i= 1

~=T
(i, j)CT

i XCi
~=(i, j)= ~=T (i, j)O ~=(i, j) ð41Þ

where

X
=

P
11

P
12

� �g2I

� �
, O=

P
11

P
12 O13 O14

0 �g2I 0 0

0 0 D1 0

0 0 0 D2

2
6664

3
7775ł 0,

X
11

=

F
_

11
~F12

~F13

� ~F22
~F23

� � ~F33

2
64

3
75, O13 = C1 C2 C3 C4 C5 C6½ �

X
12

= ½�(t2 +(�t � t)2) �YT S2 � (d2 +(�d � d)2) �YT S4 0 0�T , O14 = C7 C8 C9 C10 C11 C12 C13½ �,

D1 = diag �X, � X, � X, � X, � X, � Xf g, D2 = diag �X, � X, � X, � X, � X, � X, � Xf g,

specifically, other symbols are defined in equations (10) and (39), which are not provided.
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If O\0 holds, we sum up both sides of performance index

Y(i, j) with respect to both i and j from 0 to �l, which yields

X�l

i= 0

X�l

j= 0

Efz_T
(i, j)z

_
(i, j)gł

X�l

i= 0

X�l

j= 0

Efg2 ~vT (i, j)~v(i, j)g�

X�l

i= 0

X�l

j= 0

EfJ (i, j)j∂(i, j)g ð42Þ

Based on equation (15) and the zero initial condition, we can

easily calculate that

X�l

i= 0

X�l

j= 0

J (i, j)=
X�l

i= 0

Ef(V1(i+ 1, �h+ 1)�V1(i+ 1, 0)g+

X�l

j= 0

Ef(V2(�h+ 1, j+ 1)�V2(0, j+ 1)g

=
X�l

i= 0

Ef(V1(i+ 1, �h+ 1)g+
X�l

j= 0

Ef(V2(�h+ 1, j+ 1)gø 0

obviously,
P‘

i= 0

P‘
j= 0

E z
_
(i, j)



 

2
n o

ł g2(
P‘

i= 0

P‘
j= 0

E ~v(i, j)k k2
n o

.

According to Definition 2, the dynamic filtering error systems

(equation (9)) satisfies the condition of robust HN stability

with disturbance attenuation level g. The proof is thus

completed.

Theorem 3: Consider the dynamic filtering error systems
(equation (9)) under zero initial condition, for given scalars
�t, t, �d, d, l1, and l2, if there exists positive scalars g, positive
definite symmetric matrices Pm, �h

.,w, Qm, �h
.,w,

�Pn, g

ε,y, i,
�Qn, g

ε,y, i

i 2 f1, 2, 3gð Þ, S1 and S3, such that the following inequality
holds

~O=

~O11
~O12 O13 O14

0 �g2I 0 0

0 0 ~O33 0

0 0 0 ~O44

2
6664

3
7775ł 0 ð43Þ

where

~O11 =

O
_

11 O
_

12 O
_

13

� O
_

22 O
_

23

� � O
_

33

2
64

3
75, ~O12 = �l1(t

2 +(�t � t)2)�L
T �l2(d

2 +(�d � d)
2
)�L

T
0 0 0 0 0 0 0 0 0 0

h iT

,

~O33 = diag �~X, � ~X, � ~X, � ~X, � ~X, � ~X
� �

, ~O44 = diag �~X, � ~X, � ~X, � ~X, � ~X, � ~X, � ~X
� �

,

O
_

11 =

~S �l1(t
2 +(�t � t)2)~X2 � l2(d

2 +(�d � d)
2
)~XT

1 �l1(t
2 +(�t � t)2)X3 �l1(t

2 +(�t � t)2)X4

� �S �l2(d
2 +(�d � d)

2
)X3 �l2(d

2 +(�d � d)
2
)X4

� � �S1 0

� � � �S3

2
664

3
775,

O
_

12 = diag
�2t + 4

t + 1
S2,
�2d + 4

d + 1
S4, 0, 0

� 

,
_

O13 =

0
6(t�1)
t + 1

S2 0 0

0 0
3(d�1)

d + 1
S4 0

0 0 0 0

0 0 0 0

2
6664

3
7775,

O
_

22 =

(~t + t
_
)S2 0 t̂S2 0

0 (~d + d
_

)S4 0 d̂S4

0 0 t
_

S2 0

0 0 0 d
_

S4

2
6664

3
7775, O_ 23 =

6~tS2 0
6(t�1)
t + 1

S2 0

0 6~dS4 0
6(d�1)

d + 1
S4

6~tS2 0 0 0

0 6~dS4 0 0

2
6664

3
7775,

O
_

33 = diag �12~tS2, � 12~dS4, �
12(t � 1)

t + 1
S2, �

12(d � 1)

d + 1
S4

� 

,

S2 =l1(�P
n,g

ε,y + �Qn,g

ε,y ), S4 =l2(�P
n, g

ε,y + �Qn,g

ε,y ),
�Pn, g

ε,y = diag �Pn, g

ε,y, 1,
�Pn, g

ε,y, 2,
�Pn, g

ε,y, 3

n o
, �Qn,g

ε,y = diag �Qn, g

ε,y, 1,
�Qn,g

ε,y, 2,
�Qn, g

ε,y, 3

n o
,

C1 = ~X1
~X2 X3 X4 0 0 0 0 0 0 0 0 �L

� 	T
, C2 = �11X̂1 �11X̂2 0 0 0 0 0 0 0 0 0 0 �11

~L
h iT

,

C3 = �112X
_

1 �112X̂2 0 0 0 0 0 0 0 0 0 0 0

h iT
, C4 = �112X̂1 �112X

_

2 0 0 0 0 0 0 0 0 0 0 0

h iT
,
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C5 = �12X
_

1 �12X
_

2 0 0 0 0 0 0 0 0 0 0 0

h iT
, C6 =

ffiffiffi
2
p

�113X̂1 0 0 0 0 0 0 0 0 0 0 0
� 	T

,

C7 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�12

21 + 2�12
23

p
X
_

1 0 0 0 0 0 0 0 0 0 0 0

h iT

, C8 = 0
ffiffiffi
2
p

�113X̂2 0 0 0 0 0 0 0 0 0 0
� 	T

,

C9 = 0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�12

12 + 2�12
23

p
X
_

2 0 0 0 0 0 0 0 0 0 0

h iT

, C10 = 0 0 0 0 0 0 0 0 0 0 0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2�12

21 + 2�12
1 + 2�12

13)
p

~L
� 	T

,

C11 = 0 0 0 0 0 0 0 0 0 0 0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2�12

21 + 2�12
1 + 2�12

13)
p

L̂

h iT

,

C12 = 0 0 0 0 0 0 0 0 0 0 0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(4�12

13 + 2�12
23 + 2�12

3)
p

L
_

h iT

,

C13 = 0 0 0 0 0 0 0 0 0 0 0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(4�12

13 + 2�12
23 + 2�12

3)
p

�L
h iT

,

~X=(1+l1t2 +l1(�t � t)2 +l2d2 +l2(�d � d)2)(�Pn, f
e + �Qn, f

e ),

~S =(1+ �t � t)S1 +
�4t + 2

t + 1
S2 � Pm, �h

.,w +(t2 +(�t � t)2)(I � l1
~XT

1 � l1
~X1)+

~HT (r(i+ 1, j)) ~H(r(i+ 1, j)),

�S =(1+ �d � d)S1 +
�4d + 2

d + 1
S4 � Qm, �h

.,w +(d2 +(�d � d)2)(I � l2
~XT

2 � l2
~X2)+ ~HT (r(i, j+ 1)) ~H(r(i, j+ 1)),

~X1 =

~X11
1

~X12
1

~X13
1

0 ~X22
1 0

0 ~X32
1

~X33
1

2
4

3
5, ~X11

1 =(�Pn, g

ε,y, 1 +
�Qn,g

ε,y, 1)A1(r(i+ 1, j))�W
d(i+ 1, j)
1, z(i+ 1, j)C(r(i+ 1, j)),

~X12
1 =W

d(i+ 1, j)
1, z(i+ 1, j)(1� �s(1� �q)Fj(i+ 1, j))C(r(i+ 1, j)),

~X13
1 = �W

d(i+ 1, j)
1, z(i+ 1, j)(1� �s), ~X22

1 =(�Pn, g

ε,y, 2 +
�Qn, g

ε,y, 2)A1(r(i+ 1, j)), ~X32
1 =(�Pn, g

ε,y, 3 +
�Qn, g

ε,y, 3)�s(1� �q)Fj(i+ 1, j)C(r(i+ 1, j)),

~X33
1 =(�Pn,g

ε,y, 3 +
�Qn,g

ε,y, 3)(1� �s), ~X12
1 = �W

d(i+ 1, j)
1, z(i+ 1, j)Fj(i+ 1, j)C(r(i+ 1, j)), ~X32

1 =(�Pn, g

ε,y, 3 +
�Qn, g

ε,y, 3)Fj(i+ 1, j)C(r(i+ 1, j)),

~X2 =

~X11
2

~X12
2

~X13
2

0 ~X22
2 0

0 0 0

2
4

3
5, ~X11

2 =(�Pn, g

ε,y, 1 +
�Qn, g

ε,y, 1)A2(r(i, j+ 1))�W
d(i, j+ 1)
2, z(i, j+ 1)C(r(i, j+ 1)),

~X12
2 =W

d(i, j+ 1)
2, z(i, j+ 1)(1� �s(1� �q)Fj(i, j+ 1))C(r(i, j+ 1)), ~X13

2 = �W
d(i, j+ 1)
2, z(i, j+ 1)(1� �s), ~X22

2 =(�Pn, g

ε,y, 2 +
�Qn, g

ε,y, 2)A2(r(i, j+ 1)),

X3 =

0 (�Pn,g

ε,y, 1 +
�Qn, g

ε,y, 1)Ad1(r(i+ 1, j)) 0

0 (�Pn,
ε,y, 2 +

�Qn, g

ε,y, 2)Ad1(r(i+ 1, j)) 0

0 0 0

2
64

3
75, X4 =

0 (�Pn, g

ε,y, 1 +
�Qn, g

ε,y, 1)Ad2(r(i, j+ 1)) 0

0 (�Pn,
ε,y, 2 +

�Qn, g

ε,y, 2)Ad2(r(i, j+ 1)) 0

0 0 0

2
64

3
75, �L=

�L11
�L12

�L13
�L14

�L21
�L22 0 0

�L31 0 �L33 0

2
4

3
5,

�L11 =(�Pn, g

ε,y, 1 +
�Qn,g

ε,y, 1)E1(r(i+ 1, j))�W
d(i+ 1, j)
1, z(i+ 1, j)�s(1� �q)Fj(i+ 1, j)D(r(i+ 1, j)),

�L12 =(�Pn,
ε,y, 1 +

�Qn, g

ε,y, 1)E2(r(i, j+ 1))�W
d(i, j+ 1)
2, z(i, j+ 1)�s(1� �q)Fj(i, j+ 1)D(r(i, j+ 1)), �L13 = �W

d(i+ 1, j)
1, z(i+ 1, j)�s

�q, �L14 = �W
d(i, j+ 1)
2, z(i, j+ 1)�s

�q,

�L21 =(�Pn,
ε,y, 2 +

�Qn, g

ε,y, 2)E1(r(i+ 1, j)), �L22 =(�Pn, f
2, e +

�Qn, f
2, e )E2(r(i, j+ 1)), �L31 =(�Pn,

ε,y, 3 +
�Qn, g

ε,y, 3)�s(1� �q)Fj(i+ 1, j)D(r(i+ 1, j)),

�L33 =(�Pn,
ε,y, 3 +

�Qn, g

ε,y, 3)�s
�q, X̂1 =

0 �W
d(i+ 1, j)
1, z(i+ 1, j)Fj(i+ 1, j)C(r(i+ 1, j)) 0

0 0 0

0 (�Pn,
ε,y, 3 +

�Qn, g

ε,y, 3)Fj(i+ 1, j)C(r(i+ 1, j)) 0

2
4

3
5, X̂2 =

0 �W
d(i, j+ 1)
2, z(i, j+ 1)Fj(i, j+ 1)C(r(i, j+ 1)) 0

0 0 0

0 0 0

2
4

3
5,

~L=

~L11
~L12 0 0

0 0 0 0
~L31 0 0 0

2
4

3
5, ~L11 = �W

d(i+ 1, j)
1, z(i+ 1, j)Fj(i+ 1, j)D(r(i+ 1, j)), ~L12 = �W

d(i, j+ 1)
2, z(i, j+ 1)Fj(i, j+ 1)D(r(i, j+ 1)),
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~L31 =(�Pn,
ε,y, 3 +

�Qn,g

ε,y, 3)Fj(i+ 1, j)D(r(i+ 1, j)), X
_

1 =
0 0 �W

d(i+ 1, j)
1, z(i+ 1, j)

0 0 0

0 0 �Pn,
ε,y, 3 +

�Qn,g

ε,y, 3

2
4

3
5, X_ 2 =

0 0 �W
d(i, j+ 1)
2, z(i, j+ 1)

0 0 0

0 0 �Pn,
ε,y, 3 +

�Qn, g

ε,y, 3

2
4

3
5,

~L=
�W

d(i+ 1, j)
1, z(i+ 1, j)Fj(i+ 1, j)D(r(i+ 1, j)) 0 0 0

0 0 0 0

(�Pn,
ε,y, 3 +

�Qn, g

ε,y, 3)Fj(i+ 1, j)D(r(i+ 1, j)) 0 0 0

2
4

3
5, L̂=

0 �W
d(i, j+ 1)
2, z(i, j+ 1)Fj(i, j+ 1)D(r(i, j+ 1)) 0 0

0 0 0 0

0 0 0 0

2
4

3
5,

L
_

=
0 0 �W

d(i+ 1, j)
1, z(i+ 1, j) 0

0 0 0 0

0 0 (�Pn,
ε,y, 3 +

�Qn, g

ε,y, 3) 0

2
4

3
5, �L=

0 0 0 �W
d(i, j+ 1)
2, z(i, j+ 1)

0 0 0 0

0 0 0 0

2
4

3
5,

then the dynamic filtering error systems (equation (9)) are

asymptotically mean-square stability with a disturbance

attenuation level g. Furthermore, the asynchronous filtering

gain matrices are given by

K
d(i+ 1, j)
1, z(i+ 1, j) = (�Pn,

ε,y, 1 +
�Qn, g

ε,y, 1)
�1W

d(i+ 1, j)
1, z(i+ 1, j), K

d(i, j+ 1)
2, z(i+ 1, j) =

(�Pn,
ε,y, 1 +

�Qn, g

ε,y, 1)
�1W

d(i, j+ 1)
2, z(i+ 1, j)

Proof: It should be noted that due to the large number of

nonlinear elements in equation (39), it is required to separate

certain variables and transform equation (39) into LMIs.

Therefore, we define the matrices with the following structure

�Pn,g

ε,y = diag �Pn,g

ε,y, 1,
�Pn,g

ε,y, 2,
�Pn, g

ε,y, 3

n o
,

�Qn, g

ε,y = diag �Qn, g

ε,y, 1,
�Qn, g

ε,y, 2,
�Qn, g

ε,y, 3

n o
ð44Þ

where �Pn,g

ε,y, i,
�Qn,g

ε,y, i, (2 f1, 2, 3g) are the positive definite sym-

metric matrices with appropriate dimensions. In addition,

according to equations (13) and (14), it is not difficult to

deduce the following relationship holds

�Pn,g

ε,y, i =
XMg

y= 1

XMs

ε= 1

XMs

n= 1

XMg

g = 1

pmnmn
�hg
|.εo

ε
wyP

n, g

ε,y, i,

�Qn, g

ε,y, i =
XMg

y= 1

XMs

ε= 1

XMs

n= 1

XMg

g = 1

pmnmn
�hg
|.εo

ε
wyQn, g

ε,y, , i 2 f1, 2, 3g

ð45Þ

In what follows, we set S2 =l1(�P
n, g
ε,y + �Qn, g

ε,y ) and

S4 =l2(�P
n,g
ε,y + �Qn,g

ε,y ), substitute equation (45) into equation

(39), and select W
d(i+ 1, j)
1, z(i+ 1, j) = (�Pn,g

ε,y, 1 +
�Qn,g

ε,y, 1)K
d(i+ 1, j)
1, z(i+ 1, j) and

W
d(i, j+ 1)
2, z(i, j+ 1) = (�Pn,g

ε,y, 1 +
�Qn,g

ε,y, 1)K
d(i, j+ 1)
2, z(i, j+ 1), then the following

asynchronous filter gain can be calculated

K
d(i+ 1, j)
1, z(i+ 1, j) = (�Pn, g

ε,y, 1 +
�Qn, g

ε,y, 1)
�1W

d(i+ 1, j)
1, z(i+ 1, j), K

d(i, j+ 1)
2, z(i, j+ 1) =

(�Pn, g

ε,y, 1 +
�Qn, g

ε,y, 1)
�1W

d(i, j+ 1)
2, z(i, j+ 1)

The proof is thus completed.

Numerical Simulations

Taking into account the partial differential equation for an

industrial heating exchange process as follows

∂�h(x, t)

∂x
+

∂�h(x, t)

∂t
= � a

r(x, t)
0 �h(x, t)� a

r(x, t)
1 �h(x, t � t(t)) ð46Þ

where �h(x, t) is the temperature function related to the space
x 2 0 X½ � and the time t 2 0 T½ �, and t(t). 0 indicates

the time delays. Besides, on account of the failure and recov-

ery of chemical reactor components and the impact of subsys-
tem connection changes, the system structure often appears

the switching process subject to Markov stochastic process.

Thus, the real number a
r(i, j)
0 and a

r(i, j)
1 with Markov jumping

properties is utilized to indicate the exchange coefficients.
Define �h(i, j)= �h(iDx, jDt),r(i, j)= r(iDx, jDt), which yields

∂�h(x, t)

∂x
’

�h(iDx, jDt)� �h((i� 1)Dx, jDt)

Dx
,
∂�h(x, t)

∂t
’

�h(iDx, jDt)� �h(iDx, (j� 1)Dt)

Dt
, �h(x, t)’�h(i, j)

Moreover, equation (46) can be reformulated as follows

�h(i, j+ 1)= (1� Dt

Dx
� a

r(i, j)
0 Dt)�h(i, j)+ Dt

Dx
�h(i� 1, j)�

a
r(i, j)
1 Dt�h(i, j� t(j))

Therefore, the following FM-II model can be generated by

developing the initial partial differential equation

x(i+ 1, j+ 1)=A1(r(i+ 1, j))x(i+ 1, j)+A2(r(i, j+ 1))x(i, j+1)

+Ad1(r(i+ 1, j))x(i+ 1, j� t(j))+Ad2(r(i, j+ 1))x(i�d(i), j+1)

where

A1(r(i, j))=
0 1

0 0

� �
, A2(r(i, j))=

0 0
Dt
Dx

1� Dt
Dx
� a

r(i, j)
0 Dt

� �
,

Ad1(r(i, j))=
0 0

0 �a
r(i, j)
1 Dt

� �
, andAd2(r(i, j))= 0:

Consider the following parameters according to the literature
(Ghous et al., 2015)

Dt= 0:1, Dx= 0:33, a1
0 = 3, a2

0 = 3:5, a1
1 = 1:2, a2

1 = 1:4
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consequently, the subsystems 1 and 2 can be defined utilizing

the following parameters:

Subsystem 1:

A11=
0 1

0 0

� �
, A21=

0 0

0:3 0:4

� �
, Ad11=

0 0

0 �0:12

� �
,

Ad21= 0, E11=
�0:4
0:2

� �
, andE21=

0:65

�0:2

� �
:

Subsystem 2

A12=
0 1

0 0

� �
, A22=

0 0

0:3 0:35

� �
, Ad12=

0 0

0 �0:14

� �
,

Ad22= 0, E12=
0:1
�0:4

� �
, andE22=

0:3
0:2

� �
:

Subsequently, we choose the transition probability

matrices of system mode and filter mode as follows

x =
0:7 0:3
0:4 0:6

� �
, f1 =

0:6 0:4
0:5 0:5

� �
, f2 =

0:4 0:6
0:6 0:4

� �
:

We assume that the transition probability matrix of SCP

is s=
0:5 0:5
0:5 0:5

� �
. Besides, we set �o1 =

0:35 0:65

0:4 0:6

� �
and

�o2 =
0:6 0:4
0:55 0:45

� �
. Moreover, we set the initial conditions of

state as x(i, j)= 1:9 cos (j) sin (i) 2:1 cos (i� 1) sin (j)½ �T for

i 2 0 40½ � and j= 0, x(i, j)= 2:3 sin (i) cos (j+ 1) 1:8 cos½
(i+ 1) sin (j)�T for i= 0 and j 2 1 50½ �, and the initial con-

ditions of filter as x̂(i, 0)= x̂(0, j)= 0 0½ �T for i, j 2 0, 50½ �.
The external disturbance with bounded energy is chosen as

follows

v(i, j)=
0:3 cos (0:6(i+ j)) i, j 2 1 30½ �
0 otherwise

�

Besides, assume the hybrid cyber attacks occur at instant

i, j 2 20 40½ �, and �q= 0:2 and �s= 0:85, and the following

false data signal is selected

y(i, j)=

0:4 sin (0:45(i+ j)) 0:3 cos (0:3(i+ j))½ �T i, j 2 20 40½ �
0 otherwise

�

Then, by using the LMI toolbox in MATLAB, the corre-

sponding filtering gain matrices can be obtained as follows

K1
1, 1 =

1:3824 �0:0270

�0:0429 0:3905

� �
, K1

2, 1 =
0:4955 �0:0270

�0:0154 0:3913

� �
,

K1
1, 2 =

1:5926 �0:0032

�0:0053 0:3139

� �
, K1

2, 2 =
0:4245 �0:0034

�0:0016 0:3335

� �
,

K2
1, 1 =

1:1764 �0:0031

�0:0073 0:5116

� �
, K2

2, 1 =
0:6214 �0:0054

�0:0073 0:8879

� �
,

K2
1, 2 =

1:5108 0:0014

�0:0066 �0:1167

� �
, K2

2, 2 =
0:4832 �0:0038

�0:0066 �0:3091

� �
:

Figures 2 and 3 show the system and filter mode evolution

subject to the transition probability matrix x and fr(i+ 1, j+ 1),

respectively. It is easy to see the mode jumps of systems and

filter are not always consistent from Figures 2 and 3. Figures

4 and 5, respectively, describe the sensor scheduling sequence

under the SCP and the estimated sensor communication

sequence, where the ‘‘1’’ denotes sensor 1 obtains the access

permission, and the ‘‘2’’ denotes sensor 2 obtains the access

permission. Figure 6 displays the occurrence of hybrid attacks

at instant i, j 2 20 40½ �. Figures 7 and 8 show the x(i, j) and

x̂(i, j). Figures 9 and 10 display the first component of e(i, j)

and the second component of e(i, j), respectively. It is easy to

see from Figures 7 to 10 that the estimation and filtering error

fluctuate at instant i, j 2 1 40½ � owing to disturbance and

Figure 2. System mode evolution.

Figure 3. Filter mode evolution.
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Figure 4. Sensor communication sequence under the SCP.

Figure 5. The estimated sensor communication sequence.

Figure 6. The hybrid cyber-attack case.

Figure 7. The trajectory of the states x1(i, j) and x̂1(i, j).

Figure 8. The trajectory of the states x2(i, j) and x̂2(i, j).

Figure 9. The trajectory of the first component of dynamic filtering

error e1(i, j).
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hybrid cyber attacks. Furthermore, Figures 7 to 10 exhibit
that estimated state can commendably track the evolution of
the actual state, and the developed asynchronous filter design

method shows excellent track performance.
Finally, the influence of the synchronous HN filtering

algorithm and the asynchronous HN filtering algorithm on
filtering performance is further investigated. Table 1 depicts
the optimal disturbance attenuation performance of synchro-
nous and asynchronous HN filtering algorithm. It is worth
noting that the synchronous HN filtering algorithm tends to
produce better filtering performance compared with the asyn-
chronous one under the same conditions, mainly due to the
underlying prerequisite that the synchronous algorithm has a
priori knowledge about the system operation (including the
mode switching of the subsystem and communication sensor
nodes). In this paper, Theorem 3 is solved with a Core i5
CPU 2.50 GHz computer by virtue of the MATLAB LMI
toolbox. The computation time of the synchronous HN

filtering algorithm at each sampling shift instant (i, j) is dis-

played in Table 2, and the total computation time is

52.7431 seconds. In addition, the total computation time of

the asynchronous HN filtering algorithm to obtain filtering

gain matrices is approximately 0.40 seconds, which conserves

a lot of computing time and resources compared with the syn-

chronous HN filtering algorithm.

Conclusion

The asynchronous filtering problem for 2D MJSs under

hybrid cyber attacks and the SCP has been addressed in this

research. Due to the communication network’s restricted

bandwidth, only one sensor can transmit measurement infor-

mation through the communication network at each shift

instant, and the SCP strategy determines which sensor is cho-

sen. Besides, the impact of stochastic hybrid cyber attacks on

filtering performance is also considered. Then, a comprehen-

sive 2D MJSs incorporating SCP and hybrid cyber attacks

are developed, and the asynchronous filter with a special

structure is proposed to satisfy the operating mode that

remains asynchronization with both the system mode and the

communication scheduling mode. Subsequently, the sufficient

criteria conditions are obtained to ensure the robust HN

mean-square stability with the HN disturbance attenuation

level g. Moreover, the conservativeness of the obtained criter-

ion is reduced with the help of the 2D summation inequality

approach. Finally, a simulation example is provided to

demonstrate the validity of the presented asynchronous filter-

ing algorithm. The developed asynchronous filtering algo-

rithm has certain application potential for long-distance

transmission and industrial heat exchange processes described

by networked 2D systems. In addition, another queuing DoS

attack model based on the 2D systems framework deserves

further investigation.
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Figure 10. The trajectory of the second component of dynamic

filtering error e2(i, j).

Table 1. The disturbance attenuation performance g� comparison

between the synchronous HN filtering algorithm and asynchronous HN

filtering algorithm

Performance Synchronous HN

filtering algorithm

Asynchronous HN

filtering algorithms

g� 2.6221 3.1547

Table 2. The filtering gain matrices solving time of synchronous HN

filtering algorithm.

I...j 1 (seconds) 2 (seconds) ... 50 (seconds)

1 0.462 0.0501 ... 0.0334

2 0.0417 0.0482 ... 0.0319

... ... ... ... ...

50 0.0284 0.0261 ... 0.0201
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Recursive filtering for time-varying
systems with mixed time-delays
subject to stochastic communication
protocol and dynamic quantization
effects
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Abstract
The recursive filtering problem for a class of time-varying systems with mixed time-delays subject to stochastic commu-
nication protocol and dynamic quantization effects is discussed in this article. It is assumed that only one sensor can
transmit the measured information to the filter at each sampling period, and the selected sensor is determined by the
scheduling strategy of the stochastic communication protocol. Based on this assumption, the dynamic upper bound of
the filtering error covariance is derived for time-varying systems with mixed time-delays and an underlying scheduling
protocol by solving two Riccati difference equations in each sampling period. Then, the trace of the upper bound is mini-
mized to obtain the filter gain with the desired filtering performance. Subsequently, the boundedness issue of the filtering
error covariance is investigated. Sufficient conditions are given to ensure that the filtering error covariance is exponen-
tially bounded in the mean square. Finally, numerical examples are given to demonstrate the effectiveness and superiority
of the proposed algorithm.
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Introduction

Filtering problems have received much attention in the
control and signal processing communities for several
decades.1–4 The main purpose of filtering is to estimate
the internal state of the system according to the mea-
surement output contaminated by noise signals. At
present, filtering has been widely used in aircraft track-
ing, smart grids, and bioprocess monitoring. Based on
these applications, several filtering methods are pro-
posed according to different noise characteristics and
performance indices, such as recursive filtering,5,6 HN

filtering,7,8 and set-membership filtering.9,10 Among
them, the recursive filtering method has the advantages
of easy implementation and high estimation accu-
racy,11,12 which has garnered increasing research inter-
est. In general, three recursive schemes are commonly
used to solve the state estimation problem, namely,
classical Kalman filtering, extended Kalman filtering,
and unscented Kalman filtering. Recursive filtering is
essentially a state estimation method based on

optimizations. Specifically, the main idea of recursive
filtering algorithms is to obtain the upper bound of the
filtering error covariance and provide a filter to mini-
mize the upper bound at each sampling period.13,14

In networked systems, the design of recursive filter-
ing is challenged due to network-induced communica-
tion limitations, such as time-delays, quantization
effects, and medium access constraints. Applying the
traditional recursive filtering algorithm directly to the
networked systems will inevitably deteriorate the filter-
ing performance and even lead to the divergence of fil-
tering errors. Therefore, it is very significant to
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investigate the recursive filtering design problem under
various communication limitations. In the practical
control processes, the system information must be
quantized before being transferred through the net-
work. Due to the influence of network bandwidth and
calculation accuracies, quantization errors will inevita-
bly occur and be one of the main network-induced con-
straints that degrade the performance of networked
systems. In recent years, several methods have been
proposed to address the signal quantization of net-
worked systems. Such methods include but are not lim-
ited to uniform quantizer,15 logarithmic quantizer,16

and dynamic quantizer.17 Essentially, both uniform
quantizer and logarithmic quantizer can be classified as
static quantization technologies. Compared with them,
the dynamic quantification mechanism has proven to
be the most effective in mitigating performance degra-
dation, and some control problems concerning dynamic
quantization have been deeply investigated; more infor-
mation and references are provided in the litera-
ture.18,19 However, according to the results obtained by
consulting the literature, the recursive filtering design
problem of networked systems affected by the dynamic
quantization has not attracted enough attention, which
motivates us to fill this gap.

It is worth noting that in many underlying investiga-
tions on the filtering problem of networked systems, an
implicit assumption is that there are adequate commu-
nication channels between the sensors and the filter,
and all the sensors can simultaneously access the com-
munication network to transmit the measured informa-
tion to the filter during each sampling period. In many
practical systems, however, it is quite unrealistic to
implement such a communication scheme because
simultaneous multiple access over a limited-bandwidth
network would result in unavoidable data collisions.
One important aspect to take into account in such a sit-
uation is implementing communication scheduling. To
date, three communication protocols have been
employed to arrange the network access sequence of
sensors to effectively prevent data conflict, namely, the
weighted try-once-discard (WTOD) protocol,20,21 the
round-robin (RR) protocol,22,23 and the stochastic
communication (SC) protocol.24,25 Among the above
communication protocols, the WTOD and RR com-
munication protocols belong to the category of deter-
ministic scheduling schemes, while the SC protocol is a
communication scheduling scheme in a stochastic man-
ner. Under the scheduling of the SC protocol, the net-
work nodes can access the network channels randomly
for data transmission. The SC protocol can be widely
used in many industrial control networks, such as the
carrier sense multiple access (CSMA) protocol for
Ethernet and the ALOHA protocol for wireless local
area networks.

Compared with the filtering methods without proto-
col scheduling, the introduction of communication pro-
tocols, especially SC protocols, would certainly

increase the difficulties of filtering design and perfor-
mance analysis. In such a situation, it is necessary to
adopt effective measures to reduce the adverse effect of
SC protocol on recursive filtering performance. To
date, some preliminary results concerning the recursive
filtering problem for networked systems with SC proto-
cols have been presented in Wang and colleagues.26–28

The recursive filtering problem is discussed in Alsaadia
et al.26 for complex networks under SC protocol. The
upper bound of the estimation error covariance is
derived by solving two sets of matrix difference equa-
tions, and then the performance analysis of the devel-
oped state estimator is provided in terms of the
boundedness. In Zou et al.,28 the recursive filtering
algorithm is proposed for networked time-varying sys-
tems with a scheduling protocol governed by the
Bernoulli process, and the boundedness issue of the
corresponding filtering error covariance is investigated.

On the contrary, the time-delay phenomenon com-
monly exists in various practical control systems, which
is one of the main causes of system performance degra-
dation or even instability. In recent years, the recursive
filtering design problem of time-delayed systems has
attracted much attention from researchers; more infor-
mation and references are provided in the literature.29–
32 Although the above studies have performed a great
deal of useful exploration, there are still many problems
that have not been fully investigated for the recursive
filtering issue of time-delayed systems. In most existing
literature, a fundamental assumption is that time-delays
always occur simply in a fixed manner. However, with
the rapid development of information technology, the
complexity of the system structure and time-delay
mechanism is gradually increasing. In this context, vari-
ous time-delay models have been proposed to better
characterize different system properties. Among vari-
ous categories of time-delays, mixed time-delays have
recently drawn growing research interest due to their
practical insights into characterizing the spatial nature
of signal transmission delays in some complex systems.
It is worth noting that a popular general rule is that the
systems with mixed time-delays have more difficulty
obtaining the desired filtering performance than the
dynamical systems with fixed delays under the same
conditions, which has generated preliminary results;
more information and references are provided in Wang
and colleagues.33–35 Unfortunately, for the filtering
design problem of systems with mixed time-delays, the
available results mostly employ HN filtering and set-
membership filtering methods. To the best of the
author’s knowledge, considering both dynamic quanti-
zation mechanism and SC protocol to schedule network
resources has not been reported for the recursive filter-
ing design of time-delayed networked systems, in addi-
tion to the analysis of the influence of time-delay
intervals and weight coefficients on the filtering perfor-
mance. Therefore, the main motivation of this article is
to investigate the recursive filtering problem for
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networked systems with mixed time-delays subject to
the SC scheduling protocol and dynamic quantization
effects.

In response to the aforementioned discussion, the
recursive filtering problem for a class of time-varying
systems with mixed time-delays subject to SC protocol
and dynamic quantization effects is investigated in this
article. The main contributions of this article can be
summarized as follows: (1) a description model of net-
worked systems with mixed time-delays limited by the
SC protocol and dynamic quantization effects is
obtained, and a recursive structure filter is proposed
based on this model; (2) for the established augmented
system with mixed time-delays, the dynamic upper
bound of filtering error covariance is obtained by sol-
ving two Riccati equations, and the filter gain is derived
by minimizing the upper bound; and (3) based on the
results of (2), the issue of boundedness for the filtering
error dynamics is further discussed, and the influence
of the delay interval and weight coefficients on the fil-
tering performance is investigated.

The rest of this article is organized as follows. In sec-
tion ‘‘Problem formulation and preliminaries,’’ the
problem description and preliminaries are presented. In
section ‘‘Main results,’’ a recursive filtering algorithm is
proposed for time-delayed networked systems with the
impacts of the SC protocol and network-induced con-
straints. Illustrative examples are provided in section
‘‘Main results’’ to demonstrate the effectiveness and
superiority of the proposed results. Finally, this article
is concluded, and future research directions are dis-
cussed in section ‘‘Conclusion.’’

Notation

The notation used throughout this article is fairly stan-
dard. Rn denotes the n-dimensional Euclidean space,
and P. 0(Pø 0) indicates that it is real symmetric and
positive definite (semidefinite). GT, G�1, and tr Gf g rep-
resent the transpose, the inverse, and the trace of the
matrix G, respectively. diagfr1, . . . , rng stands for a
diagonal matrix with the indicated elements on the
diagonal and zeros elsewhere. Prfjg is the occurrence
probability of event j. Efzg indicates the expectation
of the stochastic variable z. Ak k refers to the norm of a
matrix A defined by Ak k=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trace(ATA)

p
. The

Kronecker delta function d(c) takes the value 1 for
c=0 and 0 otherwise.

Problem formulation and preliminaries

Model description

In this section, we present the model of a networked
system subject to the SC protocol and dynamic quanti-
zation effects, whose structure is depicted in Figure 1.

We consider the discrete networked system with mixed
time-delays described by

xk+1 =Akxk +Bkxk�t1 +Fk

Pt2
i mixk�i +Dkvk

yk =Ckxk + nk

x(i)=f(i) �max t1, t2f gł ił 0

8<
:

ð1Þ

where xk 2 Rn represents the state vector that cannot
be directly observed, and yk 2 Rm is the measured out-
put before transmission through the communication
network. vk 2 Rp and nk 2 Rq are the process noises
and measurement noises, which are zero-mean
Gaussian white noise processes with the covariances
Qk . 0 and Rk . 0, respectively. The positive integers
t1 and t2 are the known constant time-delays, mi

(1ł ił t2) represents the weight coefficients, and f(i)
is the initial conditions of the system. Ak, Bk, Ck, Dk,
and Fk are the known time-varying matrices with
appropriate dimensions, respectively.

Dynamic quantizer

Now, we can consider the effects of the signal quantiza-
tion. In this article, we adopt the following dynamic
quantizer17

ek+1 =Adek +Bd1yk +Bd2�yk
�yk = r(Cdek +Ddyk)

�
ð2Þ

where Ad, Bd1, Bd2 Cd, and Dd are the constant matrices
with appropriate dimensions. ek 2 Rn and �yk 2 Vm are

Figure 1. State estimation problem for NCSs.
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the state vector and output vector of the dynamic quan-
tizer, respectively, and V � R is the discrete set on
which each output takes values (Vm is the direct prod-
uct of the m sets). The function r : Rm ! Vm is the
nearest-neighbor static quantizer. The initial state is
given as e0 =0. We let g be the considered quantization
level, and the following relationship holds

r(z)� zk k2 ł
mg2

4
, (8z 2 Rm) ð3Þ

Remark 1. Due to the necessity that the measurement
output is transmitted through the digital channel, sig-
nal quantization inevitably occurs in network-based
control systems. The selection of a quantizer is very
important to reduce the impact of quantization errors
on the system performance. In this article, we employ
the dynamic quantizer with the structure equation (2),
which is composed of a time-invariant filter and a static
quantization function. Consequently, the selected
dynamic quantizer is more flexible and can effectively
mitigate performance degradation compared with static
quantizers (e.g. uniform quantizer and logarithmic
quantizer). To date, the dynamic quantizer has been
successfully used in many industrial control fields;
more information and references are provided in
Takahashi et al.19 and Maity and Tsiotras36 and refer-
ences therein.

The SC protocol

For networked systems with a large number of sensors,
the communication between the sensors and the filter is
scheduled by a certain network protocol to avoid data
collisions. Moreover, we will introduce the scheduling
protocol of SC. Without loss of generality, we assume
that only one sensor is allowed to access the network
channel according to the underlying scheduling proto-
col and let s(k) 2 f1, 2, . . . ,mg denote which sensor is
selected to communicate with the filter at each trans-
mission period.

Under the scheduling of the SC protocol, it is
assumed that s(k) 2 f1, 2, . . . ,mg can be modeled by a
discrete-time Markov process and corresponding tran-
sition probability is given as follows

Pr s(k)= if g=pi(k), Pr s(k+1)= jjs(k)= if g=pij(k)

where pi(k) is the probability that the ith sensor is
selected to access the communication network at the
time instant k, and pij(k), i, j 2 f1, 2, . . . ,mg, which
denotes the transition probability from sensor i to sen-
sor j, satisfying

Pm
j=1 pij(k)=1.

Problem formulation

Next, we aim to address the recursive filtering design
problem for networked systems with mixed time-delays,
signal quantization, and SC protocol. Furthermore, we
will consider the measurement signal received by the fil-
ter. As shown in Figure 1, the measurement output
before quantizing can be characterized as

yk = yT1, k yT2, k � � � yTm, k

� �T

where yi, k denotes the measurement output of the ith
sensor at the time instant k. We let

�yk= �yT1,k �yT2,k � � � �yTm,k

� �T
, ~yk= ~yT1,k ~yT2,k � � � ~yTm,k

� �T

denote the output of the dynamic quantizer and the
measurement output after transmission through the
network, respectively. Then, the eventual measured out-
put ~yi, k of the ith sensor, which is received by the filter
with a zero-order holder, can be formulated as

~yi, k =
�yi, k if i=s(k)
~yi, k�1 otherwise

�
ð4Þ

According to the updating rule of the measurement
output equation (4), the following equation is obtained

~yk =Fs(k)�yk +(I�Fs(k))~yk�1 ð5Þ

with the initial state ~ys =Y(s) for s\ 0, where Y(s) is a
known vector, and

Fi = diag d(i� 1) d(i� 2) � � � d(i�m)f g ð6Þ

where d( � ) 2 0, 1f g is the Kronecker delta function.
The model of time-delayed networked systems with

dynamic quantization and SC scheduling protocol can
be attained by substituting equations (2) and (5) into
equation (1) and introducing an augmented state
variable

~xk = xTk eTk ~yTk�1
� �T

which results the augmented system model as follows

~xk+1 = ~Ak~xk + ~Bk~xk�t1 +
~Fk

Pt2
i=1 mi~xk�i + ~Dkwk

~yk = ~Ck~xk + ~Ekwk

�
ð7Þ

where uk = r(Cdek +Ddyk)� Cdek �Ddyk, and
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~Ak =

Ak 0 0

(Bd1 +Bd2Dd)Ck Ak +Bd2Cd 0

Fs(k)DdCk Fs(k)Cd I�Fs(k)

2
64

3
75,

~Bk =

Bk 0 0

0 0 0

0 0 0

2
64

3
75 ~Fk =

Fk 0 0

0 0 0

0 0 0

2
64

3
75, wk =

vk

nk

uk

2
64

3
75

~Ck = Fs(k)DdCk Fs(k)Cd I�Fs(k)½ �,

~Dk =

Dk 0 0

0 Bd1 +Bd2Dd Bd2

0 Fs(k)Dd Fs(k)

2
64

3
75

~Ek = 0 Fs(k)Dd Fs(k)½ �

It is obvious that the quantization error uk satisfies

ukk k2 ł
mg2

4

which yields

Qk =E wkw
T
k

� �
ł diag Qk,Rk,

g2I

4

� �
= ~Qk

For networked systems with mixed time-delays, the
following recursive filter is employed

x̂k+1jk = ~Akx̂kjk + ~Bkx̂k�t1jk�t1 +
~Fk

Pt2
i=1 mix̂k�ijk�i

x̂k+1jk+1 = x̂k+1jk +Kk+1(~yk+1 � ~Ck+1x̂k+1jk)

(

ð8Þ

where x̂k+1jk is the one-step prediction of ~xk at the
instant time k, x̂kjk is the estimate of ~xk at the instant
time k, and Kk+1 is the filter gain to be determined.

We define the one-step prediction error ek+1jk ¼
D

~xk+1 � x̂k+1jk and one-step prediction error covar-

iance Pk+1jk =Efek+1jke
T
k+1jkg. Similarly, we define

the filtering error ek+1jk+1 ¼
D

~xk+1 � x̂k+1jk+1, and

the filtering error covariance Pk+1jk+1 =

Efek+1jk+1e
T
k+1jk+1g. Based on equations (7) and (8),

the following equations are developed

ek+1jk= ~Akekjk+ ~Bkek�t1jk�t1 +
~Fk

Xt2

i=1
miek�ijk�i+ ~Dkwk

ð9Þ

ek+1jk+1 = (I� Kk+1
~Ck+1)ek+1jk � Kk+1

~Ek+1wk+1

ð10Þ

Main results

In this section, we aim to develop a unified framework
to deal with the recursive filtering design problem for

networked systems with mixed time-delays. Before pro-
ceeding further, we introduce the following lemmas,
which will be helpful in subsequent developments.

Lemma 1. We assume there is a stochastic process V(jk)
as well as real numbers y, �y,- . 0 and 0\ a ł 1 such
that31

y jkk k2 łV(jk)ł �y jkk k2

and

E V(jk+1)jjkf g � V(jk)ł � aV(jk)+-

Then, the stochastic process is exponentially
bounded in the mean square.

Lemma 2. For 0ł kłN, we assume X=XT ø 0,
Y=YT ø 0, and hk(X)= hTk (X), if

32

hk(X)ł hk(Y), 8XłY

then the solutions Wk and Mk to

Wk+1 = hk(Wk), Mk+1 ł hk(Mk), M0 łW0

satisfy Wk+1 øMk+1.

Lemma 3. Given the appropriate dimension matrices
M, N, X, and P, the following equations hold32

∂tr MXNð Þ
∂X

=MTNT,
∂tr MXTNð Þ

∂X
=NM

∂tr MXNð ÞP MXNð ÞT
	 


∂X
=2MMTXNPNT

Now, we are in the position of deriving the dynamic
upper bound of prediction error covariance and filter-
ing error covariance.

Upper bound of filtering error covariance

Theorem 1. For the networked system with mixed time-
delays equation (7), we provide the positive scalars hi

(i=1, 2, . . . , 8). For kø 0, there exists a positive defi-
nite symmetric matrix qkjk that satisfies the following
two difference equations

qk+1jk =(1+h1 +h2 +h3) ~Akqkjk ~AT
k

+(1+h�12 +h�14 +h6)3
1

2
(h7 +h�17 )

Xt2

i=1
mi

Xt2

i=1

mi
~Fkqk�ijk�i ~F

T
k +(1+h�11 +h4 +h5) ~Bkqk�t1jk�t1

~BT
k

+(1+h�13 +h�15 +h�16 ) ~Dk
~Qk

~DT
k +(1+h�11 +h4 +h5)

~Bkqk�t1jk�t1
~BT
k +(1+h�13 +h�15 +h�16 ) ~Dk

~Qk
~DT
k

ð11Þ
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and

qk+1jk+1 = (1+h8)(I� Kk+1
~Ck+1)qk+1jk

3 (I� Kk+1
~Ck+1)

T +(1+h�18 )Kk+1
~Ek+1

~Qk+1
~ET
k+1K

T
k+1

ð12Þ

if the initial state satisfies q0j0 øP0j0. Then, the
qk+1jk+1 is an upper bound of Pk+1jk+1.

Proof. The proof is provided in Appendix 1.
In Theorem 1, we have obtained dynamic upper

bounds of the prediction error and filtering error covar-
iance. Subsequently, we derive the filtering gain matrix
by minimizing the proposed upper bounds.

Theorem 2. For the networked system with mixed time-
delays equation (7), we provide the positive scalars hi

(i=1, 2, . . . , 8). For kø 0, the filter gain Kk+1 that
minimizes the upper bound of the filtering error covar-
iance is given by

Kk+1 = (1+h8)qk+1jk ~CT
k+1O

�1 ð13Þ

where qk+1jk is determined by equation (11), and

O= ~Ck+1qk+1jk ~CT
k+1

+ (1+h�18 ) ~Ek+1
~Qk+1

~ET
k+1

Proof. The proof is provided in Appendix 2.

Boundedness analysis of filtering error dynamics

In engineering practice, the norm of the system matrix,
measurement noises, and process noises are usually
bounded due to energy constraints, which indicates
that the following assumption is reasonable.

Assumption 1. The following matrix relationships hold
for every kø 0 and i 2 f1, 2, . . . ,mg

a2Ił ~Ak
~AT
k ł �a2I, b2Ił ~Bk

~BT
k ł �b

2
I, c2Ił ~Ck

~CT
k ł �c2I

d2Ił ~Dk
~DT
k ł �d

2
I, e2Ił ~Ek

~ET
k ł �e2I, f2Ił ~Fk

~FT
k ł �f

2
I

q2Ił ~Qk
~QT
k ł �q2I, wIłwT

kwk ł �wI, pIł tr qkjk
� �

ł �pI

where a, �a, b, �b, c, �c, d, �d, e, �e, f, �f, q, �q, w, �w, p, and �p
are the positive real numbers.

According to the above assumptions, we further
investigate the boundedness of the filtering error
dynamics obtained by Theorems 1 and 2.

Theorem 3. For the networked system with mixed time-
delays equation (7), we provide the positive scalars hi

(i=1, 2, . . . , 9). If Assumption 1 holds, the filter gain
Kk+1equation (13) can guarantee that the filtering

error dynamics is exponentially bounded in the mean
square.

Proof. The proof is provided in Appendix 3.

Remark 2. In Theorem 3, we have discussed the expo-
nentially mean-square boundedness of the filtering
error covariance, which shows that the boundedness is
closely related to the matrix norm of networked sys-
tems and the upper bound of the filtering error covar-
iance. According to Theorem 3, if the system matrix
norm and filtering error covariance have upper bounds,
the filtering error dynamics will eventually guarantee
the exponentially bounded in the mean square.

In terms of Theorems 1 and 2, we summarize the
structure diagram of the recursive filtering algorithm as
follows.

Remark 3. The aim of the proposed recursive filtering
algorithm is to obtain the upper bounds of the one-step
error covariance and filtering error covariance by sol-
ving two Riccati difference equations in each sampling
period and then minimize the trace of qkjk to derive
optimal time-varying filtering gain matrix. According
to the summarized structure diagram of the recursive
filtering algorithm, utilizing MATLAB to obtain the fil-
tering gain at each sampling time is simple. Of course,
if the variation range of the mixed delay (t1 and t2) is
large, it will increase the difficulty of the equation deri-
vation to a certain extent, but it will not increase the
computational complexity for solving the filtering gain
matrix in MATLAB.

Remark 4. The recursive filtering problem for a class of
time-varying systems with mixed time-delays subject to
SC protocol and dynamic quantization effects is dis-
cussed in this article. In virtue of equation (7), it is easy
to understand in what manner the SC protocol and the
dynamic quantizer influence the dynamic behavior of
the system. For example, Fs(k) and uk represent the
influence of the SC protocol and the dynamic quantiza-
tion effect, respectively. All the above-obtained conclu-
sions are influenced by the parameters Fs(k) and uk.
Similarly, we can generalize the treatment processing in
this article to the investigation of recursive filtering
algorithms with other network-induced constraints.
First, the parameters characterizing the network-
induced constraints are incorporated into the augmen-
tated system matrix ~Ak by the modeling approach simi-
lar to the one used in this article. Then, the
corresponding system control theory and Kalman fil-
tering technology are utilized to construct the filtering
error system, and subsequently, the recursive filtering
gains can be obtained by the similar derivation steps of
Theorems 1 and 2 (Figure 2).
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Numerical simulation

In this section, two simulation examples are provided
to illustrate the effectiveness and superiority of the pre-
sented recursive filtering algorithm for networked sys-
tems with mixed time-delays. In Example 1, the
effectiveness of the proposed filtering algorithm is
demonstrated, and the influence of the time-delay inter-
val and weight coefficients mi on the filtering perfor-
mance is analyzed. Then, we compare the developed
filtering algorithm with the HN robust filtering algo-
rithm of Zou et al.37 for the networked direct current
(DC) servo system in Example 2, which shows that our
recursive filtering algorithm has better filtering
performance.

Example 1. We consider a class of networked systems
with mixed time-delays in the form of equation (1), and
the following parameter matrices are given

Ak =
0:65+0:1 sin (0:4pk) �0:8+0:1 cos (0:2pk)

0:23 0:62

� �
,

Bk =
0:08 �0:4 sin (0:2pk)

0:06 0:05

� �

Ck =
0:90 �0:25 sin (0:4pk)

0:20 0:44

� �
, Dk =

0:70 0:18

0:20 0:32

� �

Fk =
�1:00 0:00

0:00 �1:00

� �
, t1 =1, t2 =5

Ad =
0:5 0

�0:2 �0:5

� �
, Bd1 =

�0:3 �0:2
�0:2 �0:3

� �

Bd2 =
0:3 0:2

0:2 0:3

� �
, Cd =

1:2 0

1:2 0

� �
, Dd =

1 0

1 0

� �
m1 =m2 =m3 =m4 =m5 =0:1

In the simulation, we take the initial state of the sys-
tem as x0 = ½ 4:2 �4:3 �T, f(� 1)=f(� 2)=f(� 3)
=f(� 4)=f(� 5)= ½ 4:2 �4:3 �T, and initial esti-
mation as x̂�5j�5 = x̂�4j�4 = x̂�3j�3 = x̂�2j�2 =
x̂�1j�1 = x̂0j0 = ½ 3:4 �3:4 �T. The upper bounds of the
initial covariance are set as q0j0 =q�1j�1 =
q�2j�2 =q�3j�3 =q�4j�4 =q�5j�5 =3:4I, and positive
scalars hi (i=1, 2, . . . , 8) are set as h1 =h2 =h3 =
h6 =h7 =0:2 =0:2, h4 =h8 =0:1, and h5 =0:3. In
addition, we assume that Qk =0:5I, Rk =0:5I. The
quantization level g is set to 0.8; thus

~Qk = diag 0:5, 0:5, 0:5, 0:5, 0:32, 0:32f g

The transition probability of the SC protocol is set
to

p =
0:5 0:5
0:4 0:6

� �

Then, according to Theorem 2, the time-varying fil-
tering gain fKk+1g under the SC protocol is obtained
in Table 1.

The simulation results are shown in Figures 3–9.
Figure 3 depicts the communication sequence subject to
the SC scheduling protocol, where ‘‘1’’ represents that
sensor 1 obtains the access authority to the communica-
tion network; similarly, ‘‘2’’ represents that sensor 2
obtains the access authority to the communication net-
work. In such a communication protocol, which sensor
obtains the network channel is determined by a
Markov chain with the given transition probability.
State trajectories of x1(k) and its estimate x̂1(k), and
state trajectories x2(k) and its estimate x̂2(k) are given
in Figures 4 and 5, respectively. It can be found from
Figures 4 and 5 that the recursive filtering algorithm
proposed in this article can effectively track the state
trajectories of the system.

To analyze the influence of the delay interval and
parameter mi on the filtering performance, we introduce
the mean square error (MSE) of the state estimation,
which is defined as follows

MSE(k)=
1

k


 �Xk

j=1

X2

i=1
xji(k)� x̂ji(k)
� �2

Figure 2. Structure diagram of the recursive filtering algorithm.
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where i represents the dimension of the state vector,
and k represents the number of samples. Then, we let
the weight coefficients be mi =0:1 and increase the
delay interval to analyze the influence of its amplitude
on the filtering performance. Similarly, the impact of
the weight coefficients mi on the filtering performance
is investigated by setting the delay interval as t1 =1

and t2 =3. The obtained results are shown in
Figures 6–9 and Tables 2–5. Figures 6 and 7 and
Tables 2 and 3 show the relationship of the delay
interval and the filtering performance. It can be seen
that when limiting mi =0:1, MSE(k) will increase as
the delay interval gradually increases, and the trace of
its upper bound has the same varying tendency. Then,

Table 1. Values of Kk + 1 under the SC protocol.

k 1 2 . 49

Kk + 1 0:115 0
�0:029 0
0:349 0
0:161 0
0:406 0

0 1:05

2
6666664

3
7777775

�0:048 0:099
0:067 �0:032
0:134 0:346
0:459 0:173
1:05 0
0:388 0:352

2
6666664

3
7777775

... �0:002 0:001
�0:001 0
�0:326 �0:02
�0:085 0:70
�0:079 1:05

1:05 0:41

2
6666664

3
7777775

Figure 3. Sensors communication sequence under the SC
protocol.

Figure 4. State trajectories of x1(k) and its estimate x̂1(k).

Figure 5. State trajectories of x2(k) and its estimate x̂2(k).

Figure 6. MSE(k) and the trace of the minimal upper bound
with delay intervals (t1 = 1, t2 = 2) and (t1 = 1, t2 = 3).
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Figures 8 and 9 and Tables 4 and 5 depict the rela-
tionship of the weight coefficients mi and the filtering
performance, which indicate that if the delay interval
is invariant (t1 =1, t2 =3) and mi is increased,
MSE(k) and the trace of its minimal upper bound will
increase simultaneously. We can also infer from
Figures 6–9 that MSE(k) is always constrained by the
trace of its upper bound. The simulation results con-
firm that MSE(k) converges by minimizing the trace
of qkjk and finally achieves the desired filtering
performance.

Example 2. We consider the networked DC servo sys-
tem proposed in Zou et al.,34 and the controlled plant
and remote filter are connected by a shared communi-
cation network. Referring to Zou et al.,34 the system
parameters of the DC servo system are given as
follows

x(k+1)=

1:12 0:213 �0:333
1 0 0

0 1 0

2
64

3
75x(k)

+

0:8

0

0

2
64

3
75v(k)+

�0:2193 0:0219 0:0844

0:2177 �0:0032 �0:0662
0:1298 �0:0087 �0:0381

2
64

3
75x(k� 3)

y(k)=
1 0 0

0 1 0

� �
x(k)+

0

0:8

� �
v(k)

In the simulation, we take the initial state of the sys-
tem as x0 = ½ 2 2 2 �T, f(� 1)=f(� 2)=f(� 3)
= ½ 2 2 2 �T, and the initial estimate as
x̂�3j�3 = x̂�2j�2 = x̂�1j�1 = x̂0j0 = ½ 1 1 1 �T. The
upper bound of the initial covariance is set as
q0j0 =q�1j�1 =q�2j�2 =q�3j�3 =6I, and positive sca-
lars hi (i=1, 2, . . . , 8) are set as h1 =h2 =
h3 =h6 =h7 =0:2, h4 =h8 =0:1, and h5 =0:3. We
assume that Qk =0:5I and Rk =0:6I, respectively. The
quantization level g is set to 0.8, and the transition
probability of the SC protocol is set to

p =
0:4 0:2 0:4
0:3 0:3 0:4
0:5 0:2 0:3

2
4

3
5

For a comparison with the existing results, we utilize
the HN robust filtering algorithm of Zou et al.37 under
the same initial conditions. The simulation results are
shown in Figures 10–14. Figure 10 depicts the commu-
nication sequence subject to the SC scheduling proto-
col. For the proposed recursive filtering algorithm and
HN robust filtering algorithm of Zou et al.,37 state tra-
jectories of x1(k) and its estimate x̂1(k), state trajec-
tories x2(k) and its estimate x̂2(k), and state trajectories
x3(k) and its estimate x̂3(k) are given in Figures 11–13,
respectively. The trajectories of MSE(k) under the
above two filter design strategies are shown in

Figure 7. MSE(k) and the trace of the minimal upper bound
with delay intervals (t1 = 1, t2 = 4) and (t1 = 1, t2 = 5).

Figure 8. MSE(k) and the trace of the minimal upper bound
with the weight coefficients mi = 0:1 and mi = 0:15.

Figure 9. MSE(k) and the trace of minimal upper bound with
weight coefficients mi = 0:2 and mi = 0:25.
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Table 2. MSE(k) at different delay intervals (mi = 0:1).

k 0 10 20 30 40 50

t1 = 1, t2 = 2 1.45 0.59 0.35 0.26 0.21 0.19
t1 = 1, t2 = 3 1.45 1.39 0.98 0.79 0.66 0.54
t1 = 1, t2 = 4 1.45 1.57 1.73 1.78 2.48 2.57
t1 = 1, t2 = 5 1.45 2.09 2.05 3.04 2.92 2.75

Table 3. Trace of minimal upper bound at different delay intervals (mi = 0:1).

k 0 10 20 30 40 50

t1 = 1, t2 = 2 6.8 11.3 10.0 9.7 9.4 11.1
t1 = 1, t2 = 3 6.8 14.5 14.0 14.2 17.5 12.6
t1 = 1, t2 = 4 6.8 17.3 21.3 23.4 22.6 24.1
t1 = 1, t2 = 5 6.8 17.9 24.4 27.3 24.7 28.2

Table 4. MSE(k) with different weight coefficients mi (t1 = 1, t2 = 3).

k 0 10 20 30 40 50

mi = 0:10 1.45 1.39 0.98 0.79 0.66 0.54
mi = 0:15 1.45 1.45 1.16 1.41 1.88 1.95
mi = 0:20 1.45 1.70 2.33 2.40 2.81 2.48
mi = 0:25 1.45 2.66 3.50 3.32 2.65 2.59

Table 5. Trace of minimal upper bound with different weight coefficients mi (t1 = 1, t2 = 3).

k 0 10 20 30 40 50

mi = 0:10 6.8 14.5 14.0 14.2 17.5 12.6
mi = 0:15 6.8 15.1 18.0 21.6 24.3 20.9
mi = 0:20 6.8 15.8 24.6 31.7 29.5 31.8
mi = 0:25 6.8 21.6 31.2 34.4 34.8 37.1

Figure 10. Sensors communication sequence under the SC
protocol.

Figure 11. State trajectories of x1(k) and x̂1(k) under the
recursive filtering and HN robust filtering algorithm.
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Figure 14. Figures 11–14 show that the recursive filter-
ing algorithm proposed in this article not only effec-
tively tracks the state trajectories of the DC servo
system but also has better filtering performance than
that of the HN robust filtering algorithm in Zou et al.37

Conclusion

The recursive filtering design problem for networked
systems with mixed time-delays subject to the SC pro-
tocol and dynamic quantization effects is investigated
in this article. Due to the presence of a limited-
bandwidth network, it is assumed that only one sensor
can transmit the measurement information to the filter
at each sampling period, and the selected sensor is
determined by the scheduling strategy of the corre-
sponding communication protocol. Another funda-
mental issue is to mitigate the influence of the

quantization errors on the filtering performance by
employing the dynamic quantization mechanism. In
such a framework, the recursive filter has been pro-
posed to obtain the estimate of the system state under
the influence of the SC protocol and dynamic quantiza-
tion error. The upper bound of the filtering error cov-
ariance is addressed by solving two Riccati difference
equations, and sufficient conditions have been derived
for the presented recursive filter to guarantee the expo-
nentially mean-square boundedness of the filtering
error dynamics. Simulation examples have demon-
strated the effectiveness and superiority of the devel-
oped recursive filtering algorithm by comparing the
filtering effect with the HN robust filtering algorithm.
Moreover, a future research topic is to explore the
Bayesian scheme to improve the filtering performance.
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Figure 13. State trajectories of x3(k) and x̂3(k) under the
recursive filtering and HN robust filtering algorithm.

Figure 14. MSE(k) under the proposed recursive filtering
algorithm and HN robust filtering algorithm.
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Appendix 1

Proof of Theorem 1

Proof. According to equation (9), the one-step error covariance can be obtained as follows

Pk+1jk

=E ( ~Akekjk + ~Bkek�t1jk�t1 +
~Fk

Xt2

i=1
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n
( ~Akekjk + ~Bkek�t1jk�t1 +

~Fk

Xt2

i=1
miek�ijk�i + ~Dkwk)

T
o

= ~AkPkjk ~AT
k +

~BkPk�t1jk�t1
~BT
k +E ~Dkwkw

T
k

~DT
k

� �
+
Xt2

i=1
mi

Xt2

j=1
mjE ~Fkek�ijk�ie

T
k�jjk�j

~FT
k

n o
+E ~Akekjke

T
k�t1jk�t1

~BT
k

n
+ ~Akekjk

Xt2

i=1
mie

T
k�ijk�i

~FT
k +

~Akekjkw
T
k

~DT
k +

~Bkek�t1jk�t1e
T
kjk

~AT
k

+ ~Bkek�t1jk�t1

Xt2

i=1
mie

T
k�t1jk�t1

~FT
k +

~Bkek�t1jk�t1w
T
k

~DT
k +

~Fk

Xt2

i=1
miek�ijk�ie

T
kjk

~AT
k +

~Dkwke
T
kjk

~AT
k

+ ~Fk

Xt2

i=1
miek�ijk�iw

T
k

~DT
k +

~Fk

Xt2

i=1
miek�ijk�ie

T
k�t1jk�t1

~BT
k +

~Dkwke
T
k�t1jk�t1

~BT
k +

~Dkwk

Xt2

i=1
mie

T
k�t1jk�t1

~FT
k

o
ð14Þ

Obviously, the inequality (b
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2b)T ø 0 holds and is equivalent to abT + baT ł baaT +b�1bbT,

where b . 0, and a and b are the vectors of appropriate dimensions. Then, with the help of elementary inequality
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it is straightforward to see that

~Akekjke
T
k�t1jk�t1

~BT
k +

~Bkek�t1jk�t1e
T
kjk

~AT
k ł h1

~Akekjke
T
kjk

~AT
k +h�11

~Bkek�t1jk�t1e
T
k�t1jk�t1

~BT
k ð16Þ

~Akekjk
Xt2

i=1
mie

T
k�ijk�i

~FT
k +

~Fk

Xt2

i=1
miek�ijk�ie

T
kjk

~AT
k ł h2

~Akekjke
T
kjk

~AT
k +h�12

Xt2

i=1
mi

Xt2

j=1
mj

~Fkek�ijk�ie
T
k�jjk�j

~FT
k

ð17Þ

~Akekjkw
T
k

~DT
k +

~Dkwke
T
kjk

~AT
k ł h3

~Akekjke
T
kjk

~AT
k +h�13

~Dkwkw
T
k

~DT
k ð18Þ

~Bkek�t1jk�t1

Xt2

i=1
mie

T
k�ijk�i

~FT
k +

~Fk

Xt2

i=1
miek�ijk�ie

T
k�t1jk�t1

~BT
k ł h4

~Bkek�t1jk�t1e
T
k�t1jk�t1

~BT
k

+h�14

Xt2

i=1
mi

Xt2

j=1
mj

~Fkek�ijk�ie
T
k�jjk�j

~FT
k

ð19Þ

~Bkek�t1jk�t1w
T
k

~DT
k +

~Dkwke
T
k�t1jk�t1

~BT
k ł h5

~Bkek�t1jk�t1e
T
k�t1jk�t1

~BT
k +h�15

~Dkwkw
T
k

~DT
k ð20Þ

~Fk

Xt2

i=1
miek�ijk�iw

T
k

~DT
k +

~Dkwk

Xt2

i=1
mie

T
k�ijk�i

~FT
k ł h6

Xt2

i=1
mi

Xt2

j=1
mj

~Fkek�ijk�ie
T
k�jjk�j

~FT
k +h�16

~Dkwkw
T
k

~DT
k

ð21Þ

Xt2

i=1
mi

Xt2

j=1
mjE ~Fkek�ijk�ie

T
k�jjk�j

~FT
k

n o
=

1

2

Xt2

i=1
mi

Xt2

j=1
mjE ~Fkek�ijk�ie

T
k�jjk�j

~FT
k +

~Fkek�jjk�je
T
k�ijk�i

~FT
k

n o
ł

1

2

Xt2

i=1
mi

Xt2

j=1
mjE h7

~Fkek�ijk�ie
T
k�ijk�i

~FT
k +h�17

~Fkek�jjk�je
T
k�jjk�j

~FT
k

n o
=

1

2

Xt2

i=1
mi

Xt2

j=1
mj(h7

~FkPk�ijk�i ~F
T
k +h�17

~FkPk�jjk�j ~F
T
k )

=
1

2
(h7 +h�17 )

Xt2

i=1
mi

Xt2

i=1
mi

~FkPk�ijk�i ~F
T
k

ð22Þ

By substituting equations (16)–(22) into equation (14), we can obtain
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Then, the filtering error covariance can be recursively calculated as

Pk+1jk+1

=E ek+1jk+1e
T
k+1jk+1

n o
=E ((I�Kk+1

~Ck+1)ek+1jk�Kk+1
~Ek+1wk+1)

�
((I�Kk+1

~Ck+1)ek+1jk�Kk+1
~Ek+1wk+1)

T
o

=E ((I�Kk+1
~Ck+1)ek+1jke

T
k+1jk(I�Kk+1

~Ck+1)
T

n
�(I�Kk+1

~Ck+1)ek+1jkw
T
k+1

~ET
k+1K

T
k+1

�Kk+1
~Ek+1wk+1e

T
k+1jk(I�Kk+1

~Ck+1)
T
+Kk+1

~Ek+1wk+1w
T
k+1

~ET
k+1K

T
k+1

o
=(I�Kk+1

~Ck+1)Pk+1jk(I�Kk+1
~Ck+1)

T�E (I�Kk+1
~Ck+1)ek+1jkw

T
k+1

�
~ET
k+1K

T
k+1�Kk+1

~Ek+1wk+1e
T
k+1jk(I�Kk+1

~Ck+1)
T
o

+Kk+1
~Ek+1Qk+1

~ET
k+1K

T
k+1

ð24Þ

By applying the elementary inequality equation (15), we can obtain

E �(I� Kk+1
~Ck+1)

� �
ek+1jkw

T
k+1

~ET
k+1K

T
k+1

�
+Kk+1

~Ek+1wk+1e
T
k+1jk �(I� Kk+1

~Ck+1)
� �To

łE h8(I� Kk+1
~Ck+1)ek+1jke

T
k+1jk(I� Kk+1

~Ck+1)
T

n
+h�18 Kk+1

~Ek+1wk+1w
T
k+1

~ET
k+1K

T
k+1

�
ł h8(I� Kk+1

~Ck+1)Pk+1jk(I� Kk+1
~Ck+1)

T +h�18 Kk+1
~Ek+1

~Qk+1
~ET
k+1K

T
k+1

ð25Þ

Considering equations (24) and (25), it is obvious that

Pk+1jk+1 ł (1+h8)(I� Kk+1
~Ck+1)Pk+1jk(I� Kk+1

~Ck+1)
T +(1+h�18 )Kk+1

~Ek+1Qk+1
~ET
k+1K

T
k+1 ð26Þ

Then, we define the functions y(qk+1jk) and qk+1jk as follows

y(qk+1jk)

= (1+h1 +h2 +h3) ~Akqkjk ~AT
k +(1+h�12 +h�14 +h6)

1

2
(h7 +h�17 )

Xt2

i=1
mi

Xt2

i=1
mi

~Fkqk�ijk�i ~F
T
k

1

2
(h7 +h�17 )Xt2

i=1
mi

Xt2

i=1
mi

~Fkqk�ijk�i ~F
T
k

+(1+h�11 +h4 +h5)3 ~Bkqk�t1jk�t1
~BT
k +(1+h�13 +h�15 +h�16 ) ~Dk

~Qk
~DT
k

ð27Þ

qk+1jk

=(1+h1 +h2 +h3) ~Akqkjk ~AT
k +(1+h�12 +h�14 +h6)

1

2
(h7 +h�17 )

Xt2

i=1
mi

Xt2

i=1
mi

~Fkqk�ijk�i ~F
T
k

+(1+h�11 +h4 +h5) ~Bkqk�t1jk�t1
~BT
k +(1+h�13 +h�15 +h�16 ) ~Dk

~Qk
~DT
k

ð28Þ

When qkjk øPkjk, by applying Lemma 2, according to equation (27) and (28), it is straightforward to see
y(qkjk)ø y(Pkjk). By combining equation (23) and (26), we can obtain

y(Pkjk)

= (1+h1 +h2 +h3)
~AkPkjk ~AT

k +(1+h�12 +h�14 +h6)+
1

2
(1+h�11 +h4 +h5)(h7 +h�1

7
)
Xt2

i=1
miXt2

i=1
mi

~FkPk�ijk�i ~F
T
k

~BkPk�t1jk�t1
~BT
k

+(1+h�13 +h�15 +h�16 ) ~Dk
~Qk

~DT
k øPk+1jk
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With the initial condition P0j0 ¼
D

q0j0, it is obvious that qk+1jk øPk+1jk. Then, qk+1jk is an upper bound for
Pk+1jk at the time instant k. We define ~Kk+1 ¼D I� Kk+1

~Ck+1, one has

qk+1jk+1 = (1+h8) ~Kk+1qk+1jk ~KT
k+1 + (1+h�18 )Kk+1

~Ek+1
~Qk+1

~ET
k+1K

T
k+1

In the similar lines and using Lemma 2 again, it is easy to obtain qk+1jk+1 øPk+1jk+1. The proof is
completed.

Appendix 2

Proof of Theorem 2

Proof. It follows from equation (12) that the trace of the upper bound can be expressed as

tr qk+1jk+1

� �
=tr (1+h8) ~Kk+1qk+1jk ~KT

k+1

�
+(1+h�18 )Kk+1

~Ek+1
~Qk+1

~ET
k+1K

T
k+1

�
=tr (1+h8)(qk+1jk � qk+1jk ~CT

k+1K
T
k+1

�
� Kk+1

~Ck+1qk+1jk +Kk+1
~Ck+1qk+1jk ~CT

k+1K
T
k+1)

+ (1+h�18 )Kk+1
~Ek+1

~Qk+1
~ET
k+1K

T
k+1

�

Through Lemma 3, we can obtain

∂tr qk+1jk+1

� �
∂Kk+1 = � 2(1+h8)qk+1jk ~CT

k+1 +2Kk+1Ck+1qk+1jk ~CT
k+1 +2(1+h�18 )Kk+1

~Ek+1
~Qk+1

~ET
k+1

We let

∂tr qk+1jk+1

� �
∂Kk+1 =0

which yields

2Kk+1Ck+1qk+1jk ~CT
k+1 +2(1+h�18 )Kk+1

~Ek+1
~Qk+1

~ET
k+1 � 2(1+h8)qk+1jk ~CT

k+1 =0

Then, we can obtain

Kk+1 Ck+1qk+1jk ~CT
k+1 + (1+h�18 ) ~Ek+1

~Qk+1
~ET
k+1

� �
=(1+h8)qk+1jk ~CT

k+1

Obviously, Ck+1qk+1jk ~CT
k+1 + (1+h�18 ) ~Ek+1

~Qk+1
~ET
k+1 . 0, so we can obtain the filtering gain Kk+1 in

equation (13). The proof is completed.

Appendix 3

Proof of Theorem 3

Proof. We define

V(ek+1jk+1)= eTk+1jk+1q
�1
k+1jk+1ek+1jk+1 ð29Þ

Substituting equation (10) into equation (29), we have
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V(ek+1jk+1)

=( ~Kk+1ek+1jk�Kk+1
~Ek+1wk+1)

Tq�1k+1jk+1(
~Kk+1ek+1jk�Kk+1

~Ek+1wk+1)

=eTk+1jk
~KT
k+1q

�1
k+1jk+1

~Kk+1ek+1jk�eT
k+1jk

~KT
k+1q

�1
k+1jk+1Kk+1

~Ek+1wk+1�wT
k+1

~ET
k+1K

T
k+1q

�1
k+1jk+1

~Kk+1ek+1jk

+wT
k+1

~ET
k+1K

T
k+1Kk+1

~Ek+1wk+1

=( ~Akekjk+ ~Bkek�t1jk�t1+
~Fk

Xt2

i=1
miek�ijk�i+ ~Dkwk)

T ~KT
k+1q�1k+1jk+1

~Kk+1( ~Akekjk+ ~Bkek�t1jk�t1+
~Fk

Xt2

i=1
miek�ijk�i+ ~Dkwk)

� ( ~Akekjk+ ~Bkek�t1jk�t1+
~Fk

Xt2

i=1
miek�ijk�i+ ~Dkwk)

T ~KT
k+1q

�1
k+1jk+1Kk+1

~Ek+1wk+1

�wT
k+1

~ET
k+1K

T
k+1q

�1
k+1jk+1

~Kk+1( ~Akekjk+ ~Bkek�t1jk�t1+
~Fk

Xt2

i=1
miek�ijk�i+ ~Dkwk)+wT

k+1
~ET
k+1K

T
k+1Kk+1

~Ek+1wk+1

ð30Þ

Subsequently, we expand equation (30) completely as follows

V(ek+1jk+1)

=eTkjk
~AT
k

~KT
k+1q

�1
k+1jk+1

~Kk+1
~Akekjk+eTkjk

~AT
k

~KT
k+1q�1k+1jk+1

~Kk+1
~Bkek�t1jk�t1 +eTkjk

~AT
k

~KT
k+1q

�1
k+1jk+1

~Kk+1
~FkXt2

i=1
miek�ijk�i

+eTkjk
~AT
k

~KT
k+1q

�1
k+1jk+1

~Kk+1
~Dkwk+eTk�t1jk�t1

~BT
k

~KT
k+1q

�1
k+1jk+1

~Kk+1
~Akekjk+eTk�t1jk�t1

~BT
k

~KT
k+1q�1k+1jk+1

~Kk+1
~Bkek�t1jk�t1

+eTk�t1jk�t1
~BT
k

~KT
k+1q�1k+1jk+1

~Kk+1
~Fk

Xt2

i=1
miek�ijk�i+eTk�t1jk�t1

~BT
k

~KT
k+1q

�1
k+1jk+1

~Kk+1
~Dkwk

+( ~Fk

Xt2

i=1
miek�ijk�i)

T ~KT
k+1q

�1
k+1jk+1

~Kk+1
~Akekjk

+( ~Fk

Xt2

i=1
miek�ijk�i)

T ~KT
k+1q

�1
k+1jk+1

~Kk+1
~Bkek�t1jk�t1 +( ~Fk

Xt2

i=1
miek�ijk�i)

T ~KT
k+1q

�1
k+1jk+1

~Kk+1
~Fk

Xt2

i=1
miek�ijk�i

+( ~Fk

Xt2

i=1
miek�ijk�i)

T ~KT
k+1q

�1
k+1jk+1

~Kk+1
~Dkwk+wT

k
~DT
k

~KT
k+1q

�1
k+1jk+1

~Kk+1
~Akekjk+wT

k
~DT
k

~KT
k+1q�1k+1jk+1

~Kk+1
~Bkek�t1jk�t1

+wT
k

~DT
k

~KT
k+1q�1k+1jk+1

~Kk+1
~Fk

Xt2

i=1
miek�ijk�i+wT

k
~DT
k

~KT
k+1q�1k+1jk+1

~Kk+1
~Dkwk

� ( ~Akekjk+ ~Bkek�t1jk�t1 +
~Fk

Xt2

i=1
miek�ijk�i+ ~Dkwk)

T ~KT
k+1q

�1
k+1jk+1Kk+1

~Ek+1wk+1

�wT
k+1

~ET
k+1K

T
k+1q

�1
k+1jk+1

~Kk+1( ~Akekjk+ ~Bkek�t1jk�t1 +
~Fk

Xt2

i=1
miek�ijk�i+ ~Dkwk)+wT

k+1
~ET
k+1K

T
k+1Kk+1

~Ek+1wk+1

ð31Þ

Similarly, considering the elementary inequality equation (15) and using the same processing method as equa-
tions (16)–(22), then, it is easy to obtain that equation (31) is equivalent to the following relationship

E V(ek+1jk+1)
� �

łE x1e
T
kjk

~AT
k

~KT
k+1q�1k+1jk+1

~Kk+1

n
~Akekjk + x2e

T
k�t1jk�t1

~BT
k

~KT
k+1q�1k+1jk+1

~Kk+1
~Bkek�t1jk�t1

+ x3( ~Fk

Xt2

i=1
miek�ijk�i)

T ~KT
k+1q

�1
k+1jk+1

~Kk+1
~Fk

Xt2

i=1
miek�ijk�i

+ x4w
T
k

~DT
k

~KT
k+1q�1k+1jk+1

~Kk+1
~Dkwk + x5w

T
k+1

~ET
k+1K

T
k+1q

�1
k+1jk+1Kk+1

~Ek+1wk+1

o
ð32Þ

where x1 = (1+h1 +h2 +h3), x2 =1+h�1
1

+h4 +h6 +h7, x3 =1+h5 +h�1
7

+h8, x4 =1+h�1
2

+
h�1

4
+h�1

5
+h9, and x5 =1+h�1

3
+h�1

6
+h�1

8
+h�19 .

According to the proposed results in Theorem 1, we can obtain

qk+1jk+1 = (1+h8) ~Kk+1qk+1jk ~KT
k+1 + (1+h�18 )Kk+1

~Ek+1
~Qk+1

~ET
k+1K

T
k+1 ø (1+h8) ~Kk+1qk+1jk ~KT

k+1

ð33Þ

In light of Assumption 1, it can be obtained from equation (28) that
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qk+1jk

=(1+h1 +h2 +h3)
~Akqkjk ~AT

k +
1

2
(1+h�12 +h�14 +h6)(h7 +h�1

7
)
Xt2

i=1
mi

Xt2

i=1
mi

~Fkqk�ijk�i ~F
T
k

+(1+h�11 +h4 +h5) ~Bkqk�t1jk�t1
~BT
k +(1+h�13 +h�15 +h�16 ) ~Dk

~Qk
~DT
k

ø (1+h1 +h2 +h3)
~Akqkjk ~AT

k +
1

2
(1+h�12 +h�14 +h6)(h7 +h�1

7
)(m1 +m2 + � � � +mt2

)2f2p2I

+(1+h�11 +h4 +h5)b
2p2I+(1+h�13 +h�15 +h�16 )d2q2I

ð34Þ

Substituting equation (34) into equation (33) yields

qk+1jk+1 ø (1+h8) ~Kk+1 z1
~Akqkjk ~AT

k

�
+ zIg ~KT

k+1 ð35Þ

where

z =
1

2
(1+h�12 +h�14 +h6)(h7 +h�1

7
)(m1 +m2 + � � � +mt2

)2f2p2

+ (1+h�11 +h4 +h5)b
2p2I+(1+h�13 +h�15 +h�16 )d2q2

z1 =1+h1 +h2 +h3

It is obvious that the relationship between qk+1jk+1 and qkjk is addressed by equation (35). Moreover, we
derive the exponential mean-square boundedness for the filtering error dynamics.

From equation (35), we can obtain the inequality and the relationship of q�1k+1jk+1 and q�1kjk as follows

~KT
k+1q�1k+1jk+1

~Kk+1 ł (1+h8)
�1(z1pa

2I+ zI)�1

which yields

~AT
k

~KT
k+1q�1k+1jk+1

~Kk+1
~Akł(1+h8)

�1z�11 (1+zz�11 ( ~AT
k )
�1q�1k+1jk+1

~A�1k )�1q�1kjkł(1+h8)
�1z�11 (1+zz�11 a�2p�1)�1q�1kjk=z2q

�1
kjk

ð36Þ

where z2 = (1+h8)
�1z�11 (1+ zz�11 a�2p�1)�1. Then, it follows from equation (36) and Assumption 1 that

E x1e
T
kjk

~AT
k

~KT
k+1q

�1
k+1jk+1

~Kk+1
~Akekjk

n o
ł x1z2e

T
kjkq�1kjkekjk ð37Þ

E x2e
T
k�t1jk�t1

~BT
k

~KT
k+1q

�1
k+1jk+1

~Kk+1
~Bkek�t1jk�t1

n o
ł x2(1+h8)

�1(z1pa
2I+ zI)�1 �b2�p ð38Þ

E x3( ~Fk

Xt2

i=1
miek�ijk�i)

T ~KT
k+1q

�1
k+1jk+1

~Kk+1

n
~Fk

Xt2

i=1
miek�ijk�i

o
łE x3(1+h8)

�1�
(z1pa

2I+ zI)
�1�f

2
Xt2

i=1
mi

Xt2

i=1
mi

~Fkqk�ijk�i ~F
T
k

o
ł x3(1+h8)

�1(z1pa
2I+ zI)�1�f

2
(m1 +m2 + � � � +mt2

)2�p

ð39Þ

E x4w
T
kjk

~DT
k

~KT
k+1q�1k+1jk+1

~Kk+1
~Dkwk

n o
ł x4(1+h8)

�1(z1pa
2I+ zI)�1 �d2�q2 ð40Þ

From equation (13) and the properties of the matrix norm, it is easy to obtain

Kk+1k kł (1+h8) qk+1jk
�� �� O�1

�� ��ł (1+h8)�p ((1+h�18 ) ~Ek+1
~Qk+1

~ET
k+1

)
�1

��� ���ł (1+h8)(1+h�18 )�1�pe2q=
_
k

Then

x5w
T
k+1

~ET
k+1K

T
k+1q�1k+1jk+1Kk+1

~Ek+1wk+1 ł x5(1+h8)
�1(z1pa

2I+ zI)�1_e2_q
_
k2 ð41Þ
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By substituting equations (37)–(41) into equation (32), it is easy to derive that

E V(ek+1jk+1)
� �

ł x1z2e
T
kjkq�1kjkekjk +Y

and

E V(ek+1jk+1)
� �

� V(ekjk)ł � aV(ekjk)+Y

where

a=1� (1+h8)
�1(1+ zz�11 a�2p�1)�1

Y= x2(1+h8)
�1(z1pa

2I+ zI)�1 �b
2
�p+ x3(1+h8)

�1(z1pa
2I+ zI)�1�f

2
(m1 +m2 + � � � +mt2

)2�p

+ x4(1+h8)
�1(z1pa

2I+ zI)�1 �d
2
�q2 + x5(1+h8)

�1(z1pa
2I+ zI)�1_e2_q

_
k2

It is obvious that 0\ a \ 1 andY. 0; hence, the filtering error dynamics is exponentially bounded in the mean
square by employing Lemma 1. The proof is completed.
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Set-membership filtering for two-
dimensional shift-varying systems with
stochastic communication protocol
and uniform quantization

Chaoqun Zhu, Pan Zhang and Zhiwen Wang

Abstract
This paper is concerned with the set-membership filtering problem for the two-dimensional shift-varying systems subject to the stochastic communica-

tion protocol and uniform quantization effects. To prevent the data transmission from collisions, only one sensor can transmit the measured informa-

tion to the filter at each sampling shift instant, and the selected sensor is determined by the scheduling strategy of the stochastic communication

protocol. On the contrary, the uniform quantization mechanism has been employed to mitigate the influence of quantization error on filtering perfor-

mance. Incorporating the stochastic communication protocol and uniform quantization mechanism, this paper proposes a set-membership filter design

framework for the two-dimensional shift-varying systems with unknown-but-bounded noises. Sufficient conditions are derived for the existence of

desired set-membership filter by utilizing double mathematical induction, such that the estimation error resides within the ellipsoidal set. Moreover, the

optimal filtering algorithm is given by minimizing the ellipsoidal constraints. Finally, several examples are provided to illustrate the effectiveness of the

proposed filter design algorithm.

Keywords
Set-membership filtering, two-dimensional systems, unknown-but-bounded noises, stochastic communication protocol, uniform quantization

Introduction

In recent decades, two-dimensional (2D) systems have
attracted increasing attention because of their ability to accu-
rately characterize many practical systems, which are exten-

sively used in various fields, such as multivariable network
implementation, seismic detection data processing, power
transmission lines, and X-ray image enhancement (Ahn et al.,
2016; Du and Xie, 1999; Knorn and Middleton, 2013; Wu

and Wang, 2015). Due to these wide applications, the 2D sys-
tem theory becomes one of the most promising branches in
control science. Generally speaking, there are three main
mathematical models for 2D systems, including Roesser
model (Roesser, 1975), Fornasini and Marchesini (FM) model

(Fornasini and Marchesini, 1978; Fornasini and Marchesini,
2016), and Kurek model (Kurek, 1985). Among them, FM
model is the most commonly used 2D system model, and a
number of research results have been proposed based on this

model (Chesi and Middleton, 2016; Wang et al., 2019; Wu
et al., 2015), which has established and enriched the 2D sys-
tem theory. Furthermore, owing to mathematical complexities
induced by the evolution of 2D systems in two independent

directions, the analysis and synthesis of 2D systems are more
challenging than that of one-dimensional (1D) systems, and
this fact has gained an ever-growing research interest (see
Wang et al., 2017a; Wei et al., 2014) and the references

therein.

The filtering problems are another research hotspot in

control and signal processing communities (Ding et al., 2019;

Li et al., 2017). With the rapid development of filtering tech-

nology, several well-known filtering methods have been devel-

oped according to different noises’ characteristics and

performance requirements, including but not limited to the

Kalman filtering (Qin et al., 2022; Zhang et al., 2021b), the

HN filtering (Alyazidi and Mahmoud, 2020; Fu et al., 2020),

and the set-membership filtering (Liu et al., 2022; Mao et al.,

2022). The Kalman filtering method is always recognized as

the most reliable approach for systems with Gaussian noises.

However, the Kalman filtering method is difficult to obtain a

satisfactory filtering effect when dealing with non-Gaussian

noises. The HN filtering approach usually guarantees a given

disturbance attenuation level on the estimation error subject

to bounded noises; nevertheless, this method tends to ignore

the convergence degree of filtering error, which poses many

difficulties in ensuring that the filtering error variance is

within a satisfactory range. In view of the limitations of the
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above filtering methods, the set-membership filtering method
has been developed by limiting all the error vectors and
unknown-but-bounded noises that fall into a given set of
ellipsoids, and the best advantage of the set-membership fil-
tering method is to replace the precise mathematical statistical

model of noises with a hard constraint of noises. In the past
few years, the set-membership filtering issue for 1D systems
has been widely investigated (see Gao et al., 2022; Li et al.,
2021; Liu et al., 2020, 2021; Zhao et al., 2020; Zou et al.,
2021) and other representative works. Along with a variety of
filtering techniques being investigated in depth, how to extend
the existing filtering methods to 2D systems has attracted a
great deal of research attention, and a wealth of literature has
appeared on these topics. For example, the HN filtering prob-
lem for 2D systems has been discussed by Li et al. (2019);
Liang et al. (2016); Wang et al. (2020). In addition, the
Kalman filtering methods are presented for 2D systems in
Liang et al. (2018) and Wang et al. (2017). However, most of
the above results are based on known prior conditions of the
statistical model of noises to investigate the design of Kalman
and HN filtering algorithms. Since the external environment
is difficult to predict in control engineering, it is more practi-
cal to obtain the bounded information of noises than the pre-
cise mathematical statistics of noises. It is widely known that
the set-membership filtering method can obtain well-filtering
performance for systems with unknown-but-bounded noises.
Unfortunately, the results of set-membership filtering for 2D
systems are still scattered compared with 1D systems, which
may be due to the uniqueness of the evolving form of 2D sys-
tems. Designing a set-membership filter for 2D systems with
unknown-but-bounded noises is still a challenging issue,
which partially motivates our current investigation.

Besides, due to the influence of network bandwidth and
calculation accuracy, signal quantization inevitably occurs
and has been one of the main network-induced constraints
that degrade the performance of the control systems. In recent
years, the analysis and synthesis of networked systems with
quantization effects have attracted an ongoing research inter-

est, and several mechanisms have been put forward to deal
with the effect of signal quantization, for example, uniform
quantizer (Liu et al., 2017), logarithmic quantizer (Zhang
et al.,2021a), and dynamic quantizer (Maity and Tsiotras,
2021). Generally speaking, uniform quantizer belongs to
fixed-point quantization, while logarithmic quantizer and
dynamic quantizer belong to floating-point quantization.
Since many on-site hardware and software facilities most uti-
lize fixed-point programming, the uniform quantization tech-
nology is widely used in control practice (see Wang et al.,
2015; Zou et al., 2017) and the references therein. However,
available results concerning the quantization problem of 2D
systems are relatively rare. How to investigate the filtering
problem based on 2D systems subject to uniform quantization
effects deserves further discussion.

It is worth noting that, in many underlying investigations
on the filtering problem of networked systems, an implicit
assumption is that there are adequate communication chan-
nels between the sensors and the filters, and all of the sensors
can simultaneously access the communication network for
transmitting the measured information to the filters during
each sampling period. In many practical systems, nonetheless,

it is quite unrealistic to implement such a communication
scheme because that simultaneous multiple access to a
limited-bandwidth network would result in data collisions
inevitably. One method to handle such a situation is imple-
menting a communication protocol schedule. By now, three

communication protocols are employed to arrange the net-
work access sequence of sensors for preventing data conflict
effectively, that is, the try-once-discard protocol (Walsh et al.,
1999; Walsh and Ye, 2001), the Round-Robin protocol
(Walsh et al., 2002), and the stochastic communication proto-
col (Hristu-Varsakelis and Morgansen, 1999; Zhang et al.,
2011). Among these protocols, the try-once-discard and
Round-Robin protocol belong to the category of determinis-
tic scheduling schemes, while the stochastic communication
protocol is categorized as a stochastic scheduling scheme.
Due to the stochastic communication, protocol can be widely
used in many industrial control networks, such as Carrier
Sense Multiple Access (CSMA) protocol for the Ethernet and
ALOHA protocol for the wireless local area network.
Therefore, the control and filtering problems under stochastic
communication protocol have gained considerable attention
(see Tabbara and Nesic, 2008; Zou et al., 2019). However, to
the best of the author’s knowledge, there is much literature
on the filtering problem for the 1D systems subject to sto-
chastic communication protocol so far, while very few results
have been available for the corresponding filtering issue of
2D systems under the influence of stochastic communication
protocol and uniform quantization. Consequently, it is
another research motivation for us to shorten this gap.

To give the response to the above statement, this paper
focuses on the set-membership filtering issue for 2D shift-
varying systems whose sensors’ access to the channels is sub-
ject to the stochastic communication protocol and uniform
quantitation effects. The main contributions of this paper can
be summarized as follows: (a) Based on the FM-II model, the
2D shift-varying systems’ framework with the stochastic com-
munication protocol and uniform quantization mechanism is
established. (b) For the established model of 2D shift-varying

systems, a set-membership filtering algorithm is proposed
under the assumption of unknown-but-bounded noises,
which can guarantee that the filtering error always resides
within the P(i, j)-dependent ellipsoidal set. (c) In virtue of the
double induction principle, sufficient conditions for the set-
membership filter are derived, which is simple and suitable
for online operation. Furthermore, the recursive linear matrix
inequality (RLMI) technique is used to solve the optimization
problem subject to ellipsoidal constraint to attain the optimal
filtering gains.

The rest of this paper is organized as follows. ‘‘Problem
description and preliminaries’’ section gives the problem
description and preliminaries. In ‘‘Main results’’ section, the
design procedure of the set-membership filter is proposed for
2D shift-varying systems with stochastic communication pro-
tocol and uniform quantization. Several illustrative examples
are provided in ‘‘Numerical simulations’’ section to demon-
strate the effectiveness of the proposed results. Finally,
‘‘Conclusion’’ section concludes the paper and discusses
future research directions.

Notation: The notation used throughout the paper is fairly
standard. Rnx denotes the nx-dimensional Euclidean space and
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P . 0(P ø 0) means that it is real symmetric and positive defi-

nite (semidefinite). GT , G�1, and trfGg represent the trans-

pose, the inverse, and the trace of the matrix G, respectively.
diagfr1, . . . , rng stands for a diagonal matrix with the indi-

cated elements on the diagonal, and zeros are located else-

where. Prfjg means the occurrence probability of the event j.
Efzg indicates the expectation of the stochastic variable z.

Ak k refers to the norm of a matrix A defined by Ak k=
ffiffiffiffiffiffiffiffiffi
AT A
p

.

N denotes the set of natural numbers. The Kronecker delta
function d(c) is a binary function that equals 1 if c= 0 and

equals 0 otherwise.

Problem description and preliminaries

Consider 2D shift-varying systems with stochastic nonlineari-

ties described by FM-II model [32] in a finite horizon

i, j 2 0,K½ � as follows

x i+ 1, j+ 1ð Þ=A1 i+ 1, jð Þx i+ 1, jð Þ+A2 i, j+ 1ð Þ
x i, j+ 1ð Þ+B1 i+ 1, jð Þv i+ 1, jð Þ
+B2 i, j+ 1ð Þv i, j+ 1ð Þ+a1 i+ 1, jð Þf x i+ 1, jð Þð Þ

+a2 i, j+ 1ð Þf x i, j+ 1ð Þð Þ
y i, jð Þ=C i, jð Þx i, jð Þ+a3 i, jð Þf x i, jð Þð Þ+ y i, jð Þ

8>>>><
>>>>:

ð1Þ

where x(i, j) 2 Rnx represents the system state vector.

y(i, j) 2 Rny is the measurement output before transmitted
through the communication network. v(i, j) 2 Rnp and

y(i, j) 2 Rnq denote the unknown-but-bounded external distur-

bances and measurement noises, respectively. The initial
states x(i, 0) and x(0, j) are independent of other variables and

satisfy the following conditions

E x(i, 0)f g=m1(i), E x(0, j)f g=m2( j)

where m1(i) and m2( j) are known vector for i, j 2 0,K½ � with
m1(0)=m2(0). f (x(i, j)) is known smooth nonlinear functions
f : Rnx ! Rnx and satisfies the following conditions

f (0)= 0, f b i, jð Þð Þ � f z i, jð Þð Þk kł F b i, jð Þ � z i, jð Þð Þk k ð2Þ

where b(i, j) and z(i, j) are arbitrary vector belonging to Rnx ,

and F is known real matrix with appropriate dimensions.

A1(i, j), A2(i, j), B1(i, j), B2(i, j), C(i, j), a1(i, j), a2(i, j), and
a3(i, j) are known time-varying matrices with appropriate

dimensions, respectively. The variables i and j represent gen-

eralized time variables, which can be time itself or variables
with time-varying characteristics.

Remark 1: Considered 2D time-varying systems with the FM-
II model include stochastic nonlinear functions, unknown-
but-bounded external disturbances, and measurement noises.
As mentioned above, several significant 2D systems’ models
have been developed for the actual application environment.
Among them, the Roesser model is a special modality of the
FM-II state space model; the Attasi model is a special case of
the FM-I state space model; and FM-I state space model is a
special form of the FM-II state space model. Therefore, the
FM-II state space model is more universal as a research
framework. In addition, as shown in Figure 1, the evolution
of 2D systems depends on the changes in horizontal and

vertical components; in other words, the priority of horizon-
tal or vertical components is crucial for 2D systems. More
specifically, the state information of the 1D systems contains
all the information of the past moment (global information),
while 2D systems only contain local information, which is the
main difference between these two types of systems. In addi-
tion, compared with the 1D systems, 2D systems can better
describe the systems’ model in engineering practice and have
more general significance to reveal the evolution law of
nature (see Li et al., 2019; Liang et al., 2016; Wang et al.,
2020). For example, the gas absorption, air drying, and ther-
mal processes can all be characterized by the mathematical
model of 2D systems, which can be described by some
unknown functions varying with time and space.

For the unknown-but-bounded external disturbances and

measurement noises, the following assumption is made in this

paper.

Assumption 1: The unknown-but-bounded external distur-

bances and measurement noises’ sequences are confined to

the following set of ellipsoids

W (i, j) ¼D v i, jð Þ : vT i, jð ÞS�1 i, jð Þv i, jð Þł 1
� �

ð3Þ

V i, jð Þ ¼D y i, jð Þ : yT i, jð ÞR�1 i, jð Þy i, jð Þł 1
� �

ð4Þ

where S(i, j) and R(i, j) are known positive time-varying real

matrices with appropriate dimensions.

Remark 2: In this paper, we assume that both external distur-

bances and measurement noises are unknown but bounded.

S(i, j) and R(i, j) are variables that measure the magnitude of

disturbances and noises. When the norm of S(i, j) and R(i, j)

is large, it means that the disturbances and noises in the engi-

neering practice are also large. For arbitrarily bounded dis-

turbances and noises’ signals, there always exist suitable

Figure 1. Structure diagram of 2D systems’ evolution.
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S(i, j) and R(i, j) such that the constraints of equations (3) and

(4) are satisfied.

Remark 3: It is well known that there are various external dis-

turbances in the process of control practice. In general, exter-
nal disturbances can be classified as natural disturbances and

man-made disturbances. Most natural disturbances can be
described by Gaussian noises, but some man-made distur-
bances (such as electromagnetic disturbances) are difficult to

accurately establish their mathematical models due to their
non-Gaussian characteristics. As a result, some traditional fil-

tering methods, such as the Kalman filter and the HN filter,
may not be well suitable for control systems with man-made

disturbances. Consequently, the process noises are assumed
to satisfy the condition of bounded energy, and the ellipsoidal

set is utilized to describe the unpredictability and bounded-
ness of noises in this paper, which overcomes the difficulty
that mathematical statistical characteristics of noises are not

always available.

Signal quantization

Next, the model of 2D systems subject to the stochastic com-
munication protocol and uniform quantization effects will be

introduced. As shown in Figure 2, the measured signal of sen-
sors is first quantized by the quantizer and then transmitted
to the filter through the shared communication network. In

this paper, the uniform quantization mechanism is employed,
and its saturation level is supposed to be sufficiently large.

The following q( � ) is the quantization operator, which is
defined by a function round( � ) that rounds a number to the

nearest integer

q(yl(i, j))= kround(yl(i, j)=k)

where yl(i, j) is the output signal of the lth (1 ł l ł ny) sensor
node, and k indicates the quantizing level and can be adjusted

according to the practical control process. Then, the quantiza-
tion error can be expressed as

Dl i, jð Þ=~yl i, jð Þ � yl i, jð Þ ð5Þ

where ~yl(i, j)= q(yl(i, j)). It is easy to obtain

Dl i, jð Þk k2
ł

k2

4
ð6Þ

Stochastic communication protocol

For 2D systems with a large number of sensors, the commu-

nication between the sensors and the filter is scheduled by cer-
tain network protocols to avoid data collisions. In what

follows, we will introduce the scheduling protocol of stochas-
tic communication. Without loss of generality, we assume
that only one sensor is allowed to access the network channel

according to the underlying scheduling protocol, and let
j(i, j) 2 1, 2, . . . , ny

� �
denote which sensor is selected to com-

municate with the filter at each shift instant.
Under the scheduling of stochastic communication proto-

col, it is assumed that j(i, j) 2 1, 2, . . . , ny

� �
satisfies Bernoulli

stochastic process and mutually independent at sampling shift

instant (i, j). The occurrence probability of j(i, j)=m,

m 2 1, 2, 3, . . . , ny

� �
, is given by

Pr j i, jð Þ=mf g= pm

where 0 ł pm ł 1 is the occurrence probability for the sensor

node m to be selected to transmit data via the communication

network and satisfies
Pny

m= 1 pm = 1.

Problem formulation

In this paper, the set-membership filtering problem will be

addressed for 2D shift-varying systems subject to signal quan-

tization and stochastic scheduling protocol. In what follows,

the signal transmission process is introduced. As shown in

Figure 2, the measurement output before quantizing can be

characterized as

y(i, j)= yT
1 (i, j) yT

2 (i, j) � � � yT
ny
(i, j)

h iT

where ym(i, j)(1ł m ł ny) denotes measurement output of the

mth sensor at shift instant (i, j). As previously mentioned, let

~y(i, j)= ~yT
1 (i, j) ~yT

2 (i, j) � � � ~yT
ny
(i, j)

h iT

ð7Þ

�y(i, j)= �yT
1 (i, j) �yT

2 (i, j) � � � �yT
ny
(i, j)

h iT

ð8Þ

Figure 2. Set-membership filtering problem for 2D shift-varying

systems.
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denote the output of uniform quantizer and measurement out-

put after transmitted through the communication network,

respectively. Then, the latest measured output �ym(i, j) of the

mth (1ł m ł ny) sensor, which is received by the filter with a

zero order, can be expressed as

�ym i, jð Þ= ~ym i, jð Þ if m= j i, jð Þ
�ym i, j� 1ð Þ otherwise

�
ð9Þ

According to equations (7) and (8) and the updating rule

of measurement output equation (9), the composite form of
�y(i, j) can be obtained as follows

�y i, jð Þ=Fj i, jð Þ~y i, jð Þ+ I �Fj i, jð Þ
� �

�y i, j� 1ð Þ ð10Þ

where Fj(i, j) = diag1 ł m ł ny
d(j(i, j)� m)If g, and d( � ) is the

Kronecker delta function.
Substituting equations (10) and (5) into equation (1), and

defining the following augmented variables

�x(i, j)= xT (i, j) �yT (i, j� 1)
� 	T

, �v(i, j)

= vT (i, j) yT (i, j)
� 	T

, �f (x(i, j))= f T (x(i, j)) DT (i, j)
� 	T

,

the model of 2D shift-varying systems with uniform quantiza-

tion and stochastic communication protocol can be reformu-

lated as follows

�x i+ 1, j+ 1ð Þ= �A1 i+ 1, jð Þ�x i+ 1, jð Þ+ �A2 i, j+ 1ð Þ
�x i, j+ 1ð Þ+ �B1 i+ 1, jð Þ�v i+ 1, jð Þ
+ �B2 i, j+ 1ð Þ�v i, j+ 1ð Þ+ �a1 i+ 1, jð Þ�f x i+ 1, jð Þð Þ

+ �a2 i, j+ 1ð Þ�f x i, j+ 1ð Þð Þ
�y i, jð Þ= �C i, jð Þ�x i, jð Þ+ �a3 i, jð Þ�f x i, jð Þð Þ+D i, jð Þ�v i, jð Þ

8>>>><
>>>>:

ð11Þ

where

�A1(i+ 1, j)=
A1(i+ 1, j) 0

Fj(i+ 1, j)C(i+ 1, j) I �Fj(i+ 1, j)


 �
,

�A2(i, j+ 1)=
A2(i, j+ 1) 0

0 0


 �
,

�B1(i+ 1, j)=
B1(i+ 1, j) 0

0 Fj(i+ 1, j)


 �
,

�B2(i, j+ 1)=
B2(i, j+ 1) 0

0 0


 �
,

�C(i, j)= Fj(i, j)C(i, j) I �Fj(i, j)

� 	
,

D(i, j)= 0 Fj(i, j)½ �,

�a1(i+ 1, j)=
a1(i+ 1, j) 0

Fj(i+ 1, j)a3(i+ 1, j) Fj(i+ 1, j)


 �
,

�a2(i, j+ 1)=
a2(i, j+ 1) 0

0 0


 �
,

�a3(i, j)= Fj(i, j)a3(i, j) Fj(i, j)

� 	
:

Based on the augmented model of 2D system (equation
(11)), a set-membership filter is proposed in the following

form

x̂ i+ 1, j+ 1ð Þ
= �A1 i+ 1, jð Þx̂ i+ 1, jð Þ+ �A2 i, j+ 1ð Þx̂ i, j+ 1ð Þ
+K1, j i+ 1, jð Þ �y i+ 1, jð Þ � �C i+ 1, jð Þx̂ i+ 1, jð Þð Þ
+K2, j i, j+ 1ð Þ �y i, j+ 1ð Þ � �C i, j+ 1ð Þx̂ i, j+ 1ð Þð Þ
+ �a1 i+ 1, jð Þ�f x̂ i+ 1, jð Þð Þ+ �a2 i, j+ 1ð Þ�f x̂ i, j+ 1ð Þð Þ

ð12Þ

where x̂(i, j) 2 Rnx + ny is the estimation of �x(i, j), K1, j(i+ 1, j) and
K2, j(i, j+ 1) are the filtering gains to be determined later, which
are closely related to the stochastic communication protocol.
The initial state of filter is set as x̂(i, 0)= 0 and x̂(0, j)= 0 for

i, j 2 0,K½ �.
Define the filtering error as e(i, j)=�x(i, j)� x̂(i, j). Then,

the dynamics filtering error of the augmented 2D system
(equation (11)) can be derived as

e i+ 1, j+ 1ð Þ=X1 i+ 1, jð Þe i+ 1, jð Þ+X1 i, j+ 1ð Þe i, j+ 1ð Þ
+X2 i+ 1, jð Þ�v i+ 1, jð Þ+X2 i, j+ 1ð Þ�v

i, j+ 1ð Þ
+ �a1 i+ 1, jð ÞC f x i+ 1, jð Þð Þð Þ � X3

i+ 1, jð Þ�f x i+ 1, jð Þð Þ+ �a2 i, j+ 1ð Þ
C f x i, j+ 1ð Þð Þð Þ � X3 i, j+ 1ð Þ�f x i, j+ 1ð Þð Þ

ð13Þ

where

X1(i+ 1, j)= �A1(i+ 1, j)� K1, j(i+ 1, j)
�C(i+ 1, j),

X1(i, j+ 1)= �A2(i, j+ 1)� K2, j(i, j+ 1)
�C(i, j+ 1),

X2(i+ 1, j)= �B1(i+ 1, j)� K1, j(i+ 1, j)D(i+ 1, j),

X2(i, j+ 1)= �B2(i, j+ 1)� K2, j(i, j+ 1)D(i, j+ 1),

C(f (x(i+ 1, j)))= �f (x(i+ 1, j))� �f (x̂(i+ 1, j)),

C(f (x(i, j+ 1)))= �f (x(i, j+ 1))� �f (x̂(i, j+ 1)),

X3(i+ 1, j)=K1, j(i+ 1, j)�a3(i+ 1, j),

X3(i, j+ 1)=K2, j(i, j+ 1)�a3(i, j+ 1)

Before proceeding further, let us introduce the following
Definition, Assumption, and Lemmas, which will be helpful
in ensuing developments.

Definition 1: For the augmented 2D system (equation (11))
and the proposed filter (equation (12)), the given sequence of
constrained positive matrices P(i, j) 2 R(nx + ny)3 (nx + ny), the fil-
tering error e(i, j) is said to satisfy the P(i, j)-dependent ellip-
soidal constraint if the following inequality

eT (i, j)P�1(i, j)e(i, j)ł 1

holds for i, j 2 0,K½ �.

Assumption 2: The initial states x(i, 0), x(0, j), x̂(i, 0), and
x̂(0, j) are located inside the given set of ellipsoids:

(�x(i, 0)� x̂(i, 0))T P�1(i, 0)(�x(i, 0)� x̂(i, 0))ł 1,

(�x(0, j)� x̂(0, j))T P�1(0, j)(�x(0, j)� x̂(0, j))ł 1

where P(i, 0) and P(0, j) are given positive definite matrices.

Remark 4: For a given initial filtering error (the difference
between the initial value of the systems and the initial value
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of the filter) on the vertical and horizontal components, it is

easy to obtain the corresponding P(i, 0) and P(0, j) satisfying
the above ellipsoidal set constraints in practical application.

Lemma 1 (Suarez, 1989): (Principle of Double Induction) Let
us suppose that for every (i, j) 2 N, O(i, j) is a proposition. If

we want to prove that each of propositions O(i, j) is true, it is
sufficient to exhibit a generative set, with molecules O(i� 1, j)
and O(i, j� 1), and initial set I= (i, 0) : i 2 Nf g[
(0, j) : j 2 Nf g for which:

1. (initial step) O(i, j) is true for all (i, j) 2 I;
2. (inductive step) if O(i� 1, j) and O(i, j� 1) are true for

all (i� 1, j), (i, j� 1)f g 2 N, then O(i, j) is true.

Then, O(i, j) is true for all (i, j) 2 N.

Lemma 2 (Zou et al., 2016): (S-procedure) Let Y0,Y1, . . . ,
Yn 2 Rn 3 n be symmetric matrices. Y0,Y1, . . . ,Yn are
assumed to satisfy the following conditions:

cT Y0c . 0 for all c 6¼ 0 such that cT Ymc ø 0, m= 1, 2, . . . , n.
Note that if exist t1 ø 0, t2 ø 0, . . . , tn ø 0 such that
Y0 �

Pn
m= 1 tmYm . 0. Then, cT Y0c . 0 holds.

Now, we are in the position of analyzing the dynamics fil-
tering error of the set-membership filter for 2D shift-varying

systems under the influence of stochastic communication pro-
tocol and uniform quantization.

Main results

In this section, the design procedure of set-membership filter-
ing is addressed for the augmented 2D system (equation (11))
by utilizing the RLMI technology.

P(i, j)-dependent constraint analysis

The main purpose of this paper is to design a set-membership
filter for the augmented 2D system (equation (11)) under the
influence of stochastic communication protocol and quantiza-

tion error. More specifically, the filter design is accomplished
by solving the following two problems:

1. Deduce the sufficient conditions which can ensure the
filtering error dynamics of the augmented system
inside the following ellipsoidal constraint set:

∂(i, j) ¼D e(i, j)jeT (i, j)P�1(i, j)e(i, j)ł 1
� �

where P(i, j) is a positive definite matrix.

2. Calculate the set-membership filtering gains
K1, j(i+ 1, j) and K2, j(i, j+ 1) by optimizing P(i, j) to mini-
mize the ellipsoid size for the filtering error e(i, j).

Theorem 1: For the given sequence of constraint matrices

P(i, 0), P(0, j) ( j= 0, i 2 0,K½ � or i= 0, j 2 0,K½ �) and the
initial states x(i, 0) and x(0, j), considering 2D shift-varying

systems with stochastic nonlinearity (equation (1)), uniform

quantization effect (equation 5)), Bernoulli stochastic com-
munication protocol (equation (10)), and set-membership fil-

ter (equation (12)), if there exist positive scalars l1, (i, j), l2, (i, j),
l3, (i, j),l4, (i, j), and g i, jð Þ, as well as filtering gain matrices

K1, j(i+ 1, j) and K2, j(i, j+ 1) satisfying the following recursive
matrix inequality

�L(i, j) YT (i+ 1, j)
Y(i+ 1, j) D�1(i+ 1, j+ 1)


 �
ł 0, i, j 2 0,K½ � ð14Þ

where

L(i, j)=L0 +L1(i, j)+L2(i, j)+L3(i, j)+L4(i, j),

L0 = diag 1, 0, 0, 0, 0, 0, 0, 0, 0, 0f g,

L1(i, j)=l1, (i, j)diag

�2, 0,O�1(i+ 1, j), 0, 0, � 2, 0,
�

O�1(i, j+ 1), 0, 0g,

O(i+ 1, j)= diag S(i+ 1, j),R(i+ 1, j)f g,
O(i, j+ 1)= diag S(i, j+ 1),R(i, j+ 1)f g,

L2(i, j)=l2, (i, j)diagf�xT (i+ 1, j)FT Fx(i+ 1, j)� ny

k2

4
,

0, 0, 0, 1, � xT (i, j+ 1)FT Fx(i, j+ 1)� ny

k2

4
, 0, 0, 0, 1g,

L3(i, j)=l3, (i, j)diagf�eT (i+1, j)FT Fe(i+ 1, j), 1, 0, 0, 0,�eT

(i, j+ 1)FT Fe(i, j+ 1), 1, 0, 0, 0g,

L4(i, j)=l4, (i, j)diag �1, 0, 0, I , 0, � 1, 0, 0, I , 0f g,

Y(i+ 1, j)=
P(i+ 1, j) 0

0 P(i+ 1, j)


 �
,

P(i+ 1, j)= 0 �a1(i+ 1, j) X2(i+ 1, j)½ X1(i+ 1, j)

L(i+ 1, j) �X3(i+ 1, j)�,

P(i, j+ 1)= 0 �a2(i, j+ 1) X2(i, j+ 1)½ X1(i, j+ 1)

L(i, j+ 1) �X3(i, j+ 1)�,

P(i+ 1, j+ 1)=L(i+ 1, j+ 1)LT (i+ 1, j+ 1),D(i+ 1, j+ 1)

=
(1+ g(i, j))P�1(i+ 1, j+ 1) 0

0 (1+ g(i, j)�1)P�1(i+ 1, j+ 1)


 �

then, the dynamics filtering error of the augmented system

(equation (13)) satisfies P(i+ 1, j+ 1)-dependent ellipsoidal
constraint

eT (i+ 1, j+ 1)P�1(i+ 1, j+ 1)e(i+ 1, j+ 1)ł 1

Proof: In what follows, the mathematical induction including
the initial step and induction step is employed to prove
Theorem 1.

Initial step. For j= 0, i 2 0,K½ � or i= 0, j 2 0,K½ �,
based on Assumption 2, it can be immediately inferred
that eT (i, 0)P�1(i, 0)e(i, 0)ł 1 and eT (0, j)P�1(0, j)e(0, j)ł 1.
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Inductive step. Suppose the initial states x(i, 0), x(0, j),
x̂(i, 0), and x̂(0, j) satisfy P(i, j)-dependent constraint, then
our objective is to assume that the following inequality
constraints

eT (i, j+ 1)P�1(i, j+ 1)e(i, j+ 1)ł 1 and eT (i+ 1, j)

P�1(i+ 1, j)e(i+ 1, j)ł 1

are true at shift instant (i, j+ 1) and (i+ 1, j), and prove

inequality constraint

eT (i+ 1, j+ 1)P�1(i+ 1, j+ 1)e(i+ 1, j+ 1)ł 1

to be true at shift instant (i+ 1, j+ 1).

For the sake of facilitating succeeding analysis, the

P(i+ 1, j+ 1)-dependent constraint eT (i+1, j+ 1)P�1

(i+, j+ 1)e(i+ 1, j+ 1)� 1 ł 0 can be rewritten as

rT (i+ 1, j+ 1)LT (i+ 1, j+ 1)P�1(i+ 1, j+ 1)L(i+ 1, j+ 1)

r(i+ 1, j+ 1)� 1 ł 0

where e(i+ 1, j+ 1)=L(i+ 1, j+ 1)r(i+ 1, j+ 1), and

L(i+ 1, j+ 1) is a factorization of P(i+ 1, j+ 1)=L

(i+ 1, j+ 1)LT (i+ 1, j+ 1)
obviously, if r(i+ 1, j+ 1)k kł 1, the following inequality

constraint holds

eT (i+ 1, j+ 1)P�1(i+ 1, j+ 1)e(i+ 1, j+ 1)� 1 ł 0

Subsequently, we deduce sufficient conditions for the

establishment of eT (i+ 1, j+ 1)P�1(i+ 1, j+ 1)e(i+ 1, j+ 1)ł 1

under the impact of stochastic nonlinearity (equation (1)),

uniform quantization effect (equation (5)), and stochastic

communication protocol (equation (10)). In addition, the con-

straints r(i+ 1, j)k kł 1 and r(i, j+ 1)k kł 1 for i, j 2 0,K½ �
also need to be highlighted.

To simplify the derivation, let us define

j(i+ 1, j)= ½1 CT (f (x(i+ 1, j))) �vT (i+ 1, j)

rT (i+ 1, j) �f
T
(x(i+ 1, j))�T ,

j(i, j+ 1)= 1 CT ((f (x(i, j+ 1))) �vT (i, j+ 1)
�

rT (i, j+ 1) �f
T
(x(i, j+ 1))

iT

,

P(i+ 1, j)= 0 �a1(i+ 1, j) X2(i+ 1, j)½ X1(i+ 1, j)L(i+ 1, j)

�X3(i+ 1, j)�,

P(i, j+ 1)= 0 �a2(i, j+ 1) X2(i, j+ 1)½ X1(i, j+ 1)L(i, j+ 1),

�X3(i, j+ 1)�

Furthermore, in view of the filtering error dynamics (equa-

tion (13)), one has

e(i+ 1, j+ 1)=P(i+ 1, j)j(i+ 1, j)+P(i, j+ 1)j(i, j+ 1)

then, it is easy to obtain that

eT i+ 1, j+ 1ð ÞP�1 i+ 1, j+ 1ð Þe i+ 1, j+ 1ð Þ � 1

= P i+ 1, jð Þj i+ 1, jð Þ+P i, j+ 1ð Þj i, j+ 1ð Þð ÞT P�1

i+ 1, j+ 1ð Þ P i+ 1, jð Þj i+ 1, jð Þ+P i, j+ 1ð Þj i, j+ 1ð Þð Þ � 1

= jT i+ 1, jð ÞPT i+ 1, jð ÞP�1 i+ 1, j+ 1ð ÞP i+ 1, jð Þj i+ 1, jð Þ+ jT i+ 1, jð ÞPT i+ 1, jð ÞP�1 i+ 1, j+ 1ð Þ
P i, j+ 1ð Þj i, j+ 1ð Þ

+ jT i, j+ 1ð ÞPT i, j+ 1ð ÞP�1 i+ 1, j+ 1ð ÞP i+ 1, jð Þj i+ 1, jð Þ+ jT i, j+ 1ð ÞPT i, j+ 1ð ÞP�1 i+ 1, j+ 1ð Þ
P i, j+ 1ð Þj i, j+ 1ð Þ � 1

ð15Þ

To deal with coupling terms and simplify equation (15), we

consider the following elementary inequality

abT + baT ł raaT + r�1bbT , 8r . 0

where a and b are vectors of appropriate dimensions. In virtue

of the above elementary inequality, it is not difficult to verify

existing g(i, j). 0 such that

jT i+ 1, jð ÞPT i+ 1, jð ÞP�1 i+ 1, j+ 1ð ÞP i, j+ 1ð Þj i, j+ 1ð Þ
+ jT i, j+ 1ð ÞPT i, j+ 1ð ÞP�1 i+ 1, j+ 1ð ÞP i+ 1, jð Þ
j i+ 1, jð Þ

ł g i, jð ÞjT i+ 1, jð ÞPT i+ 1, jð ÞP�1 i+ 1, j+ 1ð ÞP i+ 1, jð Þ
j i+ 1, jð Þ+g�1 i, jð ÞjT i, j+ 1ð ÞPT i, j+ 1ð Þ
P�1 i+ 1, j+ 1ð ÞP i, j+ 1ð Þj i, j+ 1ð Þ

ð16Þ

Combining equations (15) with (16), which yields

eT i+ 1, j+ 1ð ÞP�1 i+ 1, j+ 1ð Þe i+ 1, j+ 1ð Þ � 1

ł 1+g i, jð Þð ÞjT i+ 1, jð ÞPT i+ 1, jð ÞP�1 i+ 1, j+ 1ð ÞP
i+ 1, jð Þj i+ 1, jð Þ

+ 1+g�1 i, jð Þ
� �

jT i, j+ 1ð ÞPT i, j+ 1ð ÞP�1 i+ 1, j+ 1ð ÞP
i, j+ 1ð Þj i, j+ 1ð Þ � 1

ð17Þ

Furthermore, let us define
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G(i, j)= jT (i+ 1, j) jT (i, j+ 1)
� 	T

, Y(i+ 1, j)

=
P(i+ 1, j) 0

0 P(i+ 1, j)


 �

D(i+ 1, j+ 1)

=
(1+ g(i, j))P�1(i+ 1, j+ 1) 0

0 (1+ g�1(i, j))P�1(i+ 1, j+ 1)


 �

then, it is straightforward to obtain that

eT i+ 1, j+ 1ð ÞP�1 i+ 1, j+ 1ð Þe i+ 1, j+ 1ð Þ � 1

ł 1+g i, jð Þð ÞjT i+ 1, jð ÞPT i+ 1, jð ÞP�1 i+ 1, j+ 1ð Þ
P i+ 1, jð Þj i+ 1, jð Þ

+ 1+g�1 i, jð Þ
� �

jT i, j+ 1ð ÞPT i, j+ 1ð ÞP�1 i+ 1, j+ 1ð Þ
P i, j+ 1ð Þj i, j+ 1ð Þ � 1

=GT i, jð ÞYT i+ 1, jð ÞD i+ 1, j+ 1ð ÞY i+ 1, jð ÞG i, jð Þ
� GT i, jð Þdiag 1, 0, 0, 0, 0, 0, 0, 0, 0, 0f gG i, jð Þ

ð18Þ

Next, we will deal with the unknown-but-bounded exter-

nal disturbances and measurement noises. From equations (3)

and (4), it is easy to obtain

�vT i+ 1, jð ÞO�1 i+ 1, jð Þ�v i+ 1, jð Þł 2 ð19Þ

�vT i, j+ 1ð ÞO�1 i, j+ 1ð Þ�v i, j+ 1ð Þł 2 ð20Þ

where O�1(i+ 1, j)= diag S�1(i+ 1, j),R�1(i+ 1, j)
� �

, and

O�1(i, j+ 1)= diag S�1(i, j+ 1),R�1(i, j+ 1)
� �

Considering equations (19) and (20), one has

GT i, jð Þdiag �2, 0,O�1 i+ 1, jð Þ, 0, 0,
�

� 2, 0,O�1 i, j+ 1ð Þ, 0, 0g
G i, jð Þł 0

ð21Þ

Subsequently, the quantization error and smooth non-

linear function in 2D system (equation (1)) are taken into

account. From quantization error equation (6), which yields

D(i, j)k k2 =

D1(i, j)
D2(i, j)
� � �

Dny
(i, j)

2
664

3
775

��������

��������

2

ł ny

k2

4

From equation (2), we can obtain

f (x)� f (z)k kł F(x� z)k k

then,

�f x i+ 1, jð Þð Þ
�� ��2

=
f (x(i+ 1, j))

D(i+ 1, j)


 �T
f (x(i+ 1, j))

D(i+ 1, j)


 �
= f x i+ 1, jð Þð Þk k2 + D i+ 1, jð Þk k2

ł xT i+ 1, jð ÞFT Fx i+ 1, jð Þ+ ny

k2

4

ð22Þ

�f x i, j+ 1ð Þð Þ
�� ��2

=
f (x(i, j+ 1))

D(i, j+ 1)


 �T
f (x(i, j+ 1))

D(i, j+ 1)


 �

= f x i, j+ 1ð Þð Þk k2 + D i, j+ 1ð Þk k2

ł xT i, j+ 1ð ÞFT Fx i, j+ 1ð Þ+ ny

k2

4

ð23Þ

Similarly, it follows from equations (22) and (23) that

GT i, jð Þdiag

(
�xT i+ 1, jð ÞFT Fx i+ 1, jð Þ � ny

k2

4
, 0, 0, 0, 1,

�xT i, j+ 1ð ÞFT Fx i, j+ 1ð Þ � ny

k2

4
, 0, 0, 0, 1

)
G i, jð Þł 0

ð24Þ

from equation (13), we can obtain

C f x i+ 1, jð Þð Þð Þk k2 = �f x i+ 1, jð Þð Þ � �f x̂ i+ 1, jð Þð Þ
�� ��2

=
f x i+ 1, jð Þð Þ � f x̂ i+ 1, jð Þð Þ

0


 �����
����

2

= f x i+ 1, jð Þð Þ � f x̂ i+ 1, jð Þð Þk k2
ł eT i+ 1, jð ÞFT Fe i+ 1, jð Þ

ð25Þ

similarly, one has

C f x i, j+ 1ð Þð Þð Þk k2
ł eT i, j+ 1ð ÞFT Fe i, j+ 1ð Þ ð26Þ

From equations (25) and (26), it can be obtained that

GT i, jð Þdiagf�eT i+ 1, jð ÞFT Fe i+ 1, jð Þ, 1, 0, 0, 0, :

� eT i, j+ 1ð ÞFT Fe i, j+ 1ð Þ, 1, 0, 0, 0gG i, jð Þł 0
ð27Þ

Finally, according to the conditions r(i+ 1, j)k kł 1 and

r(i, j+ 1)k kł 1, it can be rearranged by means of G(i, j) as

follows

GT i, jð Þdiag �1, 0, 0, I , 0, � 1, 0, 0, I , 0f gG i, jð Þł 0 ð28Þ

According to Lemma 2, considering equations (18), (21),
(23), (27), and (28), if the following inequality holds

YT i+ 1, jð ÞD i+ 1, j+ 1ð ÞY i+ 1, jð Þ
� diag 1, 0, 0, 0, 0, 0, 0, 0, 0, 0f g � l1, i, jð Þ

diag �2, 0,O�1 i+ 1, jð Þ, 0, 0,
�

�2, 0,O�1 i, j+ 1ð Þ, 0, 0
�

� l2, i, jð Þdiag

(
�xT i+ 1, jð ÞFT Fx i+ 1, jð Þ � ny

k2

4
, 0, 0, 0, 1,

� xT i, j+ 1ð ÞFT Fx i, j+ 1ð Þ � ny

k2

4
, 0, 0, 0, 1

)

� l3, i, jð Þdiag

(
�eT i+ 1, jð ÞFT Fe i+ 1, jð Þ, 1, 0, 0, 0, � eT

i, j+ 1ð ÞFT Fe i, j+ 1ð Þ, 1, 0, 0, 0

)

� l4, i, jð Þdiag �1, 0, 0, I , 0, � 1, 0, 0, I , 0f gł 0

ð29Þ
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where l1, (i, j), l2, (i, j), l3, (i, j), and l4, (i, j) are positive scalars,

then, one has

YT i+ 1, jð ÞD i+ 1, j+ 1ð ÞY i+ 1, jð Þ
� diag 1, 0, 0, 0, 0, 0, 0, 0, 0, 0f gł 0

ð30Þ

in view of equation (18), it is easy to obtain that

eT (i+ 1, j+ 1)P�1(i+ 1, j+ 1)e(i+ 1, j+ 1)� 1 ł 0

Obviously, inequality equation (29) is a sufficient condi-

tion for the P(i+ 1, j+ 1)-dependent constraint
eT (i+ 1, j+ 1)P�1(i+ 1, j+ 1)e(i+ 1, j+ 1)� 1 ł 0 to be

true. In this regard, we have proved that the designed set-

membership filter renders the filtering error e(i, j) to fall into
the given ellipsoidal set through the initial step and induction

step. In what follows, to facilitate the solution of the corre-
sponding filtering gain matrices, we convert equation (29)

into the form of linear matrix inequality.
It is obvious that equation (29) is equivalent to

YT i+ 1, jð ÞD i+ 1, j+ 1ð ÞY i+ 1, jð Þ � L i, jð Þł 0 ð31Þ

where

L(i, j)= diag 1, 0, 0, 0, 0, 0, 0, 0, 0, 0f g+l1, (i, j)

diag �2, 0,O�1(i+ 1, j), 0, 0, � 2, 0,
�

O�1(i, j+ 1), 0, 0g

+l2, (i, j)diag �xT (i+ 1, j)FT Fx(i+ 1, j)� ny

k2

4
, 0, 0, 0, 1,

�
� xT (i, j+ 1)FT Fx(i, j+ 1)� ny

k2

4
, 0, 0, 0, 1

)

+l3, (i, j)diag �eT (i+ 1, j)FT Fe(i+ 1, j), 1, 0, 0, 0,
�

� eT (i, j+ 1)FT Fe(i, j+ 1), 1, 0, 0, 0g

+l4, (i, j)diag �1, 0, 0, I , 0, � 1, 0, 0, I , 0f g

By applying the Schur complement, equation (31) is equiv-
alent to

�L(i, j) YT (i+ 1, j)
Y(i+ 1, j) D�1(i+ 1, j+ 1)


 �
ł 0:

The proof is thus completed.
In Theorem 1, sufficient conditions are derived for the

existence of desired set-membership filter that renders the
estimation error to satisfy P(i, j)-dependent constraints, and

the filtering gain matrices at each shift instant (i, j) have been
acquired by utilizing the RLMI technology. On account of

P(i, j)-dependent constraint, eT (i, j)P�1(i, j)e(i, j)� 1 ł 0 is

equivalent to e(i, j)eT (i, j)ł P(i, j), therefore, the minimize the
dynamics filtering error e(i, j) at each shift instant (i, j) by sol-

ving the optimization problem of P(i, j).

Optimization problem

Corollary 1: For the given sequence of constraint matrices

P(i, 0), P(0, j) ( j= 0, i 2 0,K½ � or i= 0, j 2 0,K½ �), the ini-
tial states x(i, 0) and x(0, j), considering 2D shift-varying sys-

tems with stochastic nonlinearity (equation (1)), uniform

quantization effect (equation (5)), Bernoulli stochastic com-

munication protocol (equation (10)), and set-membership fil-

ter (equation (12)), if there exist positive scalars l1, (i, j), l2, (i, j),

l3, (i, j), l4, (i, j), and g(i, j), as well as optimal filtering gain

matrices K1, j(i+ 1, j) and K2, j(i, j+ 1), we can solve the following

optimization problem

min
K1, j(i+ 1, j) ,K2, j(i, j+ 1) , ~l i, jð Þ,P i+ 1, j+ 1ð Þ

tr P i+ 1, j+ 1ð Þf g ð32Þ

subject to equation (14), where ~l(i, j) = flb, (i, j)gb2 1, 2, 3, 4f g.
Then, the dynamic filtering error e(i, j) of set-membership fil-

ter will be minimized.
In terms of Theorem 1 and Corollary 1, we summarize the

set-membership filtering algorithm as follows:

Remark 5: It should be pointed out that there are some differ-
ences between the set-membership filter and the Kalman filter
as well as the HN filter. The Kalman filter usually obtains the
filtering error covariance by solving two difference equations
in Riccati form and then minimizes the filtering error covar-
iance to obtain the optimal filtering gain. The HN filtering
method first reconstructs the state-space model of original
systems and the filtering error into a new augmented system,
then obtains the filtering gain that renders the augmented sys-

tem to be stable with the given disturbance attenuation level
through Linear Matrix Inequality (LMI) technology. Different
from the above filtering methods, the designed set-membership

filter with the form of equation (12) guarantees that the filter-
ing error always satisfies the constraint of an ellipsoidal set. To
be more specific, the proposed filtering algorithm is utilized to
derive the appropriate filter gains K1, j(i+ 1, j) and K2, j(i, j+ 1),
and regulate the filtering error to satisfy the P(i, j)-dependent
constraint condition. Furthermore, the minimum trace of P(i, j)
is acquired by using the convex optimization method to ensure
the filtering error is minimal.

Numerical simulations

In this section, three examples are provided to illustrate the
effectiveness of the presented set-membership filtering algo-

rithm for 2D systems subject to the stochastic communication
protocol and uniform quantization effects. It includes a
numerical example of convergent 2D systems, a practical
industrial heating exchange processes, and a numerical exam-

ple of divergent 2D systems.

Example 1: Consider 2D systems (equation (1)) with the fol-
lowing parameters:

546 Transactions of the Institute of Measurement and Control 46(3)



A1(i, j)=
0:2+ 0:1 sin ((i+ j)=10) 0:6

�0:6 0:01


 �
,

A2(i, j)=
0:1+ 0:1 sin ((i+ j)=10) 0

�0:6 �0:1


 �
,

B1(i, j)=
0:05 sin (0:1p(i+ j)=3) 0:12

�0:3 0:04 sin (0:4p(i+ j))


 �
,

B2(i, j)=
0:02 0:13

�0:2 sin (0:4p(i+ j)) 0:1


 �
, C(i, j)=

1 0

0 1


 �
,

a1(i, j)=
�0:2 0:15

0:4 sin (0:1p(i+ j)) 0:4 sin (0:12p(i+ j))


 �
,

a2(i, j)=
�0:2 0:15

0:2 sin (0:1p(i+ j)) 0:1 sin (0:12p(i+ j))


 �
,

a3(i, j)=
�0:2 0:15

0:4 sin (0:1p(i+ j)) 0:4 sin (0:12p(i+ j))


 �
:

In the simulation, we take the initial state of systems as

x(i, j)= 1:2 cos ( j) sin (i) 1:3 cos (i� 1) sin ( j)½ �T for i 2 0 40½ �
and j=0, x(i, j)= 3:3 sin (i) cos ( j+1) 2:9 cos (i+1) sin ( j� 1)½ �T

for i= 0 and j 2 1 40½ �, the initial estimation as x̂(i, 0)=

x̂(0, j)= 0 0½ �T for i, j 2 0, 40½ �. Moreover, let P(i, 0)=

P(0, j)= 0:5I ,R(i, j)= S(i, j)= 0:2I for i, j 2 0, 40½ �,F = 0:2I ,

respectively. The quantizing level could be selected as k= 0:2.
The unknown-but-bounded external disturbances v(i, j)

and measurement noises v(i, j) are selected as

v(i, j)=
0:2 sin (0:6(i+ j)) 0:3 cos (0:3(i+ j))½ �T i, j 2 1 25½ �

0 otherwise

�

v(i, j)=
0:2 sin (0:6(i+ j)) 0:2 cos (0:3(i+ j))½ �T i, j 2 1 25½ �

0 otherwise

�

It is assumed that the probability of sensor 1 obtaining
access to the communication network is Pr j(i, j)= 1f g=
p1 = 0:7, and the probability of sensor 2 obtaining access to

the communication network is Pr j(i, j)= 2f g= p2 = 0:3.
Then, by applying Theorem 1 and Algorithm 1, the set-

membership filtering gain matrices K1, j(i+ 1, j)

� �
and

K2, j(i, j+ 1)

� �
are exhibited in Tables 1 and 2, respectively.

The simulation results are shown in Figures 3–13. Figure 3

depicts the communication sequence subject to the stochastic
communication protocol. The ‘‘blue square’’ represents sensor
1 obtaining the access authority to communication network.
Similarly, the ‘‘yellow square’’ represents sensor 2 obtaining

the access authority to communication network. Figures 4
and 5 are concerning the trajectories of the first component
of state x1(i, j) and the second component of state x2(i, j),

respectively. Figures 6 and 7 describe the trajectories of the
first component of dynamic filtering error e1(i, j) and the sec-
ond component of dynamic filtering error e2(i, j), respectively.
It can be seen from Figures 6 and 7 that the dynamic filtering

error converges rapidly after the initial horizon. In addition,
the filtering error fluctuates in the finite horizon i, j 2 1 25½ �

Algorithm 1. Set-membership Filtering Algorithm for 2D Systems with Stochastic Communication Protocol and Uniform Quantization:

Step 1: Set the initial conditions x(i, 0), x(0, j), x̂(i, 0),x̂(0, j), P(i, 0),P(0, j),S(i, j), and R(i, j) satisfying Assumption 1 and Assumption 2 for i, j 2 0, K½ �.
Step 2: For i= 0, K½ � and j= 0, calculate K1, j(i+ 1, j) , K2, j(i, j+ 1), and P(i, j) from equations (14) and (32).

Step 3: For j= 1, K½ � and i= 0, calculate K1, j(i+ 1, j) , K2, j(i, j+ 1), and P(i, j) from equations (14) and (32).

Step 4: For i= 1 : K

For j= 1 : K

calculate K1, j(i+ 1, j) , K2, j(i, j+ 1), P(i, j), and x̂(i, j) from equations (14) and (32)

end

end

Step 5: Stop.

Table 1. Values of K1, j(i+ 1, j).

K1, j(1, 0) =

0:9119 0
�1:5755 0
3:4341 0

0 1

2
664

3
775 K1, j(1, 1) =

0:1164 0
�0:3700 0
0:0084 0

0 1

2
664

3
775

.

K1, j(1, 40) =

0:1920 �0:2000
0:2411 0

1 0
0 �4:7713

2
664

3
775

K1, j(2, 0) =

0:8654 0:2311
0 0
1 0
0 �1:2827

2
664

3
775 K1, j(2, 1) =

�0:0214 0
�0:3900 0
�1:5481 0

0 1

2
664

3
775

.

K1, j(2, 40) =

�0:0609 0
0:0130 0
�2:2700 0

0 1

2
664

3
775

. . . .

K1, j(40, 0) =

�0:6375 0
0:1615 0
�1:9330 0

0 1

2
664

3
775 K1, j(40, 1) =

0:6440 0
�0:2870 0
0:0559 0

0 1

2
664

3
775

.

K1, j(40, 40) =

0:0355 0
�0:0060 0
�0:1059 0

0 1

2
664

3
775
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Table 2. Values of K2, j(i, j+ 1).

K2, j(0, 1) =

5:2334 0
�0:8018 0
3:4057 0

0 1

2
664

3
775 K2, j(1, 1) =

0:6100 0
�0:0380 0
�0:2070 0

0 1

2
664

3
775

.

K2, j(40, 1) =

0:3000 0:6330
0:0012 �0:0015

1 0:0058
0 0:0424

2
664

3
775

K2, j(0:2) =

1:1260 0:2311
�0:2300 0
�0:0186 0

0 1

2
664

3
775 K2, j(1, 2) =

0:4340 0
�0:2060 0
�0:0429 0

0 1

2
664

3
775

.

K2, j(40, 2) =

0:2362 0:0110
�0:1430 0
�0:0015 0

0 1

2
664

3
775

. . . .

K2, j(0, 40) =

0:7917 0
�0:1663 0
�0:1578 0

0 1

2
664

3
775 K2, j(1, 40) =

0:6442 0
�0:2871 0
0:0559 0

0 1

2
664

3
775

.

K2, j(40, 40) =

0:0355 0
�0:0060 0
�0:1059 0

0 1

2
664

3
775

Figure 3. Sensors’ communication sequence under the stochastic

communication protocol.

Figure 4. Trajectory of the first component of state x1(i, j) in example 1.

Figure 5. Trajectory of the second component of state x2(i, j) in

example 1.

Figure 6. Trajectory of the first component of dynamic filtering error

e1(i, j) in example 1.
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due to external disturbance, and the dynamic filtering error

finally converges to 0 after the end of the external distur-

bance, which reflects the excellent performance of the pro-

posed filtering algorithm. Figures 8 and 9 describe the

trajectories of the first component of filtering estimation

x̂1(i, j) and the second component of filtering estimation

x̂2(i, j), respectively. To more intuitively illustrate the superior

performance of designed filter, we limit the vertical compo-

nent j and horizontal component i to evolve independently

from 8 to 11. The comparison of the true systems’ state with

the estimation state is shown in Figures 10–13. It can be seen

that the estimated state of proposed filtering algorithm can

effectively follow the real state of the systems.

Example 2: Consider an industrial heating exchange processes

satisfying the following partial differential equation (Wang

et al., 2020), which structure diagram is shown in Figure 14

∂�h(x, t)

∂x
+

∂�h(x, t)

∂t
= a(i, j)�h(x, t)� b(i, j)u(x, t)

where �h(x, t) is the temperature function associated with both
the space dimension x 2 0 X½ � and the time dimension

t 2 0 T½ �. The real numbers a(i, j) and b(i, j) are used to rep-
resent the exchange coefficients in the working processes.

Define �h(i, j)= �h(iDx, jDt), then the corresponding partial

derivative process can be approximated as follows

∂�h(x, t)

∂x
’

�h(iDx, jDt)� �h((i� 1)Dx, jDt)

Dx
,
∂�h(x, t)

∂t

’
�h(iDx, jDt)� �h(iDx, ( j� 1)Dt)

Dt
, �h(x, t)’�h(i, j),

then, when b(i, j)= 0, the original partial differential equation
can be approximately rewritten in the following form

�h(i, j+ 1)= 1� Dt

Dx
+ a(i, j)Dt


 �
�h(i, j)+

Dt

Dx
�h(i� 1, j)

furthermore, the original partial differential equation can be
transformed into the following FM-II model

x(i+ 1, j+ 1)=A1(i+ 1, j)x(i+ 1, j)+A2(i, j+ 1)x(i, j+ 1)

where

A1(i+ 1, j)=
0 0
Dt
Dx

1� Dt
Dx

+ a(i, j)Dt


 �
, A2(i, j+ 1)=

0 1

0 0


 �
:

From the perspective of engineering practice, the real state
of 2D systems will inevitably suffer from noise pollution. In

addition, there are some unpredictable changes in the pro-
cesses of heating exchange, which leads the parameters of 2D

systems to drift with timelapse. Furthermore, some nonlinear
factors in the working processes also need to be emphasized.

The partial differential equation has the following parameters:

Figure 7. Trajectory of the second component of dynamic filtering

error e2(i, j) in example 1.

Figure 8. Trajectory of the first component of set-membership filtering

estimation x̂1(i, j) in example 1.

Figure 9. Trajectory of the second component of set-membership

filtering estimation x̂2(i, j) in example 1.
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Dt = 0:1, Dx= 0:33, a(i, j)= cos (0:2(i+ j))� 3,A1(i+ 1, j)

=
0 0

0:33 0:36+ cos (0:2(i+ j))


 �
,A2(i, j+ 1)=

0 1

0 0


 �
,

B1(i, j)=
�0:65+ 0:05 sin (0:1p(i+ j)=3) 0:12

0:2 0:04 sin (0:4p(i+ j))


 �
,

B2(i, j)=
0:1 0:2

�0:02 sin (0:4p(i+ j)) �0:85


 �
, C(i, j)=

1 0

0 1


 �
,

and the remaining parameters are the same as example 1.
The simulation results are shown in Figures 15–20.

Figures 15 and 16 are concerning the trajectories of the first

component of state x1(i, j) and the second component of state

x2(i, j), respectively. Figures 17 and 18 present the trajectories

of the first component of filtering estimation x̂1(i, j) and the

second component of filtering estimation x̂2(i, j), respectively.

Similarly, we prescribe a limit to the vertical component j and

horizontal component i to evolve independently from 10 to

11, and provide the evolution trajectory of the systems’ state

Figure 11. First component of system state x1(i, j) and its estimation

x̂1(i, j) on j= 10, 11 in example 1.

Figure 10. First component of system state x1(i, j) and its estimation

x̂1(i, j) on j= 8, 9 in example 1.
Figure 12. Second component of system state x2(i, j) and its estimation

x̂2(i, j) on i= 8, 9 in example 1.

Figure 13. Second component of system state x2(i, j) and its estimation

x̂2(i, j) on i= 10, 11 in example 1.

Figure 14. Schematic diagram of industrial heating exchange processes.
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and estimated state in Figures 19 and 20. The comparison of

systems’ state with the estimated state is shown in Figures 19–

20. It can be seen from Figures 15–20 that the proposed set-

membership filtering algorithm has superb filtering perfor-

mance, and the estimated state can effectively track the sys-

tem state of 2D systems under the interference of noises.

Example 3: Consider 2D systems (equation (1)) with the fol-

lowing parameters:

A1(i, j)=
0:7+ 0:1 sin ((i+ j)=10) 0:38

0:24 0:2


 �
,

A2(i, j)=
0:65+ 0:1 sin ((i+ j)=10) 0:44

0:3 0:35


 �
,

and the remaining parameters are the same as example 1.
Simulation results are shown in Figures 21–24. Figures 21

and 22 are concerning the trajectories of the first component

of state x1(i, j) and the second component of state x2(i, j),

respectively. Figures 23 and 24 exhibit the trajectories of the

first component of filtering estimation x̂1(i, j) and the second

component of filtering estimation x̂2(i, j). It can be clearly seen

that when the systems’ state diverges, the set-membership fil-
tering algorithm developed in this paper is still valid and has

prominent filtering performance.

Conclusion

This paper has investigated the set-membership filtering

design problem for 2D shift-varying systems subject to the
stochastic communication protocol and uniform quantization

effects. On account of the limited bandwidth of the communi-

cation network, only one sensor can transmit the measured
information to the filter at each sampling shift instant (i, j),

and the selected sensor is determined by the stochastic sche-

duling strategy. The uniform quantization mechanism has

been employed to mitigate the influence of quantization error
on filtering performance. In such a framework, the model of

Figure 16. Trajectory of the second component of state x2(i, j) in

example 2.

Figure 17. Trajectory of the first component of set-membership

filtering estimation x̂1(i, j) in example 2.

Figure 18. Trajectory of the second component of set-membership

filtering estimation x̂2(i, j) in example 2.

Figure 15. Trajectory of the first component of state x1(i, j) in example 2.
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Figure 21. Trajectory of the first component of state x1(i, j) in example 3.

Figure 19. First component of system state x1(i, j) and its estimation

x̂1(i, j) on j= 10, 11 in example 2.

Figure 20. Second component of system state x2(i, j) and its estimation

x̂2(i, j) on i= 10, 11 in example 2.

Figure 22. Trajectory of the first component of state x2(i, j) in example 3.

Figure 23. Trajectory of the first component of set-membership

filtering estimation x̂1(i, j) in example 3.

Figure 24. Trajectory of the first component of set-membership

filtering estimation x̂2(i, j) in example 3.
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augmented 2D time-varying systems is established under the

impact of stochastic communication protocol and signal

quantization, and the set-membership filtering algorithm has

been designed to obtain the estimation of system state.

Sufficient conditions have been derived to guarantee that the

filtering error satisfies the P(i, j)-dependent constraints. Then,

optimal set-membership filtering gains have been obtained by

minimizing the ellipsoidal constraints of filtering error.

Finally, simulation examples have demonstrated the effective-

ness of the developed set-membership filtering algorithm.
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